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ABSTRACT 

Ocular artifacts are most unwanted disturbance in 
electroencephalograph (EEG) signals. These are 
characterized by high amplitude but have overlap-
ping frequency band with the useful signal. Hence, it 
is difficult to remove the ocular artifacts by tradi-
tional filtering methods. This paper proposes a new 
approach of artifact removal using S-transform (ST). 
It provides an instantaneous time-frequency repre-
sentation of a time-varying signal and generates high 
magnitude S-coefficients at the instances of abrupt 
changes in the signal. A threshold function has been 
defined in S-domain to detect the artifact zone in the 
signal. The artifact has been attenuated by a suitable 
multiplying factor. The major advantage of ST-fil- 
tering is that the artifacts may be removed within a 
narrow time-window, while preserving the frequency 
information at all other time points. It also preserves 
the absolutely referenced phase information of the 
signal after the removal of artifacts. Finally, a com-
parative study with wavelet transform (WT) and in-
dependent component analysis (ICA) demonstrates 
the effectiveness of the proposed approach. 
 
Keywords: EEG, Ocular Artifact; S-Transform;  
Wavelet Transform; Independent Component Analysis 
 
1. INTRODUCTION 

Electroencephalogram (EEG) is the recorded electric 
potential from the exposed surface of the brain or from 
the outer surface of the head. The raw EEG data is con-
taminated with numerous high and low frequency noise 
known as artifacts. High frequency noise is a result of 
atmospheric thermal noise and power frequency noise. 
Low frequency noise is primarily caused by eye move-
ments, respiration and heart beats. Such artifacts are 
characterized by amplitude in the millivolt range (whereas 
the actual EEG is in microvolt range) in the frequency 

band of 0 - 16 Hz [1]. 
The presence of these artifacts in the raw EEG poses a 

major problem to researchers. Various methods to re-
move such artifacts have been proposed in the literature. 
These methods include Principal Component Analysis 
(PCA), Independent Component Analysis (ICA) and 
wavelet based thresholding. Croft and Barry [2] and 
Kandaswamy et al. [3] reviewed several methods of ar-
tifact removal. Lagerlund et al. [4] use a Principal 
Component Analysis (PCA) based filtering of EEG sig-
nal for artifact removal. Therefore, a major drawback of 
the PCA method is that it cannot completely separate 
ocular artifacts from EEG signals, when both waveforms 
have similar voltage magnitudes. Decomposition into 
uncorrelated signal components is possible with PCA; 
however, it is not sufficient to produce independence 
between the variables, at least when the variables have 
non-Gaussian distributions. The PCA method therefore 
cannot accommodate higher-order statistical dependen-
cies. 

Jung et al. [5], Delorme et al. [6] and LeVan [7] de-
veloped some artifact removal techniques using ICA 
which demonstrates the potential not only to decorrelate 
but also to work with higher-order dependencies. The 
most significant computational difference between ICA 
and PCA is that PCA uses only second-order statistics 
(such as the variance which is a function of the data 
squared) while ICA uses higher-order statistics (such as 
functions of the data raised to the fourth power). Vari-
ables with a Gaussian distribution have zero statistical 
moments above second-order, but most signals do not 
have a Gaussian distribution and do have higher-order 
moments. These higher-order statistical properties are 
put to good use in ICA. While ICA is an extension of 
PCA method, these component-based artifact removal 
procedures are not automated and require tuning of sev-
eral parameters such as number of sources, permutation 
of these sources etc. through visual inspection. 

Krishnaveni et al. [1] recently proposed a wavelet 
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based thresholding method to remove ocular artifacts 
from raw EEG data. Kumar et al. [8] developed a similar 
wavelet based statistical method for removing ocular 
artifacts. The wavelet based artifact removal techniques 
are notable for preserving the shape of the waveform of 
the signal in the artifact free zone compared with other 
artifact removal methods. But this method is limited by 
the introduction of noise beyond the specified frequency 
band when applied to band limited signals. 

In this paper the authors propose a new method of 
ocular artifact removal from EEG signal using the 
S-transform [9,10]. The high amplitude signal compo-
nents, like the ocular artifacts are filtered out in 
S-domain by setting a statistical threshold function. The 
ST based method is an improvement of the wavelet 
method since it localizes the power and preserves the 
absolutely referenced phase information of the original 
signal. Moreover, integrating the S-transform over time, 
results in the Fourier transform (FT). This direct relation 
to the Fourier transform simplifies the task of inverting 
to the time domain. This property of the S-transform led 
to the development of S-transform filter, which has been 
explored in this work to serve the purpose of removing 
ocular artifacts.  

The paper has been organized as follows. The meth-
odology used for signal preprocessing and artifact re-
moval using ICA, WT and S-transform is described in 
Section 2. Results and discussions are contained in Sec-
tion 3 followed by the conclusions in Section 4. 

2. METHODOLOGY 

The methodology involves pre-filtering followed by the 
application of various methods such as ICA, wavelet and 
S-transform as discussed below. 

2.1. Filtering 

As discussed above the raw EEG data is contaminated 
with high frequency noises other than ocular artifacts. 
The signal is passed through a low pass filter with cutoff 
frequency of 30 Hz followed by normalization. Nor-
malization ensures removal of any unwanted bias that 
may have crept into the experimental recordings. These 
normalized signals have been used further for artifact 
removal. 

2.2. Independent Component Analysis 

Independent component analysis is a powerful technique 
which can be used to separate sources from a given lin-
ear mixture of signals. The brain is supposed to have 
many independent sources which produce electrical sig-
nals. The EEG signal that is obtained by various elec-
trodes actually contains a linear mixture of the signals 
produced by independent sources in the brain. In a signal 

having artifacts the linear mixture also contains the sig-
nals produced by ocular and other visceral sources. If we 
are able to separate the sources from the signals recorded 
by the various electrodes we can easily identify the arti-
fact sources and can separate them from the original 
EEG sources. Once the independent time courses of dif-
ferent brain and artifact sources are extracted from the 
data, “corrected” EEG signals can be derived by elimi-
nating the contributions of the artifactual sources. The 
method described here basically tries to separate and 
eliminate the ocular sources. Subsequently the linear 
mixture is reconstructed using the artifact free sources. 
This linear mixture is then called the artifact free signal. 

The signal obtained from the electrodes can be ex-
pressed in the following manner 

.x As                   (1) 

Here      1 2, , ,
T

mx k x k x k   x

1m
 1 2

 is called the 
observation vector. The observation vector in our case is 
composed of the signals obtained from the electrodes. 
The observation vector has ( ) components. The 
source vector is given by    , , ,

T

ns k ss

1n

k s k   ; 
it gives the different independent sources which results 
in observation vector after linear mixing. The source 
vector has (  ) components and they are assumed to 
be statistically independent; and that they are 
non-Gaussian. A is called the mixing matrix composed 
of ( m n ) constant elements ij . This matrix gives the 
linear transformation between the source vector and the 
observation vector. 

a

The independent component analysis problem is for-
mulated as finding a demixing or separating matrix W 
from the given observation matrix x, such that 

.y Wx                  (2) 

here      1 2, , ,
T

ny k y k y k   y  is the estimate of 
original source vector s and the components i  are as 
independent as possible. This can be achieved by maxi-
mizing some function 

y

 , n1 2, ,F y y 

m n

y  that measures 
independence. The various approaches differ in the spe-
cific objective function and the optimization method that 
is used. There are certain basic assumptions in the prob-
lem formulation. Firstly the number of observed signals 
should be equal to the number of independent sources, 
i.e.,  . Therefore A represents a full rank square 
mixing matrix. This is not really a restriction since PCA 
can always be applied to reduce the dimension of the 
data set x, to equal that of the source data set s. Another 
assumption is that source signals must be statistically 
independent of each other or in practice as independent 
as possible (including uncorrelatedness). The independ-
ence condition can be defined by stating that the joint 
probability density of the source signals is equal to the 
product of the marginal probability densities of the indi- 
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kvidual signals, i.e.,      
1

.
n

i
i

p p y


   y

Two categories of ICA algorithm exist. In the first 
type, source separation can be obtained by optimizing an 
objective function [11] which can be scalar measure of 
some distributional property of the output y. More gen-
eral measures are entropy, mutual independence, diver-
gence between joint distribution of y and some given 
mode and higher order decorrelation. 

The ICA method can be formulated as optimization of 
a suitable objective function which is also termed as 
contrast function. The problem in optimization of con-
trast function is that, they rely on batch computation 
using the higher order statistics (HOS) of data or lead to 
complicated adaptive separation. It is often sufficient to 
use simple HOS such as kurtosis, which is the fourth 
order cummulant with zero time lags. The kurtosis of the 

 source signal thi is  is given by 

    2
4 4 2Cum 3i i is E s E s     


         (3) 

If is  is Gaussian, then its kurtosis is zero. Source 
signals that have negative kurtosis are called sub-Gaus- 
sian and have a probability distribution flatter than usual 
Gaussian distribution. Source signals having a positive 
kurtosis are called super-Gaussian and have a probability 
distribution with sharp peak and longer tails then the 
standard Gaussian ones. A contrast function based on 
kurtosis is given by 

      2
4 4

1
1 1

Cum 3
n n

i i
i i

J y E y E y
 

        y 2
i  (4) 

where  stands for cummulant. It is maximized by 
a separating matrix W, if the sign of the kurtosis is same 
as all the source signals. For pre-whitened input vector x 
and orthogonal separating matrices, 

Cum

2 1iE y     and 
hence the contrast function  1J y  reduces to 2

iE y 3   
4

n

.  

Therefore,  is maximized when  1J y
1

i
i

E y


    is  

minimized for sources having negative kurtosis and 
maximized for sources with positive kurtosis.  

The second category uses neural implementation of 
ICA algorithms like non-linear PCA based subspace 
learning [12,13] for achieving source separation. In this 
category, there are adaptive algorithms [13] like mini-
mum mutual information method [14] and maximum 
entropy method [15] based on stochastic gradient opti-
mization. An excellent treatment of the various ap-
proaches, their strengths and weaknesses can be found in 
Cichicki et al. [16], as well as Hyvärinen et al. [17]. 

The method that has been used in this study is based 
on minimization of mutual information between outputs 
which is equivalent to maximization of their joint en-

tropy. The details of the algorithm which is known as 
infomax principle can be found in [18]. 

In this study we have used 19 electrodes to collect 
EEG data from a human subject. Hence exactly 19 in-
dependent components (sources) can be separated out 
using infomax based ICA, from the observed recordings 
(mixtures). Out of these 19 sources, the sources contain-
ing ocular artifacts can be identified and removed and 
subsequently artifact free signals are obtained recon-
structing from the rest of the components. 

2.3. Artifact Removal Using Wavelet Transform 

Wavelet transform is a useful tool for time frequency 
analysis of neurophysiological signals. Wavelets are 
small wave like oscillating functions that are localized in 
time as well as in frequency [19,20]. In discrete domain, 
any finite energy time domain signal can be decomposed 
and expressed in terms of scaled and shifted versions of 
a mother wavelet  t  and a corresponding scaling 
function  t . The scaled and shifted version of the 
mother wavelet is mathematically represented as 

   /2
, 2 2 ,   ,j j

j k t t k j  k Z          (5) 

A similar expression holds for , the scaled and 
shifted version of the scaling function 

 ,j k t
 t .  

A signal  h t  can be expressed mathematically in 
terms of the above wavelets at level  as  j

         , ,j j k j j k
k k

h t a k t d k t        (6) 

where  ja k  and  jd k  are the approximate and 
detailed coefficients at level . These coefficients are 
computed using filter bank approach as proposed by 
Rioul and Vetterli [21]. 

j

The original signal  h t  is first passed through a 
pair of high pass and low pass filters. The low frequency 
component approximates the signal while the high fre-
quency components represent residuals between original 
and approximate signal. The approximate component is 
further decomposed at successive levels. The output time 
series is down-sampled by two and then fed to next level 
of input after each stage of filtering.  

As the wavelet coefficients represent the correlation of 
signal with the mother wavelet, the signal will generate 
high amplitude coefficients at places where artifacts are 
present. These coefficients can be eliminated using a 
simple thresholding technique. The threshold can be 
computed as  

  2j jT mean C std C   .j         (7) 

here jC  is the wavelet coefficient at  level of de-
composition. If the value of any coefficient is greater 
than the threshold it is reduced to a suitable fraction of 

thj
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the actual coefficient value [8]. 

2.4. S-Transform 

The S-transform provides a useful extension to the 
wavelets by having a frequency dependent progressive 
resolution as opposed to the arbitrary dilations used in 
wavelets. The kernel of the S-transform does not trans-
late with the localizing window function, in contrast to 
the wavelet counterpart. For that reason the S-transform 
retains both the amplitude and absolutely referenced 
phase information [9]. Absolutely referenced phase in-
formation means that the phase information given by the 
S-transform is always referenced to time . This is 
the same meaning of the phase given by the Fourier 
transform, and is true for each S-transform sample of the 
time-frequency space. The wavelet transform (WT), in 
comparison can only localize the amplitude or power 
spectrum, not the absolute phase. There is, in addition, 
an easy and direct relation between the S-transform and 
the natural Fourier transform which cannot be achieved 
by wavelets. Since its development, the S-transform has 
been widely used in applications ranging from geophys-
ics [10], oceanography [22], atmospheric physics [9,23- 
25], medicine [26,27], hydrogeology [28] and mechani-
cal engineering [29].  

0t 

The S-transform of a continuous time signal  h t  is 
defined as [30,31] 

      2π, , i ftS f h t w t f t 






  e d .        (8) 

The window function w, is generally chosen to be 
positive and normalized Gaussian [25] 

 
 2 2

2, e
2π

t ff
w t f







           (9) 

where f represents the frequency, t is the time and   is 
the delay. It is worth emphasizing that in order to have 
an inverse S-transform, the window must be normalized  

 , d 1w t f t




.               (10) 

The S-transform can also be written as the convolution 
of two functions over the variable t 

     

   

, , ,

, ,

S f p t f w t f

p f w f

 

 





 

 

 dt
        (11) 

where 

    2π, e i fp f h               (12) 

and 

 
2 2

2, e
2π

ff
w f






             (13) 

Let  ,B f  be the Fourier transform (from   to 
 ) of the S-transform . By the convolution 
theorem the convolution in the 

 ,S f 
  (time) domain be-

comes a multiplication in the   (frequency) domain: 

     , , ,B f P f W f   .         (14) 

Here  ,P f  and  ,W f  are the Fourier trans-
forms of  ,p f  and  ,w f  respectively. Equation 
(14) can also be written as 

   
2 2

2

2π

, fB f H f e



 


         (15) 

where  H f   is the Fourier transform of (12) and 
the exponential term is the Fourier transform of the 
Gaussian function (13). Thus the S-transform can be 
retrieved by applying the inverse Fourier transform (  
to  ) to the above equation for , 0f 

      

 
2 2

2

1

2π

2π

, ,

e e df

S f H f W f

H f




  

. 



 



 

 



     (16) 

One of the important characteristics of the S-transform 
is that summing  ,S f  over   yields the Fourier 
spectrum of the signal h. Using the definition (8) of 
S-transform we obtain 

      2π, e d dftH f h t w t f t 
 



 

        (17) 

where  H f  is the Fourier transform of  h t . If 
 H f   , applying Fubini’s theorem and taking into 

account the normalization condition (10), the above 
equation reduces to a simple Fourier transform 

   , dH f S f . 




             (18) 

This spectral property enables the definition of an in-
verse S-transform through the inverse Fourier transform. 
Thus 

    2π, d e d .i fth t S f f 
 

 

 
  

 
        (19) 

This is clearly different from the concept of wavelet 
transform. The S-transform can be written as operations 
on the Fourier spectrum  H f  of  h t . 

   
2 2

2

2π

2π, e e difS f H f f


  

 



0.    (20) 

The discrete analog of (20) is used to compute the 
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discrete S-transform by taking advantage of the Fast 
Fourier Transform (FFT) and the convolution theorem. 
Using (13), the S-transform of a discrete time series 

 is given by (letting  h kT f n NT  and jT  ) 
2 2

2

2π 2π1

0

, e e
m i mjN

n N

m

n m n
S jT H n

NT NT

 



      
   

 0   (21) 

and for  it is equal to the constant defined as  0,n 

 
1

0

1
,0

N

m

m
S jT h

N NT





 
 

 
          (22) 

where  and  The discrete in-
verse of S-transform [9] is given by  

,j m 0,1, , 1.n N 

 
2π1 1

0 0

1
, e

i nkN N
N

n j

n
h kT S jT

N NT

 

 

     
  

  .    (23) 

The amplitude of the S-transform has the same mean-
ing as the amplitude of the Fourier transform. This pro-
vides a frequency invariant amplitude response in con-
trast to the wavelet approach [31]. The term “frequency 
invariant amplitude response” means that for a sinusoi-
dal signal with amplitude     0 0 cos 2πA h t A ft

0

, the 
S-transform returns amplitude A  regardless of the 
frequency f. 

2.5. Artifact Removal Using S-Transform 

When only single channel signal is available, component 
based methods like PCA and ICA cannot be applied. In 
such case, the use of S-transform has been demonstrated 
to be an important tool to remove ocular artifacts from 
EEG signals, since it not only solves the task efficiently 
but also retains the local phase information of the origi-
nal signal even after denoising. The following is a sum-
mary of the proposed algorithm. 

1) Decompose the entire EEG signal using S-trans- 
form. 

2) Select the frequency band  0,16 Hz , where, gen-
erally the ocular artifacts lie. 

3) Determine the mean and standard deviation of the 
absolute values of S-transform coefficients  ,S i j  in 
the selected frequency band. 

4) Set the threshold function as:  
    mean , 2*std , ,T S i j S i  j where   ,S i j   

is the absolute value of .  ,S i j
5) Set the multiplying factor . 0 1mf 
6) If   ,S i j T , then, , else 

. 
 ,S i j S i  , *j mf

  , ,S i j S i j 
7) Reconstruct the signal using the modified S-trans- 

form coefficients. 
High amplitude S-transform coefficients are generated 

at the places where artifacts are present. These coeffi-
cients are eliminated by using the above threshold tech-

nique. The time average of the local spectral representa-
tion (i.e., the S-transform) is the complex-valued global 
Fourier spectrum as in (18). As a result, the ST can be 
interpreted as a generalization of Fourier transform to a 
nonstationary signal. Since the EEG signal is highly 
nonstationary, the S-transform is the ideal method for 
representing its time-frequency distribution. It is also 
customary in Fourier spectra to show only the positive 
frequency part of the spectrum, because the amplitude 
spectrum is symmetric, and the phase spectrum is anti 
symmetric. However, any operation (here, thresholding) 
in the S-domain must be applied to both the positive and 
negative frequency parts of the spectrum. Otherwise, the 
summed ST will not collapse to FT. When any operation 
is applied to the positive or negative part of the spectrum 
only, the inverse FT leads to a complex (not real) time 
series, and would be in error. 

Here, signal reconstruction performance is measured 
by the signal-to-noise ratio (SNR) and is defined by 

2

2
1020log l

rec l

h
SNR

h h



        (24) 

where h and rech  represent the original and recon-
structed signal respectively. 

3. RESULT AND DISCUSSIONS 

In this paper we have evaluated the performance of the 
proposed denoising method using S-transform to remove 
ocular artifacts from EEG signal with respect to the ICA 
and wavelet based method discussed in Section II. The 
Figures related to ICA presented in this paper are pro-
duced using the EEGLAB software package which op-
erates in the MATLAB environment and available at 
http://sccn.ucsd.edu/eeglab. 

In Figure 1, the removal of ocular artifacts from EEG 
signals collected from multiple sensors is demonstrated. 
A five-second epoch of raw EEG time series containing 
prominent artifact due to eye movement is shown in 
Figure 1(a). First, the raw 19-channel EEG data are de-
composed into nineteen independent components using 
ICA based on infomax principle (Figure 1(b)). As ex-
pected, correlation between ICA traces are close to zero. 
The 2-D scalp component map of all nineteen ICs is 
illustrated in Figure 1(c). Since the EEG spectrum of 
eye artifacts decreases smoothly, their scalp topogra-
phies look like component 1. This artifactual component 
is also relatively easy to identify by visual inspection of 
component time course (Figure 1(b)). Since this com-
ponent accounts for eye activity, we may wish to sub-
tract it from the data. After removing component 1 we 
reconstruct the data using the rest 18 components in or-
der to get ocular artifacts free EEG signals which is 
shown in Figure 1(d).  

Copyright © 2011 SciRes.                                                                             JBiSE 

http://sccn.ucsd.edu/eeglab


K. Senapati et al. / J. Biomedical Science and Engineering 4 (2011) 341-351 

Copyright © 2011 SciRes.                                                                             

346 
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(b) 

 

 (c) 

 
(d) 

Figure 1. Demonstration of ocular artifact removal using ICA in EEG signals. (a) A 
five-second epoch of a nineteen-channel EEG time series containing prominent arti-
fact due to eye movement; (b) Corresponding ICA component activations and (c) 
scalp map of all the nineteen ICs; (d) Ocular artifact-free EEG signals by removing 
component 1 in (b).    
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ICA decomposition is possible only for multi channel 

data and hence cannot be applied when the data is avail-
able in single channel. Therefore the proposed S-trans- 
form technique is effectively applied in order to remove 
artifacts from single channel signal. A raw EEG signal of 
8 sec duration sampled at 256 Hz and its S-transform is 
shown in Figure 2(a). Using infomax based ICA method, 
ocular artifacts are removed from all the nineteen channel 
EEG signals and the exact segment of the signal (Figure 
2(b)) that has been used for WT and ST study also is 
taken for comparison. It can be observed in Figure 2(b), 
that the high amplitude ocular artifacts are significantly 
reduced in the reconstructed signal but its S-transform 
plot reveals that the time-frequency distribution as com-
pared to the original signal is massively disturbed which 
implies substantial loss in data in the useful signal outside 
the artifact range. In Figure 2(d), the time frequency plot 
after thresholding the S-coefficients and the correspond-
ing reconstructed signal are illustrated. The S-coefficients 

in the range of 0.5 - 16 Hz have been subjected to thresh-
olding since most artifacts lie within this band of signal. 
It can be observed in the Figure 2(d), that the high am-
plitude ocular artifacts in the specified band are signifi-
cantly reduced in the reconstructed signal. In addition, 
the reconstructed signal retains all other amplitudes and 
frequencies as well, of the signals. This is also apparent 
in the corresponding ST plot and can be explained by the 
“frequency invariant amplitude response” property of 
S-transform. The artifact removed signal using wavelet 
transform and its corresponding time frequency repre-
sentation using S-transform is demonstrated in Figure 
2(c). This time-frequency plot contains some unwanted 
frequency components beyond the actual frequency range 
of the signal. 

A comparison of the power spectral density (PSD) of 
the raw signal and the reconstructed signal is shown in 
Figure 3. The PSD of S-transform based reconstructed 
signal almost replicates the PSD of the raw signal be  

 

 

Figure 2. (a) Normalized raw EEG signal; (b) Artifact free EEG signal using ICA; (c) Artifact free EEG signal using wavelet trans-
form; (d) Artifact free EEG signal using S-transform. The figures in the right side are the corresponding time-frequency plot using 
S-transform, of the signals in the left. 
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Figure 3. Comparison of artifacts free signals using ICA, WT, ST in time domain and their PSD. 
 
yond the artifact range ([0,16] Hz). It can be seen that 
the PSD is least affected due to the removal of artifacts 
within the range (below 16 Hz). With the wavelet based 
reconstructed signal the PSD has a good correlation with 
that of the raw EEG, but beyond the specified band it has 
wide variations. When thresholding is applied to any 
frequency band of the wavelet transformed signal, the 
sample values in the time domain are replaced. Replac-
ing sample values in the time domain introduces a step 
discontinuity after the threshold replacement. A series of 
such replacements in the time domain at arbitrary time 
locations will give rise to high frequency noise in the 
frequency domain which is portrayed in Figure 2(c). 
Figure 4(b) shows the comparison of PSD of artifact 
removed signals for various multiplying factors  mf . 
In this example, reducing the multiplying factor of the 
wavelet coefficients, results in a distortion of the smooth 
profile of the signal, which introduces sharp changes in 
the artifact zone (Figure 4(a)). This is also observed in 
the time-frequency plot (Figure 2(c)) of the WT based 
artifact free signal. The variation of multiplying factor 
for ST does not affect the PSD in the non-artifact zone 
within the specified band (16 - 30 Hz). The signal to 
noise ratio in the reconstructed signals for all the three 
methods is also compared and observed that, it is more 
in the case of ST based reconstructed signal (2.33 dB) as 
compared to the WT (1.81 dB) and ICA (0.98 dB) based 
methods. The proposed method is applied to ten epochs 
of an EEG signal of duration of four seconds and com-
pared with the method based on wavelet transform. As 
shown in Figure 5, in each epoch the reduction of ocular 

artifacts is improved in the case of the proposed method 
with minimal impact to the other part of signal. 

4. CONCLUSIONS 

This paper demonstrates the effectiveness of the S- 
transform based approach in removing the ocular arti-
facts from the EEG signal. It outperforms some of the 
recently proposed methods based on wavelet transform 
and ICA. The wavelet transform only localizes the 
power spectrum as a function of time. It does not retain 
the absolutely referenced phase information that the 
S-transform contains and is therefore not directly invert-
ible to the Fourier transform spectrum. Additionally, we 
have also demonstrated that the PSD of the raw EEG is 
not affected by the proposed method, which implies the 
preservation of the information content is better than the 
other method based on wavelets and ICA.  

In conclusion, the S-transform method can be used as 
a very effective tool for removing ocular artifacts from 
EEG signals. Additional research in this field will refine 
our techniques and lead to improved methodology for 
filtering noise from EEG signals. 
 
Table 1. Comparison of signal-to-noise ratio. 

METHOD SNR (dB) 

ST 2.33 

WT 1.81 

ICA 0.98 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 4. (a) An artifact zone of the signal and its removal using WT and ST for three different multiplying factors (mf = 0.9, 0.7 and 
0.4) and (b) corresponding PSDs; (c) An artifact zone of the signal and its removal using ICA, WT and ST. 
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Figure 5. Comparison of artifact removal using ST and WT for ten 4-second EEG segments. 
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