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Abstract 
 
This paper considers three algorithms for the extraction of square roots of complex integers {called Gaus- 
sians} using arithmetic based on complex modulus p + iq. These algorithms are almost twice as fast as the 
analogous algorithms extracting square roots of either real or complex integers in arithmetic based on 
modulus p, where p is a real prime. A cryptographic system based on these algorithms is provided in this 
paper. A procedure reducing the computational complexity is described as well. Main results are explained in 
several numeric illustrations. 
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1. Introduction and Problem Statement 
 
The concept of complex modulus was introduced by C. F. 
Gauss [1]. The set of complex integers is an infinite sys- 
tem of equidistant points located on parallel straight lines, 
such that the infinite plane is decomposable into infi- 
nitely many squares. Analogously, every integer that is 
divisible by a complex integer m = a + bi forms infini-  

tely many squares, with sides equal to 2 2a b . 
 
1.1. Complex Moduli 
 
Let’s denote . Associates of  , :a b a bi   : ,G p q  
are –G, iG and –iG; they are the vertices of a square 
where ;  ,G p q      0, 1 ,p q 


,q piG

  , ,p q q p 
; 

.   0, 1iG 
To understand the congruencies, let’s consider a sys- 

tem of integer Cartesian coordinates. The squares on this 
system of coordinates are inclined to the former squares 
if neither of integers a, b is equal to zero [1]. Then the 
associates of the modulus  are rotations of “vec-
tor”  on 90 degrees. Let’s consider the plane of 
complex numbers and as an example, the complex prime 
number  [2]. Let the left-most bottom 
point of the mesh be the origin of the coordinate system for 

Gaussians, and let  be the Gaussian 
modulus. Inside each square there is a number of Gaus-
sian integers; plus every vertex of each square is also a 
Gaussian integer. In order to avoid multiple counting of 
the same vertex, we consider that only the left-most bot-
tom vertex of each square belongs to that square [1]. For 
more insights and graphics see [2]. 

 ,p q




,
 ,p q

1, 4 : 1 4i 

: 1 4 1, 4G i  

    2
, , mod

This paper is a logical continuation of a recently pub- 
lished paper [3], which considered a cryptographic scheme 
based on complex integers modulo real semi-prime pq. 
The above mentioned paper describes an extractor of 
quadratic roots from complex integers called Gaussians. 
A slightly different approach is considered in [4]. Several 
general ideas for computation of a square root in modular 
arithmetic are provided in [5-7]. 

This paper considers arithmetic based on complex in- 
tegers with Gaussian modulus. As demonstrated below, 
the extraction of square roots in such arithmetic requires 
a smaller number of basic operations. As a result, the 
described cryptographic system is almost twice faster 
than the analogous systems in [3,4]. 

Consider quadratic equation  

x y c d p q ,          (1) 

where modulus  : ,G p q  is a Gaussian prime; and let  

  2: ,N p q p q2   .           (2) *Dedicated to the memory of Samuel A. Verkhovsky. 
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1.2. General Properties 
 

Proposition 1: Gaussian  is a prime if and only 
if its norm N is a real prime [1]. 

 ,p q

Remark 1: Since    , ,p q q p     , without loss 
of generality we assume that, if  is prime, then p 
is odd and q is even {unless it is stated otherwise}. 

 ,p q

Proposition 2: If norm of  ,p q  is a prime (2), then 
for every    , , 1 4p q N   is an integer. 

Proof: Let  and . Then (2) implies 
that 

: 2 1p k  : 2q  r

r   21 4 1N k k    . Q.E.D.         (3) 

Proposition 3 {cyclic identity}: If      gcd , , , 1,0a b p q     
and G  is a prime, then the following identity holds: 

    1
, mod , 1,

N
a b p q

  0



d



.         (4) 

Remark 2: More details about identity (4) are provided 
in the Appendix in Proposition 3.A. 

Proposition 4 {Modular multiplicative inverse}: if 
, then      gcd ,  , , 1, 0a b p q   

   1 2
, , mo

N
a b a b G

  .          (5) 

Remark 3: Yet, more computationally-efficient is to 
solve an appropriate Diophantine equation. However, 
this is beyond the scope of this paper. 

Definition 1: Gaussian  ,x y  is called a quadratic 
root of  modulo G if  ,c d   ,x y  and   satisfy 
Equation (1); we denote it as 

,c d

   , : , modx y c d G .           (6) 

 
2. Quadratic Root Extraction Where  

  5 mod 8N 
 

Proposition 5: If  ,p q  is prime and  5 mod 8N  , 
then  : 1 4

moq
m N   is odd. 

Proof: Notice that d 4 2 , otherwise (3) implies 
that . Q.E.D. 1 mod 8N  
 
2.1. Quadratic and Quartic Roots of  1, 0   

Modulo   ,p q
 
Consider a quadratic root  ,u w  of    mo1, 0 d ,p q :  

     , : 1,0 mod ,u w p q

,  Thi
G o  

               (7) 

Since the last equation does not

lu

. 

Then  ,u w s 
equation holds if either w = 0 and 2u r if 
u = 0 and 

     2 2 2 , 2 1,0 modu w uw p q   .
1mod ; 

2 1mod Gw   .

 have a real integer so- 

tion for w, it implies that 

       ,0 ,  modp q G  , 1,0 1u w     .    (8) 

Hence, if a root  ,x y  is known, then another root of 
 ,d  is c   , y

There ar
, d .u w x G  mo

oots: e Qu  1, 0 , artic r four quartic roots of 
each satisfying  4 1,0kq  :  

(1,0);q q q    1 2 3 4( 1,0); 0,1 ; 0, 1 ;q         (9) 

where 

    2 2
3,4 2 2 1mod ;  1,0 mod .q q G q q G    

 
.2. Quadratic Root Extractor (QRE-1) 

Step 1.1: Compute 

2
 

   2 2: ;  N mp q  : 1 4; 3 8N z N      (10) 

Step 2.1: if N is not a prime, then QRE-1 algor
no

ithm is 
t applicable,  n a ; 
Remark 4:  

   1, 1,0 modp q G   ;         (11) 

Step 3.1: Compute 

           (12) 

Step 4.1: if 

  mod
m

c d G ;: ,E

 0, 1E   , 
due (GQNR

then 
dr

 5.1: if 

 ,c d
its squ

  is Gaussian qua- 
atic non-resi }, i.e. are root does not 

exist; 
Step  1, 0E  , then  

    3 8
m

N
x, : , ody c G ;         (13) 

Step 6.1: if 

d


 1,0E   , then 

   1: 0, 1 mod ; mod R EG GR    ;   (14) 

   , : , mod
z

x y R c d G  ;

nd

         (15) 

Step 7.1 {2  square root}:  

    , : 1, ,t v p q x y  mod G   (11).     (16) 

 
.3. Validation of Algorithm 

Proposition 6: Suppose  

2
 

a)  ,p q  is a prime and  2 mod 4q  ;      (17) 

b)     1 4
3 8; m d : , o

N
E c d Gz N

  ;      (18) 

c)    1  if  1,mod 0  or 1,0R EE G   ;    (19) 

then 

     , , mo
z

c d R c d G .d         (20) 
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Proof: First of all, (19) implies that  

          (21) 

Yet,  

 2 mod 1,0ER G  .

 
 

      
  

3 4 1 42 2 2, , ,

                      , mod

N N
R c d c d R c d ER

c d G

  


.(22) 

Therefore, (21) and (22) imply equation 

       (23) 

which itself implies that (20) is correct. Q.E.
 

has a quadratic root 
odulo Gaussian prime ly if 

,c d

   , , modc d R c d G2 2z
,

D. 

3. Criterion of Gaussian Quadratic  
Residuosity Where  5 mod 8N 

 
Proposition 7: Gaussian 

 

 ,c d  
 ,p q  onm

    1 4
, m d 1,0

N
c d G

   .       (24) o

Example 1: Consider  , 8317,p q  
es. 

91, 6; Np q    
which is a prime; hence are Gaussian prim
C

 91, 6   
ompute    : 1m N 
Let    , 81, 71c d  . S

4/ 2079;  :
ince  

3 8 1040z N   ; 

 81,71
m    96,85   1,0 mod 91, 6    (11), therefore, 

       0,1
      (25) 

    
, 81,71 81,71

        57,75 mod 91, 6 .

x y   

 

Verification: Indeed,  

 .    (26) 

 
4. Numeric Illustration 

N = 109; m = 27; z = 14. 
In Table 1 are the quartic roots  of unity 

1040

 57,75 m   2
od 91, 6 81,71 

 
Consider p = 10, q = −3. Then 

m ,c d  k

(9), i.e., 
q

         1: 1,0 12,7 1,0 ; 3,9 0, 1 ;q q     

      
2 3

4

;

        10, 2 0,1 mod ,

R q

q p q

 

  
. 

Step-by-step process of extraction of the square roo
and criteria of quadratic residuosity are illustrated for 
se

ts 

veral values of  ,c d . 
 
5. Quadratic R Exoot traction (QRE-2)  

5.1. Basic Properties 

 and 

Where  9 mod 16N   

 

 
Proposition 8: if  3p  mod8  0 mod 4q  , then 

able 1. Quadratic root extraction and verification; T
mod 8 = 5 . N

 ,c d  (3, 8) (4, 8) (6, 7) (8, −2) (9, 2) (10, 5)

 ,
m

c d  (1, 0) (10, −2) (−1, 0) (−1, 0) (3, 9) (1, 0)

 ,
z

c d  (9, −2) QNR (5, 3) (11, 4) QNR (2, 2)

 ,
z

c d R (9, −2) n a  (7, 2) (7, −1) n a (2, 2)

 2
,x y  (3, 8) *** (6, 7) (8, −2) *** (10, 5)

 
 : 1m N   8 is odd and  7 16N   is an integer. 

Proof Si =  + 3 and  h e : nce p  8w  q = 4r, t erefor
 2 216 4 3 9N w w r      (2). Hence  16 7N  . 

If we assume that m is even; then  

   7      7) 16 1 2N m   .     (2

Thus, if 2m  is integer, then  7 16N   is not (27). 
This contradiction proves Proposition 8

Proposition 9 {criterion of Gaussian
os

. 
 quadratic residu- 

ity}: 
Let 

  1 8
: , mod

N
E c d G

 ;           (28) 

and   gcd , , 1c d G  . 

Then  ,c d
 if 

 has a quadratic root
e G

 modulo Gaussian 
prim

      ,0 ; 0: 1 , 1 1; iE       ; {see the algorithm below}.  

(29) 

Proposition 10: Suppose 

a) p is odd and  0 mod 4q  ;                (30) 

b)  7 16z N  ;                        (31) 

 satisfies the fc) Resolventa R ollowing conditions: 

   
   

 3

1,0 mod    if    1,0 ;              (32)G E 

0, 1 mod    if    1,0 ;           (R G E
    33)

mod    if    0, 1 ;           (34)E G E

 



  

 

Then 

     , , mo
z

c d R c d G .d         (35) 

in (32)-(34) Proof: Notice that 1 modR E G . 
s that  If (35) is correct, then it implie

d        (36)    , ,c d R c d 2 2 mo
z

G .

On the other hand,  

        odG ;  (37) 
2 1 82 2, , , m

z N
c d R c d c d R

   

th ply that erefore (28), (32)-(34) im
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ords, it confirms as- 

 
5.

 2 mod , 1ER p q  .    (38) 

Hence (36) is correct. In other w
sumption (35). Q.E.D. 

2. Octadic Roots of  1, 0  Modulo  ,p q  
 

onsider roots of 8th poC wer (called the octadic roots) of 
 roots:  8  unity; there are eight such for k = 1, ···,

     
   

8
1,2 3,4

5,6 7,8

: 1,0 : 1,0 ; : 0, 1 ;

      : 0,1 ; : 0, 1

ke e e

e e

     

    
    (39) 

Then 

2e

e
.     (40) 

Therefore, the resolventa R must satisfy the following 
equations for k = 1, 2, ···, 8: 

 .     (41) 

if 3,4

an

(43) 
 

5.3. Computation of 

   
   

2 2
2 1 3,4

2 2
5,6 3 7,8 4

1,0 ; 1,0 ;

0,1 ; 0, 1

e e e

e e e

    

    

  1mod 1,0  or modk kRe G R e G 

Thus, 1:  if  1, 2k kR e e k   ; 
1 3 2:    k k k k kR e e e e e k      ;     (42) 

d 

 
 

1 7 4 2 2 0, 1  if
:

0,1     if  7,8
k

k k k k k k k
k

e
R e e e e e e e

e k
         

  5,6
 

k 
. 

  0,1i  Modulo  ,p q  

 
If  is fixed and , then this root 

 
Direct computation: Since 

 ,p q mod 16 9N 
advance. must be pre-computed in

 
cos π 2 sin π 2i i 

    cos π 4 sin πi  4 1,1 2 2,
 

it is necessary to compute square root of two and multi- 
plicative inverse of two modulo G. 
 
5.4. Multiplicative Inverse of 2 Modulo  ,p q  
 
f p is odd and q is even, then I

     12 1 2, 2 mod ,p q p q   ; 

if q is odd and p is even, then 

     12 1 2, 2 mod ,q p p q   . 

Otherwise the modular inverse of 2 does not exist. 

 then  Example 2: Let G = (8, −3);

    12 2,4 mod 8, 3    and     2 5,1 mod 8, 3  . 

Hence          1,1 5,1 2,4 2,3 mod 8, 3i     [8
deed,      

]. 
In  8

2,3 1,0 mod 8, 3  . 
Indirect computation: In general, observe that if 

square root of 2 does not nd for a Gaussian  exist a    ,a b
ho uality  lds ineq

         , mod 1, ; 0, 1a b G
1 8N 

: 0F     ,    (44) 

then 

    1 8
, mod  or 

N
a b G i i

   .       (45) 

Although in this case we do not directly compute  

 0,1 modG , it is obvious that 

if  2 mod 0,1F G    (44), then  

   0,1 modi F G  ;         (46) 

otherwise 

    0, 1 0,     0, 1 1 modi F G  .  (47) 

 
 for Quadratic Root Extraction 

Step 1.2:  

5.5. Algorithm
 

   2 2: ;  : 1 8;  7 16m NN p Nq z       (48) 

Step 2.2: if N is not a prime, then the QRE-2 algo- 
rit plicable; 

Step 3.2: Find a Gaussian  for which  
hm is not ap

 ,a b ,

      : , mod 1,0 ; 0, 1F a b G    ;      (49) 

Step 4.2: if 

m

  ,2 0,1F   m: oR F i G then d ;  
if  2 0, 1F   , then   m: 0 odR F i G , 1 ; 

            (  

Step 6.2: if

Step 5.2: Compute 

 : , mod
m

E c d G ; 50)

     1,0 ; 0, 1E     (22), then square 
root of  ,c d  does not exist; 

E = (1,0), then    , : , mod
z

Step   7.2: if x y c d G ; 
goto Step 10.2; 

Step 8.2: if  1,0E   , 


then  
   , : mo0 d,1

z ,x y c G ; goto Step 10.2; d
Step 9.2: if  0,1E  , then  

   , : ,  0,1 modR
z

x y c d G ;    goto Step 10.2; (51) 

else  

         (52) 

Step 10.2 {2nd square root}:  

 , : modx y G ; ,
z

c d R

    , : 1, , modt v p q x y G  .        (53) 

Copyright © 2011 SciRes.                                                                                IJCNS 
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6. Second Numeric Illustration 
 
C = 73, i.e.,  



  4 1,0 mod ,  1,2,3,4.jq G j          (56) 

onsider    , 8, 3p q   , then N Definition 4:  is a octadic root of  if  ke 1, 0
 73 9 mod 16 ;  9;  5;m z          (54)   8 1,0 mod ,  1,2, ,8.ke G k          (57) 

Octadic roots of  1, 0 :  Definition 5: ls  is a sedonic root of  if  1, 0
   2

1 10,5 1,0 ;e      16 1,0 mod ,  1,2, ,16.ls G l        (58) 

    2 10,5 1,0 mod 8, 3e      ;  
7.2. Resolventa of Quadratic Root Extractor 

 2

38, 2 ;  e      10,5 8, 2 0,1   ; 



 
Proposition 12: Suppose 

     2

43,7 10,5 ;  3,7 0, 1e   ; 
a)   7 mod 16  and 0 mod 8p q    ,        (59) 

       2

52,3 8, 2 ;  2,3 0,1e    ; 
b)    2 2: ;  15 32;  : 1 16L c d z m NN    (60) 

       2

69,2 8, 2 ;  9, 2 0,1e     ; 
c) Let ; and resolventa R satis-

fies the following conditions: 
  : , mod ,

m
E c d p q 

       2

75, 1 3,7 ;  5, 1 0, 1e      ; 

 1: mod  if  i iR u u G E u    ;i       (61)        2

86,6 3,7 ;  6,6 0, 1e    . 

The following nine values of  1 3: mod  if  j ;jjR q q G E q         (62)  ,c d
rithm. 

 in Table 2 illus-
trate various cases of QRE-2 algo
 
7. Quadratic Root Extraction (QRE-3)  

.1. Basic Property and Roots of 

Where  17 mod 32N 
 



 1 7: mod  if  k kkR e e G E e    ;      (63) 

 1 15: mod  if  l lR s s G E s    ;l       (64) 
 

then 

    , , mo
z

c d R c d G d .         (65) 1, 0  7
 

Proposition 11: An roved th
7 mod 8

Proof: Let  
alogously it can be p at if 

  and , then       , , ,: m
z odx y c d R c d G .    (66) 16p    0 modq    15 32N   

is integer and   6: 1 1m N   is odd. 
; then 

 i.e., 

Therefore Proof: Let 16 7p k   and 8q r  
     15 16 2 2, ,

N
c d R c d ER G

  mod .    (67)  32 8 7 2 49N k k    ,    32 15N  . 

    If iE u , then Notice that 15 32 2  . On the other hand, 
if m is even, en 

1N m 
th  1 2m   is not an inte  

im 
ger, which  2 2 2 1,0 modiER E u G    ;      (68) 15 32N   plies that is not eger. Q.E

Definition quare r  1, 0  if
 an int .D. 

2: is a s ot of   



iu  o if jE q , then  

  2 1,0 mod ,  1, 2i i  2 4 4 1,0 modjER E q G    ;      (69) .u G           (55) 

Definition 3:  is ic root of  1, 0  if if kE e , then  a quartjq
 

 Quad oot extractor where  9 mod 16N  . Table 2. ratic r

 ,c d  (1, 1) (3, −1) (5, 1) (5, 5) (7, −1) (8, 5) (10, 3) (3, 4) (4, 3) 

 ,
m

c d  (2, 3) (0, 1) ) (0, −1 (0, −1) (1, 0) (0, 1) (9, 2) (8, −2) (−1, 0)  

 ,
z

c d  n a  ( (8, 1) 8, 5) (3, 6) (5, 7) (1, 2) n a  (3, −1) (9, 19) 

  ,
z

c d R n a  (4, 5) (9, 4) (4, 1) (1, 2) (5, 4) n a  (2, 2) (7, 6) 

 2
,x y  n a  (3, −1) (3, 4) (4, 3) (5, 1) (5, 5) n a  (8, 5) (10, 3) 

 5 8, ,E e e NB1: If , then QRE-2 algorithm is not applicable, since the square roots of do not exist. 5 8, ,e e  
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  1,0  ;  2 8 8 modkR E e G  E     (

if , the  
  (

 
.3 onic Roots of 

70) 

lE s n 

1,0 2 16 16 molER E s  d G .  71) 

7 . Sed  1, 0  Modulo G 
 

ity wo square rootsUn 0  has t 1,      1, 0 and 1, 0 ; 
   0, 1 ; 0, four oots 

ctadi
 quartic r

c roots 
   1, 0 ; 1, 0 ;

   
1 ; eight 

o     5 6 7 8; 0, 1 ; , , ,e e e e 1, 0 ; 1,0 ; 0, 1  
and sixteen sedonic roots 
         5 6 7 8 9 10 15 161 , , , ,e s s , 

 
1, 0 ; 1, 0 ; 0, 1 ; 0, , , , , ,e e e s s  

where 

   

   

5,6 0,1 ,e  
 

7,8

13,14,15,16

 0, 1  and

 0, 1 .

e

s

  

  
  (72)

 
d Numeric Illustration 

 
Consider N = 113; 7 . Then 

9,10,11,12 0,1 ,s  

7.4. Thir

  , 8,p q  
 : 1 16 7;   m N  : 1z N 

w  
5 32 4.  

In Table 3 belo  ;  1,0 14,1     0,1 8, 6 ; 


  

    0, 1 (7,7) mod 8, 7   ;   6,5 ;   0, 1

   0, 1 9, 4    ;    0,1 3, 1 ;    

     0 mo ,1 12, 2 d 8, 7  ; 

 
          10,5 ; 12, 2 ; 10, 2 ; 5, 2 mod 8,    

; (73) 
0, 1  

7

 
           

0, 1

5, 4 ; 3,3 ; 5,3 ; 10,3 mod 8, 7

 

  
.   (74) 

In (74) there are four sedonic roots of (1,0) that
be pre-computed on the design stage of the QRE-3 algo- 
rithm. Although this is a non-deterministic process, each 
of these roots must be computed only once prior

th cto se roots c rresp

 must 

 to using  

e extra r. The o ond to 

    mod , 1,0
m

g h G , 

w  = 7

16:E 

here m ;    , 8,p qG 7    and Gaussians  
          6 4 . , : ; 10, 1 ; 11g h  , 3 , 3 ; 5,

The remaining four sedonic roots li
equivalent to negative values of roots in (7

sted in (73) are 
4):  

        
    

10,5 5, 4 ; 12, 2 3,3 ; 1 , 2

5,3 ; 5, 2 1


         0,3

0      

   
. 



 

Step 1.3 {System design}: Every user (Alice, Bob,…) 
selects a pair of Gaussian primes  and 

8. Cryptographic Algorithm 
 

 ,p q  r s
 

,  as 
his private keys, and computher/ es  ,q r s

2 2q  , 
: ,n p

N p


es 
 as 
m, 

Step 2.3 {Generalized Chinese remainder Theorem 
m

.

her/his public key; she/he pre-comput
z and R; 

odulo composite Gaussian n}: Each user pre-computes 
his/her parameters of CRT:  

     1 1
: , mod , ;  : , m  od ,M p q r s W r s

   75) 

Step 3

p q  (

.3 {Encryption by sender (Alice)}: Alice repre-
sents the plaintext as an array of Gaussians and inserts 
digital isotopes into every Gaussian  ,a b  [3]; 

Step 4.3: Using Bob’s public key e computes ci-
phertext 

 roots of C mod 

 n, sh

 2
: , modC a b n ;           (76) 

and transmits C to receiver (Bob) via open channels of a 
communication network; 

Step 5.3 {Decryption by receiver (Bob)}: He com-
putes square  ,p q  and  mod ,r s , 
where  ,p q  and  ,r s  

he CRT
are Bob’s p

d his pre-com
rivate keys; 

Step 6. Using t  an  

 
 

Table 3. Binary tree of sedonic roots of 

3: puted M and
W (75), Bob computes all quadratic roots of ciphertext C; 

Step 7.3: Bob recovers the initial plaintext {by select- 

 1, 0  where modulus  8, 7G  . 

 ,g h  (6, 3) * (10, 1) * * (11, 3) * (5, 4) * 

 16 1,0E   (5, −4) (10, 5) (3, 3) (12, −2) * (5, 3) (10, −2) (10, 3) (5, −2)  

 2 8 1,0E   * (6, 5) (9, −4) * * * (3, −1) (12, 2) * 

 4 4 1,0E   * * (7, 7) * * * (8, −6) * * 

 8 1,0E   * * * * (−1, 0) * * * * 

* * * * (1, 0) * * * * 16E  

NB2: For the sake of brevity, only 1/2 of all roots are listed in every row of Table 3; all remaining roots are listed in the rows below. For instance, 

                  8 1,0 6,5 ; 9, 4 ; 3, 1 ; 12, 2 ;  and 7, 7 ; 8, 6 ;  and 1,0 ;  and 1,0     . 
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Table 4. Residues pplica are roo xtractor nd exam s of co ding N

N mod 32 5 9 13 

, a ble squ t e s a ple rrespon . 

 17 21 25 29 

QRE QR  E-2 QRE-1 Q E-1 QRE-2 QREE-1 QR RE-3 QR -1 

N1 260773 692969 432589 386641 612373 525913 906557 

5, 496)

 

(113, 498) (212, 805) (258, 605) (37  (522, 583) (157, 708) (421, 854) 

N2

 
750077 

(351 30) (16, 9) (27 4) (46 9) (17 9) (48 5) (11 6) 

 ,p q  

812101 249257 360781 676337 159157 405529 

 ,p q  , 8  49 5, 53 4, 67 4, 35 , 63 , 86

 
ing the qu ratic root at has sotope

This algorithm is a g n  cryp
graphic algo thm [ h em e sq
algorithm r encryp ecry f real  
modulo semi-prime , where are primes.
 
. Reduction of Computational Complexity 

ad  of C th
eneralizatio

digital i
 of the Rabin

s [9]}. 
to- 

ri 10], whic ploys th uare root 
 fo tion and d

n pq
ption o
p and q 

integers
 

9
 
In Step 3.1 (12) and Step 4.1 (13), two exponentiations 
are performed to compute  ,c d  to the powers m and z 
respectively; these operations are the most time-con- 
suming. 

However, observe ere is a simple linear rela- that th
tionship between m and z: 

    2 1 1 5 4z m N     .         (77) 

This implies that it is sufficient to execute only one 
exponentiation. Indeed, we initially compute 

  1

1 : , mod
z

A c d G
 ; {one exponentiation};   (78) 

then 

    1

2 1

22 mod: ,
z

A A c dG
  ;  {one

nally 

 squaring}; (79) 

after that 

   3 2: , ,
m

A A c d c d    ; {one multiplication}; (80) 

and fi     4 1: , ,
z

A A c d c d  

                   

; {one multiplica-

tion}.    
 

icability of QRE Algorithms 
 
Consider , wh

o integer squares. For such N 

his paper 
tion of 

              (81) 

10. Appl

: mod32A N
be represented as a sum of tw

A

ere N are primes, which can 

the residues are equal 21, 25 and 29
Table 4 above indicates which algorithm is applicable 

r each value of residue A. 

: 1, 5, 9, 13, 17, . 

fo
Therefore, the three algorithms provided in t

over all cases of prime moduli with the excepc

 od 32N 
case can still be cov

prim

1 m . Yet, 
ered

most moduli  latter 
 if we con er QR rithms, 

of the 
sid

 in the
E algo

where the es  od 64 ; 33N  m  128N  ; 
the al s de-

65 mod
a generalnd in 

d 
, for integer 5t   gorithm

es wherescribe above can be generalized for the cas   

  t ,1mod2t2 1N       (82) 

en component

      

and the ev  in the corresponding modulus 
 ,p q  is divisible by 12t . 
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Th
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Appendix 
 
A1. Classification of Roots of  1, 0  Modulo 

  ,p q
 
There are various types of unary roots: 

Definitions and notations:  

     1 1: 1,0 mod , ,S p q   1 12s s ;    (A.1) 

where 

    1 1: 1,0 mod ( , )P p q   1p      (A.2) 

is the set of principal square roots of (1,0) of the first 
level. Then 

   2 1: mod , ,  kS s p q k  1,2;     (A.3) 

where 

    2 11 2: mod , ;kP p p p q k    1,2;    (A.4) 

is the set of principal square roots of (1,0) of the second 
level. 

In general,  

   1,: modi i kS s p  , q ;       (A.5) 

where 

  1,: mod ,i i kP p p q          (A.6) 

is the set of principal square roots of (1,0) of the i-th 
level. 
 
A2. Criterion of Quadratic Residuosity and  

General Algorithm 
 

Proposition 1.A: Let . 1mod 2 2 1k kN  
If and only if 

   11 2

1: , mod
k

k

N
E c d G S




  ,       (A.7) 

then  has a square root. In this case  ,c d 
1: moR E  dG ;            (A.8) 

and 

     
12 1 2

mo, d,
k kN

x y R c Gd
   .     (A.9) 

 
A3. Quadratic Extractor Modulo  , 1n  
 

Proposition 2.A: Let  , 1N n   be a prime;  

mod 4 1,  but mod8 1.N N 




        (A.10) 

If the norm of  is co-prime with N, then square 
root 

 ,c d
 ,x y  of   is equal ,c d

     
2 4 8

, , mod
n

x y R c d n
  

where 

  
2

1
/4

, mod ,
n

R c d n


  1  
 

.      (A.12) 

Proof: First of all, if 2 1N n   is a prime integer, then 
n is even. Therefore (A.10) implies that 2 4n  and 
 2 4 8n   are integers. Then (A.11) and (A.12) imply 
that 

         
22 42, , , , mod

n
x y R c d c d c d n, 1 .   

1

(A.13) 

Since the cyclic identity (4) implies that 
     

2

, 1,0 mod ,
n

c d n  , then potentially 

          2 4n
, mod , 1 1,0 ; 0, 1 ; 0, 1 .c d n         

(A.14) 

Therefore, 

     

     

     

       

2

2

2

2

4

4

4

4

1,0  if , 1,0 ;

0,1  if , 1,0 ;

0,1  if , 0, 1 ;

0,1 0,1  if , 0,1 .

n

n

n

n

c d

c d
R

c d

c d

  
   
 

 


   (A.15) 

Since      0,1 1,1 2 2 mod , 1n    {see Subsec- 

tions 5.3}, then R does not exist if 2  does not exist 
[1,6]. Therefore  ,c d  is the Gaussian QNR [3]. For 
more details see (32)-(34), (A.11), (A.12), Subsection 5.4 
and eight examples in Table A1. 

Remark A1: Here   1, 9 and 10, 0    are quartic 

roots of  1,0  modulo  10, 1 . Indeed,  

      od 10, 1 ;3 10, ,1 mq 0 0   

      od 10, 1 ;

  
4 1,9 1 mq 


0, 

 
  (9) 

 3 2mod 10, 1 ;q q 

 4 210,9 .q q 

2
,0 

 2
9 

2 10 1,0

 2 1, 1,0

  

 

 
A4. Special Cyclic Identity 
 

Proposition 3.A: If  : ,N p q  is prime, then  

     1
, 1,0 mod ,

N
q p p q

   .       (A.16) 

Remark A2: Although    , ,p q q p , identity (A.16) 

holds because  ,p q  and  ,q p  are co-prime. Indeed, 

assumption that    w q    , , , mod ,u p p qp q , where 
both u and w are integers, implies that 

     and mod , .u p q N w q p N p q       (A.17) 

However, (A.17) is impossible since the inverse of N 
odulo , 1 ;      (A.11) m  ,p q  does not exi t. s  
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Table A1. {Quadratic root extraction where  mod 4 1N   and  mod 8 1N  }:    ,  n    ;  2

: 2 2m n  5 ;  
 : 1 2z m +   . 

 ,c d  (2,0) (3,2) (4,8) (6,7) (7,4) (9,2) (9,9) (10,1) 

   2/2
,

n
c d  (0, −1) (−1, 0) (1, 0) (−1, 0) (−1, 0) (0, 1) (0, 1) (−1, 0) 

 ,
z

c d  GQNR (9, 4) (6, 3) (6, 9) (5, 8) GQNR GQNR (9, 0) 

R n a  ±(10, 0) (1, 0) ±(1, 9) ±(10, 0) n a  n a  ±(1, 9) 

   , ,
z

x y c d R  n a  ±(6, 8) ±(6, 3) ±(1, 5) ±(2, 4) n a  n a  ±(10, 8) 

 2
,x y  *** (3, 2) (4, 8) (6, 7) (7, 4) *** *** (10, 1) 

 
i.e., 1;  x y n x y r      .  Example 1.A: , although     28

4,10 mod 5, 2 1,0  

   
Hence 

gcd 4,10 , 5, 2 29 1      .    1 2;  1 2x n r y n r       .    (A.22) 

Corollary 1A: If     gcd , , , 1, 0s t p q    



, then  Therefore, (A.20) and (A.22) imply  

      1
, , 1,0 mod ,

N
s t q p p q


       (A.18)           

      
    

1 1

1

, , 1,1 1,1

, 1, 1

1,0 mod , . Q.E.D.

r n r n n r n r

r n n r n r n r

n r

 



1

2

       

          

 

 Proposition 4.A: If n and r in modulus  ,n r   have 
different parities, then multiplicative inverse of  

 exists and equals   ,  mod ulo ,r n n r 
(A.23)  

      

1

1

,

1, 1 2 mod , .

r n

n r n r n r n r




         
Example 2.A: Let n = 10, r = 3. Then  

.        1 13,10 7 4, 7 2,1 4, 7 8,3
      

(A.19) 


Indeed,       3,10 8,3 1,0 mod 10, 3    . Proof: First of all,  

 ,n rCorollary 2A: If n and r in modulus        , 1,1 mod ,r n n r n r    .    (A.20)  have dif-
ferent parities and there exists multiplicative inverse of 
 ,a b , then multiplicative inverse of  
    , , mod ,a b n rr n  also exists.

Now let’s find integers x and y such that 

         1,1 , 1,0 1, mod ,x y n r n    r  (A.21) 

 


