
Int. J. Communications, Network and System Sciences, 2011, 4, 345-350
doi:10.4236/ijcns.2011.45039 Published Online May 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

Permutation and Complementary Algorithm to Generate
Random Sequences for Binary Logic

Jie Wan, Jeffrey Z. J. Zheng
School of Software, Yunnan University Kunming, Kunming, China

E-mail: {wanjiech, conjugatesys}@gmail.com
Received December 15, 2010; revised March 23, 2011; accepted April 3, 2011

Abstract

Randomness number generation plays a key role in network, information security and IT applications. In this
paper, a permutation and complementary algorithm is proposed to use vector complementary and permuta-
tion operations to extend n-variable Logic function space from functions to configurations 22

n 22 2
n n !

for variant logic framework. Each configuration contains functions can be shown in a 22
n 1 12 22 2

n n 


matrix. A set of visual results can be represented by their symmetric properties in W, F and C codes respec-
tively to provide the essential support on the variant logic framework.

Keywords: Logic Function, Permutation and Complementary, Variant Logic, Symmetric Distribution,

Random Sequence

1. Introduction

Random numbers play an important role in many net-
work protocols and encryption schemas on various net-
work security applications [1], for example: digital sig-
natures, authentication protocols, key generation for PKI,
RSA/AES [2], nonce frustrate, symmetric stream encryp-
tion. A better random number algorithm will enhance
encryption schemas, to do other applications. To satisfy
different requirements, the NIST has published a series
of statistical tests as standards [3] to determine whether a
random number generator is suitable for a cryptographic
application. After using the vector complementary and
the permutation operations on binary logic, the variant
logical framework extends the traditional Logic function
space from functions to configurations
[4]. Under the new extension conditions, it is possible to
use simple transformation to generate huge numbers of
random sequences for future applications.

22
n 22 2

n n !

Permutation and complementary algorithm is de-
scribed in the paper to express different random proper-
ties through a series of binary image sequences under-
taken typical recursive operations.

2. Method
Cellular automata perform a natural way to generate
random sequence. The principle of binary cellular auto-
mata [5] [6] can be explained by an example as follow:

First, a sequence 001100 and a function f:
 00 0,01 1,10 1,11 0    are selected.

Second, the sequence can be decomposed from left to
right. The last bit is composed to the first bit

 001100 00,01,11,10,00,00

001100 010100

22
n 22 2 !

n n

Third, according to the decomposed sequences and the
generating function, a new sequence 010100 can be gen-
erated. i.e.:

f:
Followed the algorithm, the space of the generation

function can be extended further; large numbers of ran-
dom sequences can be generated. This mechanism can
increase the complexity of code-breaking.

In variant logic framework, the logic function space
has been extended from to by the per-
mutation and the complementary operations.

In 2 variable functions of cellular automata, there are
16 generated functions. And the 16 functions can be de-
scribed in a truth table (Figure 1(a)) with 16 entries.

2.1. Permutation Operation

The bit string of states  00,01,10,11 in generating
function can be converted to decimal number  0,1,2,3 .
An example in Figure 1(b) is shown to permute 3210 to

Int. J. Communications, Network and System Sciences, 2011, 4, 345-350
doi:10.4236/ijcns.2011.45039 Published Online May 2011 (http://www.SciRP.org/journal/ijcns)

Copyright © 2011 SciRes. IJCNS

(a) (b)

Figure 1. Permutation example, (a) The Truth Table of 3210; (b) The Permutation Table of 1320.

1320 of the table.

2.2. Complementary Operation

In the complementary operation, the complementary
vector  is applied operate to the truth table.

It can be describe as

, 1y  
, 0

y
y 

  

In 2-variable variant logic,  is a binary sequence of
4 bits in  . In the example the original
table is

0000, ,1111
1111  and shown in Figure 2(a) the given

1100  to Table 2 can be described as
. Under such operation, the sequence

values of state 1 and 3 columns are invariant. But the
values of columns whose index is 0 and values of the
permutation sequence in state 2 and 0 are changed to
their revised values respectively.

 1100 1 1 0 01320 1 3 2 0

After the complementary operation, Figure 2(a) chan-
ges to Figure 2(b).

2.3. Visualization

For function f applies once applied again the sequence
001100 output 010100.then applied again the 010100 to
output 111100.For such binary sequence, select black for
1 and white for 0 to generate the visual patterns as fol-
lows (Figure 3).

2.4. Matrix Representation

For example, (Figure 2(b)) the truth value of 3th func-
tion is 1010. It can be converted to a binary coordinate
10 10 distinguished Left two and tight two bits re-

spectively. So the decimal coordinate is 2 2 . Then the
(Figure 2(b)) can be converted to Table 1.

Under such converting the 2D matrix can be repre-
sented in Table 2.

3. Algorithm and Properties

3.1. Permutation and Complementary Algorithm

Using permutation and complementary operations, an
algorithm is extended to express the n-ary variant logic
functional space.

J. WAN ET AL. 347

Algorithm: Permutation and Complementary:
Input: variable n

Output: a set of truth table of P ,  2nP S 
2
2

n

B
,

.  

(a) (b)

Figure 2. Complementary Example, (a).The Permuatation Table of 1320(1111); (b).The Complementary Table of 1320(1100).

Method:
Step 1. Initial  1 0

000 0

T 2 1n  
Step 2. Generate a permutation P for T
Step 3. From   

2

 to 111 ··· 1 do vector
complementary operation.

Step 4. Any new permutation?
Yes go to Step 2.
Step 5. End

where S(N) is a symmetry group with N member and MB
2

is a M variable Boolean structure with M members.

3.2. Representation Scheme

Every truth table has a 2D matrix to arrange visual re-
sults of random sequence. The ,X Y is the coordinate
to allocate each visual result. So for n-ary logic function
space, the 2D matrix has a size of 2 shown
(Table 3).

1 12 22
n n 


3.3. W, F and C Code

Three coding schemes can be distinguished in the algo-
rithm.

W code [4] is a binary sequence of bits. It sepa-
rates into two parts

2n

 1 0J J 12n

1

. Each part has bits
F code is a subset of W code. And it is a symmetry

code. In F code, if the I-th Meta state in J is 1 or 0, the
I-th meta state in 0J is the negative state.

1If a code is F code and the I-th meta state in J have
the same value. Besides four corners of its matrix are
included in  0, , ,1x x , it is C code [4].

E.g. 32 10 1110 01 00 is an element of W code.
In the sequence 1 isn’t the negative sequence of 3. And
the 0 isn’t also the negative sequence of 2.

Copyright © 2011 SciRes. IJCNS

J. WAN ET AL. 348

Figure 3. Visualize the Random sequence.
Table 1. Coordinate map of 1320(1100).



1 1 0 0

J P Status

 1 3 2 0

 01 11 10 00

Transformed
bracket

0 0 0 1 1 <0,3>

1 0 0 1 0 <0,2>

2 1 0 1 1 <2,3>

3 1 0 1 0 <2,2>

4 0 0 0 1 <0,1>

     

     

13 0 1 0 0 <1,0>

14 1 1 0 1 <3,1>

15 1 1 0 0 <3,0>

Table 2. 2D Matrix of the 1320(1100).

<0,0>
5

<0,1>
4

<0,2>
1

<0,3>
0

<1,0>
13

<1,1>
12

<1,2>
9

<1,3>
8

<2,0>
7

<2,1>
6

<2,2>
3

<2,3>
2

<3,0>
15

<3,1>
14

<3,2>
11

<3,3>
10

Table 3. 2D Matrix for n-ary logic functions.

<0,0>  
120, 2 1

n



<1,0>  
121, 2 1

n



 

 
122 2,0

n

  
1 12 22 2,2 1

n n 

 

122 1,0
n

  
1 12 22 1,2 1

n n 

 

32 01 1110 00 01 is an F code. It has the symmetry

property. In the sequence 0 is the negative sequence of 3
and 1 is the negative sequence of 2.
  13 20 01 1110 00 is a C code. It has the symmetry
property of F code. And four comers of 1320’s matrix
are included in  0, , ,1x x .

The further definition of W, F and C code can be
found in the [4].

From the exhaustive of the binary variant function
space, the number of W, F, C code in binary variant
function space [7]shown in Table 4.

4. Coding Simples

W Code:

Permutation sequence: 3210
 : 1011 The value of

F Code:
Permutation sequence: 3201

 : 1111 The value of
C Code:
Permutation sequence: 1320

 : 1100 The value of

5. Result Analysis

In Figure 4, W code is shown a general code. Majority
W code doesn’t have apparent symmetry property. W
code covers all the code space which form from binary
input variable. These properties can be seen in Figure 4.

All the F codes have overall symmetry in 2D distribu-
tion. Obvious symmetry among functions in the 2D ma-
trix can be observed in Figure 5.

Simple is shown in a C code in Figure 6. It is a small
set of F code with complete symmetry property, C code
have the four constant vertex property. The group of the
four vertex in C code are located by 0, 15, 10, 5 func-
tions respectively.

In the n-ary logical function permutation and comple-
mentary algorithm, the permutation is operated for ;
the complementary exhaustive needs operation for
each permutation operation. A total of computational
complexity of an n-ary variant logical function using
Permutation and Complementary algorithm is

2 !n

22
n

 22 ! 2
nnO  .

6. Conclusions

Copyright © 2011 SciRes. IJCNS

J. WAN ET AL.

Copyright © 2011 SciRes. IJCNS

349

A permutation and complementary algorithm has been
proposed for n-ary logical function. And sample results
are visualized. The visual results of W, F and C code in
the variant and invariant properties support the variant

Code System No

W 384

F 128

C 16

Table 4. The number of W, F and C code in 2-ary variant
functional space.

Figure 4. The 2D matrix diagram and the visual result of 32101011.

Figure 5. The 2D matrix diagram and the visual result of 32101111.

J. WAN ET AL. 350

Figure 6. The 2D matrix diagram and the visual result of 13201100.
logic system through experimentation to use an algo-
rithmic mechanism to generate a series of huge random
number sequences.

7. References

[1] W. Stallings, “Cryptography and Network Security: Prin-

ciples and Practice,” Prentice Hall, 2005.

[2] J. Soto and L. Bassham, “Randomness Testing of the
Advanced Encryption Standard Finalist Candidates,” Na-
tional Institute of Standards and Technology (NIST),
2000.

[3] National Institute of Standards and Technology (NIST),
“Random number generation,” 2008. Internet Avail- able:

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

[4] J. Zhi, J. Zheng and C. H. Zheng, “A framework to ex-
press variant and invariant functional spaces for binary
logic,” Frontiers of Electrical and Electronic Engineering
in China, Vol. 5, No. 2, 2010, pp. 163-172.

[5] S. Wolfram, “Theory and Applications of Cellular Auto-
mata,” Singapore: Word Scientific, 1986.

[6] S. Wolfram, “Cellular automata as models of complex-
ity,” Nature, Vol. 311, 1984, pp. 419-424.

[7] J. Wan and J. Zheng, “Showing Exhaustive Number Se-
quences of Two Logic Variables for Variant Logic Func-
tional Space,” Proceedings of Asia-Pacific Youth Con-
ference on Communication (APYCC), October 2010, p. 4.

Copyright © 2011 SciRes. IJCNS

