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Abstract 
 
Randomness number generation plays a key role in network, information security and IT applications. In this 
paper, a permutation and complementary algorithm is proposed to use vector complementary and permuta-
tion operations to extend n-variable Logic function space from  functions to  configurations  22

n 22 2
n n !

for variant logic framework. Each configuration contains  functions can be shown in a 22
n 1 12 22 2

n n 
   

matrix. A set of visual results can be represented by their symmetric properties in W, F and C codes respec-
tively to provide the essential support on the variant logic framework. 
 
Keywords: Logic Function, Permutation and Complementary, Variant Logic, Symmetric Distribution,  

Random Sequence 

1. Introduction 
 
Random numbers play an important role in many net-
work protocols and encryption schemas on various net-
work security applications [1], for example: digital sig-
natures, authentication protocols, key generation for PKI, 
RSA/AES [2], nonce frustrate, symmetric stream encryp-
tion. A better random number algorithm will enhance 
encryption schemas, to do other applications. To satisfy 
different requirements, the NIST has published a series 
of statistical tests as standards [3] to determine whether a 
random number generator is suitable for a cryptographic 
application. After using the vector complementary and 
the permutation operations on binary logic, the variant 
logical framework extends the traditional Logic function 
space from  functions to  configurations 
[4]. Under the new extension conditions, it is possible to 
use simple transformation to generate huge numbers of 
random sequences for future applications. 

22
n 22 2

n n !

Permutation and complementary algorithm is de-
scribed in the paper to express different random proper-
ties through a series of binary image sequences under-
taken typical recursive operations. 
 
2. Method 
Cellular automata perform a natural way to generate 
random sequence. The principle of binary cellular auto-
mata [5] [6] can be explained by an example as follow: 

First, a sequence 001100 and a function f:  
 00 0,01 1,10 1,11 0     are selected. 

Second, the sequence can be decomposed from left to 
right. The last bit is composed to the first bit 

 

 001100 00,01,11,10,00,00

001100 010100

22
n 22 2 !

n n

 

Third, according to the decomposed sequences and the 
generating function, a new sequence 010100 can be gen-
erated. i.e.: 

f:  
Followed the algorithm, the space of the generation 

function can be extended further; large numbers of ran-
dom sequences can be generated. This mechanism can 
increase the complexity of code-breaking. 

In variant logic framework, the logic function space 
has been extended from  to  by the per-
mutation and the complementary operations. 

In 2 variable functions of cellular automata, there are 
16 generated functions. And the 16 functions can be de-
scribed in a truth table (Figure 1(a)) with 16 entries. 
 
2.1. Permutation Operation 
 
The bit string of states  00,01,10,11  in generating 
function can be converted to decimal number  0,1,2,3 . 
An example in Figure 1(b) is shown to permute 3210 to     
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(a)                                                           (b) 

Figure 1. Permutation example, (a) The Truth Table of 3210; (b) The Permutation Table of 1320. 
 
1320 of the table. 
 
2.2. Complementary Operation 
 
In the complementary operation, the complementary 
vector   is applied operate to the truth table.  

It can be describe as 

, 1y  
, 0

y
y 

  
 

In 2-variable variant logic,   is a binary sequence of 
4 bits in  . In the example the original 
table is 

0000, ,1111
1111   and shown in Figure 2(a) the given 

1100   to Table 2 can be described as  
. Under such operation, the sequence 

values of state 1 and 3 columns are invariant. But the 
values of columns whose index is 0 and values of the 
permutation sequence in state 2 and 0 are changed to 
their revised values respectively. 

 1100 1 1 0 01320 1 3 2 0

After the complementary operation, Figure 2(a) chan- 
ges to Figure 2(b). 
 
2.3. Visualization 

 
For function f applies once applied again the sequence 
001100 output 010100.then applied again the 010100 to 
output 111100.For such binary sequence, select black for 
1 and white for 0 to generate the visual patterns as fol-
lows (Figure 3). 
 
2.4. Matrix Representation 
 
For example, (Figure 2(b)) the truth value of 3th func-
tion is 1010. It can be converted to a binary coordinate 
10 10  distinguished Left two and tight two bits re-

spectively. So the decimal coordinate is 2 2 . Then the 
(Figure 2(b)) can be converted to Table 1. 

Under such converting the 2D matrix can be repre-
sented in Table 2. 
 
3. Algorithm and Properties 
 
3.1. Permutation and Complementary Algorithm 
 
Using permutation and complementary operations, an 
algorithm is extended to express the n-ary variant logic 
functional space.  
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Algorithm: Permutation and Complementary: 
Input: variable n  

Output: a set of truth table of P ,  2nP S 
2
2

n

B
, 

.    

 
(a)                                                           (b) 

Figure 2. Complementary Example, (a).The Permuatation Table of 1320(1111); (b).The Complementary Table of 1320(1100). 
 

Method: 
Step 1. Initial   1 0

000 0

T 2 1n  
Step 2. Generate a permutation P for T 
Step 3. From   

2

 to 111 ··· 1 do vector 
complementary operation. 

Step 4. Any new permutation? 
Yes go to Step 2.  
Step 5. End 

where S(N) is a symmetry group with N member and MB
2

 
is a M variable Boolean structure with M  members. 
 
3.2. Representation Scheme 
 
Every truth table has a 2D matrix to arrange visual re-
sults of random sequence. The ,X Y  is the coordinate 
to allocate each visual result. So for n-ary logic function 
space, the 2D matrix has a size of 2 shown 
(Table 3). 

1 12 22
n n 


 
3.3. W, F and C Code 
 

Three coding schemes can be distinguished in the algo-
rithm. 

W code [4] is a binary sequence of  bits. It sepa-
rates into two parts

2n

 1 0J J 12n

1

. Each part has  bits 
F code is a subset of W code. And it is a symmetry 

code. In F code, if the I-th Meta state in J  is 1 or 0, the 
I-th meta state in 0J  is the negative state.  

1If a code is F code and the I-th meta state in J  have 
the same value. Besides four corners of its matrix are 
included in  0, , ,1x x , it is C code [4].  

E.g. 32 10 1110 01 00  is an element of W code. 
In the sequence 1 isn’t the negative sequence of 3. And 
the 0 isn’t also the negative sequence of 2. 
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Figure 3. Visualize the Random sequence. 
Table 1. Coordinate map of 1320(1100). 

  
 

1 1 0 0 

J P Status 

 1 3 2 0 

 01 11 10 00 

Transformed  
bracket 

0 0 0 1 1 <0,3> 

1 0 0 1 0 <0,2> 

2 1 0 1 1 <2,3> 

3 1 0 1 0 <2,2> 

4 0 0 0 1 <0,1> 

     

     

      

      

13 0 1 0 0 <1,0> 

14 1 1 0 1 <3,1> 

15 1 1 0 0 <3,0> 

 
Table 2. 2D Matrix of the 1320(1100). 

<0,0> 
5 

<0,1> 
4 

<0,2> 
1 

<0,3> 
0 

<1,0> 
13 

<1,1> 
12 

<1,2> 
9 

<1,3> 
8 

<2,0> 
7 

<2,1> 
6 

<2,2> 
3 

<2,3> 
2 

<3,0> 
15 

<3,1> 
14 

<3,2> 
11 

<3,3> 
10 

 
Table 3. 2D Matrix for n-ary logic functions. 

<0,0>    
120, 2 1

n

  

<1,0>    
121, 2 1

n



 

 

      
122 2,0

n

     
1 12 22 2,2 1

n n 

   

122 1,0
n

  
1 12 22 1,2 1

n n 

     

 
32 01 1110 00 01  is an F code. It has the symmetry 

property. In the sequence 0 is the negative sequence of 3 
and 1 is the negative sequence of 2.  
  13 20 01 1110 00  is a C code. It has the symmetry 
property of F code. And four comers of 1320’s matrix 
are included in  0, , ,1x x . 

The further definition of W, F and C code can be 
found in the [4]. 

From the exhaustive of the binary variant function 
space, the number of W, F, C code in binary variant 
function space [7]shown in Table 4. 
 
4. Coding Simples 
 
W Code: 

Permutation sequence: 3210 
 : 1011 The value of 

F Code: 
Permutation sequence: 3201 

 : 1111 The value of 
C Code: 
Permutation sequence: 1320 

 : 1100 The value of 
 
5. Result Analysis 
 
In Figure 4, W code is shown a general code. Majority 
W code doesn’t have apparent symmetry property. W 
code covers all the code space which form from binary 
input variable. These properties can be seen in Figure 4. 

All the F codes have overall symmetry in 2D distribu-
tion. Obvious symmetry among functions in the 2D ma-
trix can be observed in Figure 5. 

Simple is shown in a C code in Figure 6. It is a small 
set of F code with complete symmetry property, C code 
have the four constant vertex property. The group of the 
four vertex in C code are located by 0, 15, 10, 5 func-
tions respectively. 

In the n-ary logical function permutation and comple-
mentary algorithm, the permutation is operated for ; 
the complementary exhaustive needs  operation for 
each permutation operation. A total of computational 
complexity of an n-ary variant logical function using 
Permutation and Complementary algorithm is  

2 !n

22
n

 22 ! 2
nnO  . 

 
6. Conclusions 
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A permutation and complementary algorithm has been 
proposed for n-ary logical function. And sample results 
are visualized. The visual results of W, F and C code in 
the variant and invariant properties support the variant  

Code System No 

W 384 

F 128 

C 16 
 
Table 4. The number of W, F and C code in 2-ary variant 
functional space. 

   

     

Figure 4. The 2D matrix diagram and the visual result of 32101011. 
 

     

Figure 5. The 2D matrix diagram and the visual result of 32101111. 
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Figure 6. The 2D matrix diagram and the visual result of 13201100.  
logic system through experimentation to use an algo- 
rithmic mechanism to generate a series of huge random 
number sequences. 
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