

Matrix Isolation and Computational Study on the Photolysis of CHCl₂COCl

Nobuaki Tanaka

Department of Environmental Science and Technology, Faculty of Engineering, Shinshu University, Nagano, Japan

Email: ntanaka@shinshu-u.ac.jp

Received 24 May 2014; revised 20 June 2014; accepted 15 July 2014

Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

UV light photolysis of dichloroacetyl chloride (CHCl₂COCl) has been investigated by infrared spectroscopy in cryogenic Ar, Kr, Xe, and O₂ matrices. The formation of CHCl₃ and CO was found to be the dominant process over the ketene formation. The C-C bond cleaved products CHCl₂ and COCl were also observed. As the number of the chlorine atom substitution to methyl group of acetyl chloride increased, the C-C bond cleaved product yield in the triplet state increased, which can be attributed to an internal heavy-atom effect where the intersystem crossing rate was enhanced.

Keywords

Dichloroacetyl Chloride, Photolysis, Cryogenic Matrix

1. Introduction

Dichloroacetyl chloride (CHCl₂COCl) is known to be produced in the oxidation of chlorinated ethenes [1]-[4]. In the chlorine atom initiated oxidation of chlorinated ethenes, relatively high product yields of chlorinated acetyl chloride were reported by Hasson and Smith [5]. Conformations of CHCl₂COCl were studied by vibrational spectroscopy [6]-[9], electron diffraction [10], and theoretical method [11]. Two conformers exist in the CHCl₂ internal rotation potential: *syn* conformer having an H-C-C=O dihedral angle of 0° and *gauche* conformer having a non-zero value of the dihedral angle. As for the photolysis of chlorinated acetyl chloride in rare gas matrix, one chlorine atom substitution to methyl group of acetyl chloride opened the additional reaction paths in the T₁ state [12] [13]. Without chlorination the ketene…HCl complex was exclusively produced in the S₀ state after the internal conversion from the S₁ state [14] [15]. In the CCl₃COCl photolysis in an Ar matrix, the C-C bond cleavage was found to be the major reaction path [16].

In the present study, the UV light photolysis of CHCl₂COCl was investigated in cryogenic Ar, Kr, Xe, and O₂

matrices with the aid of the calculation using the B3LYP and MP2 methods to clarify how the two chlorine atom substitutions affect the reaction mechanism.

2. Experimental

Light irradiation was performed using a low pressure mercury arc lamp (HAMAMATSU L937-04, $\lambda > 253.7$ nm). IR spectra were measured in the range 4000 - 700 cm⁻¹ with 1.0 cm⁻¹ resolution by a SHIMADZU 8300A Fourier transform IR spectrometer with a liquid-nitrogen-cooled MCT detector. Each spectrum was obtained by scanning over 128 times. A closed-cycle helium cryostat (Iwatani M310/CW303) was used to control the temperature of the matrix.

Argon (Nippon Sanso, 99.9999%), krypton (Taiyo Sanso), xenon (Nippon Sanso), and O_2 (Okaya Sanso) were used without further purification. Dichloroacetyl chloride (Wako Pure Chemicals) was used after freezepump-thaw cycling at 77 K. Chloroform (Wako Pure Chemicals) was used as an authentic sample for product identification. Samples were deposited on a CsI window at 6 K.

For product identification and energetic consideration, molecular orbital calculation was utilized. Geometry optimizations were performed using the second-order Møller-Plesset theory (MP2) and density functional theory (B3LYP [17] [18], CAM-B3LYP [19], and M06-2X [20]) with the 6-311++G(3df,3pd) and aug-cc-pV(T+d)Z basis sets. Harmonic vibrational frequency calculation was performed to confirm the predicted structures as local minima and to elucidate zero-point vibrational energy corrections (ZPE). The vertical transition energy was calculated at the SAC-CI/D95+(d,p) level based on the structures optimized at the CCSD/D95+(d,p) level. All calculations were performed using Gaussian 09 [21].

3. Results and Discussion

3.1. CHCl₂COCl/Ar

A mixture of CHCl₂COCl/Ar was deposited on a CsI window with a ratio of CHCl₂COCl/Ar = 1/1000. In the infrared spectrum obtained after deposition, two conformers, gauche- and syn-CHCl₂COCl were distinguished by the C=O stretching vibration bands at 1816 and 1784 cm⁻¹, respectively [8] [9]. Figure 1(a) shows the infrared difference spectrum obtained upon $\lambda > 253.7$ nm irradiation of a matrix CHCl₂COCl/Ar for 60 min. The positive and negative bands indicate the growth and depletion, respectively, during the irradiation period. Table 1 lists the observed wavenumbers of the growth bands. In the CO stretching region, a strong band observed at 2138 cm⁻¹ assignable to the CO stretching continued to grow during the prolonged irradiation period. A band at 2155 cm^{-1} showed growth and decay behavior accompanied with the bands at 1293 and 934 cm⁻¹, whose frequencies are consistent with those of CCl₂=C=O observed in the CCl₃COCl photolysis in Ar [16]. The bands at 2844 and 2836 cm^{-1} were assigned to the stretching vibration of HCl complexed with the CCl₂=C=O. With the different growth rate from those of CO and CCl₂=C=O, three bands at 2150, 1297 and 1113 cm⁻¹ showed continuous growth which are assignable to the C=O stretching, C=C stretching, and C-H in-plane bending vibrations of CHCl=C=O, respectively [12]. The C-Cl stretching band observed in the photolysis of CH₂ClCOCl in Ar was difficult to be discerned due to the overlapping with the strong depletion band of syn-CHCl₂COCl. A band at 1878 cm⁻¹ was assigned to the CO stretching vibration of COCI [22]. Photolysis counterpart of COCI, CHCl₂, showed the C-H bending and CCl₂ antisymmetric stretching vibrations at 1219 and 898 cm⁻¹, respectively [23]. Prolonged irradiation caused the depletion in intensities of the bands due to CCl₂=C=O as shown in Figure 1(b). A band at 1969 cm⁻¹ showing an induction period was assigned to the CO stretching vibration of CCO [24]. A band at 766 cm⁻¹ grew continuously to be the strongest in the spectrum after 360 min irradiation, which was assigned to the C-Cl stretching vibration of CHCl₃. The C-H bending vibration of CHCl₃ was observed at 1223 cm^{-1} .

3.2. CHCl₂COCl/Kr, CHCl₂COCl/Xe

Figure 2 shows the infrared difference spectra obtained upon $\lambda > 253.7$ nm irradiation of the matrix CHCl₂COCl/Xe. In Kr, similar results were obtained. In addition to the photolysis products in Ar, the products of Kr₂H⁺ and Xe₂H⁺ were observed in Kr and Xe, respectively [25]. The growth bands at 1814, 1262, 987, and 740 cm⁻¹ in Kr and 1809, 1259, 984, and 736 cm⁻¹ in Xe were assigned to the C=O stretching, CH bending, C-C stretching, and CCl₂ symmetric stretching vibrations of *gauche*-CHCl₂COCl, respectively [9]. It is controversial

Figure 1. Infrared difference spectra upon $\lambda > 253.7$ nm irradiation of the matrix CHCl₂COCl/Ar = 1/1000. (a) 60 - 0 min and (b) 360 - 60 min.

which of the two conformers is more stable [11]. Table 2 compares the relative electronic energies calculated at the several calculation levels. The barrier height for the conversion from the *syn* to *gauche* rotamer is calculated to be approximately 1200 cm⁻¹ in the S₀ ground state indicating that the conversion between the *syn* and *gauche* rotamers is not expected to occur at 7 K in the absence of UV irradiation. UV irradiation yielded an increase of the population of the less stable rotamer.

3.3. CHCl₂COCl/O₂

In order to clarify the route of the ketenes and CHCl₃ formation *i.e.* the radical or concerted mechanism, the reactive O_2 matrix was used. **Figure 3** shows the infrared difference spectrum obtained after 480 min irradiation of CHCl₂COCl. The product bands were assigned by comparison with the spectrum observed in the photolysis of the matrix CCl₃COCl/O₂. Due to the photolysis in O_2 at 253.7 nm, ozone formation is prominent at 1038 cm⁻¹ (v₃) [26]. Other O_3 absorption bands were observed at 2107 (v₁ + v₃) and 1101 cm⁻¹ (v₁) [26] [27]. The 2342 and 2276 cm⁻¹ bands are assigned to v₃ vibrations of ¹²CO₂ and ¹³CO₂, respectively. The 2037 cm⁻¹ band is attributed to CO₃ complexed with Cl [16]. A broad band at 1436 cm⁻¹ was assigned to ClOO v₁ [28]. In O₂, compared with the ratio of CHCl₃ or CO absorbance with CHCl₂COCl absorbance in **Figure 1**, the CO and CHCl₃ formation was depressed. Formation of CHCl₂ and ketenes was negligible. Instead major product was found to be CO₂ which would be produced via reactions of COCl and CHCl₂ with O₂. These indicate the reaction predominantly proceed by radical mechanism in the photolysis of CHCl₂COCl similar to that of CCl₃COCl.

3.4. Reaction Mechanism

Figure 4 shows the integrated absorbance changes of syn-CHCl₂COCl (1784 cm⁻¹), gauche-CHCl₂COCl (1816 cm⁻¹), CHCl₃ (766 cm⁻¹), CHCl=C=O (2150 cm⁻¹), CO (2138 cm⁻¹), CCl₂=C=O (2155 cm⁻¹), and CHCl₂ (898 cm⁻¹) observed in Ar, where the IR intensities of these absorption bands were calculated to be 283, 242, 320, 618, 80, 621, and 163 km mol⁻¹, respectively, at the B3LYP/aug-cc-pV(T+d)Z level. The *syn-* and *gauche-*

$\frac{1}{1}$ Wavenumber (cm ⁻¹)						
Ar	Kr	Xe	O ₂	Assignment		
3112				CHCl=C=O		
3060				CHCl ₃		
3054				CHCl ₃		
2844/2836	2836/2827		2838	HCl…CCl ₂ =C=O		
2809	2809		2807	HCl		
2789	2788			HCl		
			2342	CO_2		
			2276	¹³ CO ₂		
2176						
2155	2154/2151	2148	2157	$CCl_2=C=O$		
2150	2146	2143	2148	CHCl=C=O		
2138	2136	2134	2137	CO		
			2107	$O_3v_1 + v_3{}^a$		
2094		2090		¹³ CO		
			2037	CO_3		
1969				CCO ^b		
1878	1877	1877		COCl ^c		
	1814	1809		gauche-CHCl ₂ COCl		
			1436	$ClOO^d$		
1297	1296	1293		CHCl=C=O		
1293	1292	1291		$CCl_2=C=O$		
	1262	1259		gauche-CHCl ₂ COCl		
1223	1220	1216		CHCl ₃		
1219	1214			CHCl ₂ ^e		
1113				CHCl=C=O		
1107				CHCI=C=O		
		1075	1101	O_3v_1		
		1055	1027	o í		
	007	004	1037			
	987	984		gauche-CHCl ₂ COCI		
	965					
		954		$\mathrm{Xe}_{2}\mathrm{H}^{+\mathrm{g}}$		
934	932	932		CCl ₂ =C=O		
898	896	894		CHCl2 ^e		
864	861	859		¹³ CHCl ₂		
	852			Kr_2H^{+g}		
		843		Xe_2H^{+g}		
			839	COCl ₂		
766	764	762		CHCl ₃		
	740	736		gauche-CHCl ₂ COCl		

\mathbf{T} \mathbf{I} \mathbf{I} \mathbf{T}				1 1 17 17	10 .
	chectra of the I HI		vere producte in	$\mathbf{n} \mathbf{\rho} \ \mathbf{A} \mathbf{r} \ \mathbf{K} \mathbf{r} \ \mathbf{X} \mathbf{\rho}$	and LL matrices
	SDUCHA OF THE CITY	AXXX A DIRUCU	vala DIOUUCIA III	\mathbf{u}	and Op mainces.
				,,,	

^aRef. [27]. ^bRef. [24]. ^cRef. [22]. ^dRef. [28]. ^eRef. [23]. ^fRef. [26]. ^gRef. [25].

Figure 2. Infrared difference spectra upon $\lambda > 253.7$ nm irradiation of the matrix CHCl₂COCl/Xe = 1/1000. (a) 30 - 0 min and (b) 420 - 30 min.

	C 1 1 / 1	1 1	1	•	· –	· 1 1	•		1	. ·
able 2	Calculated	relative e	electronic	energies	1n cm	- includir	10 Zero-noir	it vibrations	l energy	corrections
I GOIC M.	Culculated	i i ciuti v c t	neeuonne	chici gies	in cin	meruan	is zero pon	n vioratione	in energy	confections.

Method	Difference (gauche to syn)	Barrier (syn to gauche)
B3LYP/6-311++G(3df,3pd)	157	1208
B3LYP/aug-cc-pV(T+d)Z	117	1161
CAM-B3LYP/6-311++G(3df,3pd)	180	1167
CAM-B3LYP/aug-cc-pV(T+d)Z	149	1123
M06-2X/6-311++G(3df,3pd)	211	1186
M06-2X/aug-cc-pV(T+d)Z	186	1164
MP2/6-311++G(3df,3pd)	225	1316
MP2/aug-cc-pV(T+d)Z	191	1234
CCSD/aug-cc-pVDZ	132	1239

CHCl₂COCl possess the different decay rates. The CCl₂=C=O and CHCl₂ showed the growth and decay profiles. The relative yield of CHCl₃:CHCl=C=O:CCl₂=C=O at the irradiation time of 360 min was found to be 1:0.09:0.008. There is an obvious contrast as compared with the relative yield obtained in the photolysis of the matrix CH₂COCl/Ar where the ratio of CH₂Cl₂:CHCl=C=O was found to be 1:7.5 [12].

Even in O_2 , the ketene species were found to be produced, though the yields decreased greatly. It indicates the majority of the ketene species were formed in the triplet state by the radical mechanism. It seems plausible to explain the dominant radical mechanism in the triplet state by the enhanced intersystem crossing from S_1 caused by substitution of the chlorine atoms with methyl hydrogen atoms of acetyl chloride. Therefore, we focus on the triplet surface reaction after intersystem crossing and the ground state reaction after internal conversion. Figure 5 shows the energy diagram for the CHCl₂COCl photolysis initiated by 253.7 nm irradiation. The photon energy at a wavelength of 253.7 nm corresponded to 113 kcal·mol⁻¹. The reaction enthalpies of three elementary reac-

Figure 3. Infrared difference spectrum upon $\lambda > 253.7$ nm irradiation of the matrix CHCl₂COCl/O₂ = 1/1000 for 480 min.

Figure 4. Integrated absorbance changes of (\circ) *syn*-CHCl₂COCl, (\Box) *gauche*-CHCl₂COCl, (\bullet) CHCl₃, (+) CHCl=C=O, (Δ) CO, (\blacktriangle) CCl₂=C=O, and (\times) CHCl₂ upon $\lambda > 253.7$ nm irradiation of the matrix CHCl₂COCl/Ar = 1/1000.

tions, C(O)-Cl, C-C, and CHCl-Cl bond cleavages from the T_1 equilibrium states are calculated to be -1.7, -14.8, and -19.5 kcal·mol⁻¹ for *syn*-CHCl₂COCl and -2.8, -15.1, and -20.9 kcal·mol⁻¹ for *gauche*-CHCl₂COCl, respectively, where the reaction barriers are calculated to be 4.4, 5.8, and 2.6 kcal·mol⁻¹ for *syn*-CHCl₂COCl and 3.7, 5.6, and 2.2 kcal·mol⁻¹ for *gauche*-CHCl₂COCl, respectively. The C-C dissociation on the T_1 surface possesses the highest barrier, while CHCl-Cl dissociation the lowest barrier. Radical species CHCl₂ and COCl

can be also produced from the dissociation of CHCl₂CO into CHCl₂ and CO, followed by the recombination of CO with Cl. The CHClCOCl would be further photodissociated. The reaction barrier for the formation of CHCl=C=O + Cl₂ in the S₀ state was calculated to be higher compared with that for the formation of CCl₂=C=O + HCl. The SAC-CI calculation showed the S₁ and T₁ states of CCl₂=C=O possess the mixing characters of $\pi\sigma^*_{C-Cl}$ and π Rydberg, -0.87 (HOMO \rightarrow LUMO) + 0.30 (HOMO \rightarrow LUMO+3). Upon UV irradiation the C-Cl bond dissociation would occur to form CCO.

For the CHCl₂COCl photolysis in the rare gas matrices, the C-C bond cleaved CHCl₃, CO, CHCl₂, and COCl were dominantly produced similar to the CCl₃COCl photolysis and contrary to the CH₂ClCOCl photolysis, where ketene formation was a major process. For the CHCl₂COCl photolysis in O₂, both ketene and CHCl₃ formations were greatly depressed, while for CH₂ClCOCl, the formation of ketene was slightly depressed. On the basis of these results it will be reasonable to consider that the reaction mechanism drastically changed between CH₂ClCOCl and CHCl₂COCl from the concerted mechanism in the S₀ state to the radical mechanism in the T₁ state.

4. Conclusion

UV light photolysis of $CHCl_2COCl$ was investigated in cryogenic Ar, Kr, Xe, and O_2 matrices. In Ar, Kr, and Xe, the formation of $CHCl_3$ and CO became the dominant process over the ketene formation. The C-C bond cleaved products $CHCl_2$ and COCl were also observed. In Kr and Xe, photoisomerization from *syn*- to *gauche*-CHCl_2COCl was observed at the early stage of the irradiation. As the number of the chlorine atom substitution to methyl group of acetyl chloride increased, the C-C bond cleaved product yield in the triplet state increased, which can be attributed to an internal heavy-atom effect where the intersystem crossing rate was enhanced.

Acknowledgements

The author thanks Prof. Tsuneo Fujii and Prof. Hiromasa Nishikiori (Shinshu University) for their helpful discussions.

References

[1] Haag, W.R., Johnson, M.D. and Scofield, R. (1996) Direct Photolysis of Trichloroethene in Air: Effect of Cocontami-

nants, Toxicity of Products, and Hydrothermal Treatment of Products. *Environmental Science & Technology*, **30**, 414-421. <u>http://dx.doi.org/10.1021/es950047y</u>

- [2] Oki, K., Tsuchida, S., Nishikiori, H., Tanaka, N. and Fujii, T. (2003) Photocatalytic Degradation of Chlorinated Ethenes. *International Journal of Photoenergy*, 5, 11-15. <u>http://dx.doi.org/10.1155/S1110662X03000059</u>
- [3] Zuo, G.M., Cheng, Z.X., Xu, M. and Qiu, X.Q. (2003) Study on the Gas-Phase Photolytic and Photocatalytic Oxidation of Trichloroethylene. *Journal of Photochemistry and Photobiology A—Chemistry*, 161, 51-56. http://dx.doi.org/10.1016/S1010-6030(03)00271-5
- [4] Wiltshire, K.S., Almond, M.J. and Mitchell, P.C.H. (2004) Reactions of Hydroxyl Radicals with Trichloroethene and Tetrachloroethene in Argon Matrices at 12 K. *Physical Chemistry Chemical Physics*, 6, 58-63. http://dx.doi.org/10.1039/b310495h
- [5] Hasson, A.S. and Smith, I.W.M. (1999) Chlorine Atom Initiated Oxidation of Chlorinated Ethenes: Results for 1,1-Dichloroethene (H₂C=CCl₂), 1,2-Dichloroethene (HClC=CClH), Trichloroethene (HClC=CCl₂), and Tetrachloroethene (Cl₂C=CCl₂). *Journal of Physical Chemistry A*, **103**, 2031-2043. <u>http://dx.doi.org/10.1021/jp983583w</u>
- [6] Miyake, A., Nakagawa, I., Miyazawa, T., Ichishima, I., Shimanouchi, T. and Mizushima, S. (1958) Infra-Red and Raman Spectra of Dichloroacetyl Chloride in Relation to Rotational Isomerism. *Spectrochimica Acta*, 13, 161-167. <u>http://dx.doi.org/10.1016/0371-1951(58)80073-9</u>
- [7] Woodward, A.J. and Jonathan, N. (1970) Rotational Isomerism in Dichloroacetyl Halides. *Journal of Physical Chemistry*, 74, 798-805. <u>http://dx.doi.org/10.1021/j100699a022</u>
- [8] Fausto, R. and Teixeira-Dias, J.J.C. (1986) Conformational and Vibrational Spectroscopic Analusis of CHCl₂COX and CCl₃COX (X=Cl, OH, OCH₃). *Journal of Molecular Structure*, **144**, 241-263. http://dx.doi.org/10.1016/0022-2860(86)85004-9
- [9] Durig, J.R., Bergana, M.M. and Phan, H.V. (1991) Conformational Stability, Barriers to Internal Rotation, Abinitio Calculations and Vibrational Assignment of Dichloroacetyl Chloride. *Journal of Molecular Structure*, 242, 179-205. http://dx.doi.org/10.1016/0022-2860(91)87135-5
- [10] Shen, Q., Hilderbrandt, R.L. and Hagen, K. (1980) The Structure and Conformation of Dichloroacetyl Chloride. *Journal of Molecular Structure*, 71, 161-169. <u>http://dx.doi.org/10.1016/0022-2860(81)85113-7</u>
- [11] Soifer, G.B. and Feshin, V.P. (2006) Molecular Structure and Conformational Transitions of Dichloroacetylchloride. *Journal of Structural Chemistry*, 47, 371-374. <u>http://dx.doi.org/10.1007/s10947-006-0309-5</u>
- [12] Tanaka, N. and Nakata, M. (2014) Matrix Isolation and Theoretical Study on the Photolysis of CH₂ClCOCl. *International Research Journal of Pure and Applied Chemistry*, **4**, 762-772. <u>http://dx.doi.org/10.9734/IRJPAC/2014/12002</u>
- [13] Davidovics, G., Monnier, M. and Allouche, A. (1991) FT-IR Spectral Data and *ab Initio* Calculations for Haloketenes. *Chemical Physics*, **150**, 395-403. <u>http://dx.doi.org/10.1016/0301-0104(91)87112-9</u>
- [14] Kogure, N., Ono, T., Suzuki, E. and Watari, F. (1993) Photolysis of Matrix-Isolated Acetyl Chloride and Infrared Spectrum of the 1:1 Molecular Complex of Hydrogen Chloride with Ketene in Solid Argon. *Journal of Molecular Structure*, 296, 1-4. <u>http://dx.doi.org/10.1016/0022-2860(93)80111-8</u>
- [15] Rowland, B. and Hess, W.P. (1997) UV Photochemistry of Thin Film and Matrix-Isolated Acetyl Chloride by Polarized FTIR. *Journal of Physical Chemistry A*, **101**, 8049-8056. <u>http://dx.doi.org/10.1021/jp9719801</u>
- [16] Tamezane, T., Tanaka, N., Nishikiori, H. and Fujii, T. (2006) Matrix Isolation and Theoretical Study on the Photolysis of Trichloroacetyl Chloride. *Chemical Physics Letters*, 423, 434-438. <u>http://dx.doi.org/10.1016/j.cplett.2006.04.031</u>
- [17] Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. <u>http://dx.doi.org/10.1063/1.464913</u>
- [18] Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Physical Review B*, **37**, 785-789. <u>http://dx.doi.org/10.1103/PhysRevB.37.785</u>
- [19] Yanai, T., Tew, D.P. and Handy, N.C. (2004) A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). *Chemical Physics Letters*, **393**, 51-57. <u>http://dx.doi.org/10.1016/j.cplett.2004.06.011</u>
- [20] Truhlar, D.G. and Zhao, Y. (2008) The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theoretical Chemistry Accounts*, **120**, 215-241. <u>http://dx.doi.org/10.1007/s00214-007-0310-x</u>
- [21] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E.,

Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford.

- [22] Jacox, M.E. and Milligan, D.E. (1965) Matrix Isolation Study of the Reaction of Cl Atoms with CO. The Infrared Spectrum of the Free Radical CICO. *Journal of Chemical Physics*, 43, 866-870. <u>http://dx.doi.org/10.1063/1.1696861</u>
- [23] Granville, T. and Andrews, L. (1969) Matrix Infrared Spectrum and Bonding in the Dichloromethyl Radical. *Journal of Chemical Physics*, 50, 4235-4245. <u>http://dx.doi.org/10.1063/1.1670888</u>
- [24] Jacox, M.E., Milligan, D.E., Moll, N.G. and Thompson, W.E. (1965) Matrix-Isolation Infrared Spectrum of the Free Radical CCO. *Journal of Chemical Physics*, 43, 3734-3746. <u>http://dx.doi.org/10.1063/1.1696543</u>
- [25] Kunttu, H.M. and Seetula, J.A. (1994) Photogeneration of Ionic Species in Ar, Kr and Xe Matrices Doped with HCl, HBr and HI. *Chemical Physics*, 189, 273-292. <u>http://dx.doi.org/10.1016/0301-0104(94)00273-8</u>
- [26] Schriver-Mazzuoli, L., de Saxcé, A., Lugez, C., Camy-Peyret, C. and Schriver, A. (1995) Ozone Generation through Photolysis of an Oxygen Matrix at 11 K: Fourier Transform Infrared Spectroscopy Identification of the O···O₃ Complex and Isotopic Studies. *Journal of Chemical Physics*, **102**, 690-701. <u>http://dx.doi.org/10.1063/1.469181</u>
- [27] Schriver-Mazzuoli, L., Schriver, A., Lugez, C., Perrin, A., Camy-Peyret, C. and Flaud, J.M. (1996) Vibrational Spectra of the ¹⁶O/¹⁷O/¹⁸O Substituted Ozone Molecule Isolated in Matrices. *Journal of Molecular Spectroscopy*, **176**, 85-94. http://dx.doi.org/10.1006/jmsp.1996.0064
- [28] Johnsson, K., Engdahl, A. and Nelander, B. (1993) A Matrix-Isolation Study of the ClOO Radical. *Journal of Physical Chemistry*, 97, 9603-9606. <u>http://dx.doi.org/10.1021/j100140a013</u>

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either submit@scirp.org or Online Submission Portal.

