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Abstract 
The experiment is studied on thermal distribution in the thermal energy storage system with 
non-phase change materials (NPCM): NaNO3, KNO3 and NaCl in the range of 25˚C - 250˚C. The cy-
lindrical storage system was made of stainless steel with 25.6 cm-diameter and 26.8 cm-height 
that was contained of these NPCM. There was one pipe for heat transfer fluid (HTF) with 1.27 
cm-diameter that manipulates in the storage tank and submerges to NPCM. The inner pipe was 
connected to the 2.27 cm-diameter outer HTF tube. The tube was further connected to the thermal 
pump, heater and load. The pump circulates the synthetic oil (Thermia oil) within the pipe for 
heat transferring purposes (charging and discharging). An electric heater is used as the heat 
source. The limitation of the charging oil temperature is maintained at 250˚C with the flow rates in 
the range of 0.58 to 1.45 kg/s whereas the inlet temperature of the discharge oil is maintained at 
25˚C. Thermal performances of TES (thermal energy storage) such as charging and discharging 
times, radial thermal distribution, energy storage capacity and energy efficiency have been eva-
luated. The experimental results show that the radial thermal distribution of NaCl for TR inside, 
TR middle and TR outside was optimum of temperature down to NaNO3 and KNO3 respectively. 
Comparison of NPCMs with oil, flow rates for NaCl were charging and discharging heat transfer 
than KNO3 and NaNO3. The thermal stored NaCl ranged from 5712 - 5912 J; KNO3 ranged from 
7350 - 7939 J and NaNO3 ranged from 6623 - 6930 J respectively. The thermal energy stored for 
experimental results got with along the KNO3, NaNO3 and NaCl respectively. The thermal energy 
efficiency of NaCl, KNO3 and NaNO3 was in the range 66% - 70%. 
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1. Introduction 
Solar energy is the most abundant energy source compared with other energies and supply’s unlimited clean 
energy. Solar energy can be transferred to thermal energy via a collector and sent to the equipment by heat 
transfer fluid (HTF). The most important application of solar energy is to transfer its thermal energy and then to 
electricity. Solar thermal power plant is one of the available applications of solar energy that its energy source 
depends on time, weather condition and electricity demand. Solar energy source of solar power plant is needed 
to be stored for smooth electric generation. The thermal storage system of the solar thermal power plant is ne-
cessary for the power plant stability and reducing rate of mismatch between energy demand and supply [1]. 
Basically, there are three methods of storing thermal energy: thermo-chemical, sensible and latent heat storage. 
For a thermo-chemical heat storage process, thermal energy is absorbed or released by breaking and reforming 
molecular bonds in a completely reversible chemical reaction. For a sensible heat storage unit, thermal energy is 
stored by changing the temperature of the storage medium which can be a solid or liquid [2]. The amount of 
energy stored in the unit depends on heat capacity of the medium, temperature changes and the amount of the 
storage material. The thermal energy may be stored as sensible heat. Sensible heat storage systems utilize the 
heat capacity and the change in temperature of the material during the process of charging or discharging tem-
perature of the storage material rises when energy is absorbed and drops when energy is withdrawn. One of the 
most attractive features of sensible heat storage systems is that charging and discharging operations can be ex-
pected to be completely reversible for an unlimited number of cycles. For the utilization of solar energy or waste 
heat from industrial, the storage of the energy received is of particular interest and importance because of the 
intermittent nature of solar energy. The energy storage system in this case must be able to retain the energy ab-
sorbed for at least a few days in order to be able to supply energy as needed or on cloudy days when the energy 
input is small. For a small solar energy storage system, time period of the variation is one day. Therefore, the 
storage system must be designed with both the energy input and the demand as important considerations [3]. S. 
Somasundaram et al. (1993) studied the thermal integrate energy storage in power plant. They are committed to 
using the oil-rock storage or molten nitrate salt storage which is better than other storages [4]. T. Soontornchai-
nacksaeng et al. (1996) studied the water thermal energy storage system that plays an important role for conti-
nuous utilization of non-permanent existing energy source such as solar heating system. Storage tank can be se-
parated into 3 parts: 209 liter-thermal storage tank containing 184 liter of water, 30 cm-diameter charging coil 
made of 0.5 digit, copper tube and 30 cm-diameter discharging coil made of 0.5-inc. copper tube. The efficiency 
of thermal storage system charging at all flow rates was nearly the same at 89% and the efficiency of the system 
discharging at all flow rates was also the same of about 63% [5]. H. Michels and R. Pitz-Paal (2006) studied the 
current revival of solar thermal electricity generating systems (SEGS) which unveiled the still existing need of 
economic thermal energy storages (TES) for the temperature range from 250˚C to 500˚C. The TES-benchmark 
for parabolic trough power plants is the direct two tank storage, as it was used at the SEGS I plant near Barstow 
(USA). With the introduction of expensive synthetic heat transfer oil, it is capable to increase the operating 
temperature from former 300˚C up to 400˚C. The direct storage technology became uneconomical. Cascaded la-
tent heat storages (CLHS) are one possible TES alternative, which are marked by a minimum of necessary sto-
rage material. The use of a cascade of multiple phase change materials (PCM) shall ensure the optimal utiliza-
tion of the storage material [6].  

A spiral heat exchanger, commonly used in stainless steel, seems to be a very good candidate for this task. 
Compactness, it enhanced heat transfer due to centrifugal forces and easy sealing. Large heat transfer surface 
and a shorter undisturbed flow length are the most appealing features of such a choice. To transform this device 
into a spiral thermal storage energy unit (STES), one of its two working fluids is substituted by a material that is 
capable of storing energy due to both the sensible [7]. However, the effective use of a spiral heat exchanger, in 
the case when a non-phase change materials (NPCM) replaces one of working fluids. It should be preceded by 
comprehensive experimental and theoretical analyses. The questions of the behavior of potentially useful 
NPCMs and its performance, a thus designed, storage unit should be addressed. 

Curvilinear spiral geometry has not yet been studied in the context of the heat storage energy systems. Indeed, 
so far the classical double-pipe or shell-and-tube heat exchangers have been applied in the storage energy sys-
tems and a relevant theoretical and experimental analysis of the phase-change phenomenon has been restricted 
to geometry of a cylindrical capsule [8], an annulus gap, spherical or rectangular enclosures [9]. It was found 
that under the same experimental condition, unconstrained melting inside the sphere seems to occur at a faster 
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rate than the constrained melting. This is due to the larger rate of heat transfer by conduction from the solid 
PCM to the spherical glass. Experimental and numerical analyses of melting of PCM inside a plexiglass spheri-
cal container were conducted by Felix et al. [10], where paraffin wax was used as the PCM. Investigation on the 
effect of the sphere radius, Stefan number, molten fraction and time for complete melting was carried out. The 
results for both the experimental and numerical were quite identical. It was found that Stefan number and the 
sphere radius had significant effects on the complete melting time of phase change material. The study of the 
constrained melting has been reported by Roy, S. K. and S. Sengupta. J. M. Khodadadi, Y. Z. [11] [12] con-
cluded that the conduction mode of heat transfer was dominant in the earlier stage of the melting process. At a 
later stage, the melting rate increased as the buoyancy-driven convection inside the liquid PCM became more 
significant. 

Therefore, an experimental computerized stand has been constructed, where the one pipe stainless steel heat 
exchanger of spiral thermal distribution has been studied to determine overall characteristics of the temporal 
behavior of the NPCMs and of the performance of the TES unit. The empirical findings were presented in terms 
of temperature changes of both media. Moreover, the thermal analysis of the storage energy unit is carried out 
where temporal energy stored, charging and discharging time, energy storage capacity, and energy efficiency of 
melted and solid phases of the storage medium were estimated. 

2. Theory of Thermal Distribution Performance 
2.1. Storage Equation 
The storage system is the sensible heat in solid storage. Assuming that the storage tank has a uniform tempera-
ture so the energy balance on the storage tank gives if the cumulative heat energy in the storage tank is not con-
stant so we can re-write into the new equation as; 

( ) ( ) ( )1 s,s i c L s as
P s

tT T Q Q UA T T
MC+
∆  = + − − − 

                         (1) 

where M: the medium mass in storage tank (kg), cQ : heat rate of the tube from collector (J/s), LQ : heat rate to 
the load (J/s), U: total heat exchange coefficient (W/m2K), sT : temperature of storage tank, aT  temperature of 
surrounding (K), A: surface area of storage tank (m2), 1sT + : the final temperature of storage tank (K), ,s iT  the 
initial temperature of storage tank (K), pC : specific heat capacity of medium (J/kg-K)  and t∆ :  time of heat 
accumulation(s) respectively. 

2.2. Charging and Discharging 
The total amount of heat transfer between the HTF to storage medium was calculated based on the mass flow 
rate m , the specific heat of the processing fluid, Cp and the difference in inlet and outlet temperature ( )mi moT T−  
a pipe is given by  

( ) ( )p mi mo b smC T T hA T T− = −                                (2) 

The heat balance from the convection of the HTF to the storage medium is used to calculate the outlet HTF 
temperature from the pipe by  

( ) ( )
( )1 2 1ln1

b s
P mi mo

A T T
mC T T

r r r
h k

−
− =

+
                              (3) 

where k is the material thermal conductivity (W/m-K), m  is mass flow rate of fluid (kg/s), h  is the heat 
transfer coefficient to the fluid (W/m2∙K) and r is radial coordinate from heat pipe (m) respectively. 

The inlet temperature of HTF is changed when it flows out of the pipe and is heated by a heater for the next 
round of charging experiment, HTF temperature is increased and flowed back to the pipe again after heated by 
the heater, the inlet HTF temperature is given by Equation (4). 

old c
mi mo

p

QT T
mC

= +




                                   (4) 
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where cQ  is the charging thermal energy rate by heater, (kW) and miT  is the inlet temperature of heated HTF, 
(K).  

The outlet HTF temperature after HTF transfer heat to the pipe and the storage medium is decreased from the 
calculation that depends on the storage temperature, flow rate of HTF, heat capacity, and the mathematical mod-
el will be explained as in the Equation (5). 

( )

( )

1 2 1

1 2 1

ln1 1
2

ln1 1
2

p
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mo
p

mC r r r
T T

A h k
T
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                           (5) 

2.3. Energy Stored  
The amount of thermal energy stored in the different storage materials at their respective charging times is cal-
culated using Equation (6). 

( )( )s PS inletQ VC T t Tρ= −                                  (6) 

where, Q , sρ , PsC , V  and inletT  are storage capacity (J), density (kg/m3), specific heat (J/kg∙K) Storage 
volume required (m3) and inlet of charging temperature range (˚C) respectively. 

2.4. Energy Recovered  
The amount of thermal energy recovered from storage bed of different materials at their respective discharging 
time is calculated using Equation (7).  

( )( )s ps chQ VC T T tρ= −                                   (7) 

where, chT  is the volume average temperature of the storage bed at the end of charging cycle (˚C). 

2.5. Energy Efficiency  
Energy efficiency is the ratio of energy recovered from the storage bed during discharging cycle to the total 
energy input to storage bed which is given by the Equation (8). The total energy input is the sum of energy sup-
plied to heat the storage bed from atmospheric temperature ( )atmT  25˚C to 250˚C and energy stored in the bed 
during charging. 

( )ch
Energy

ch atm

T T t
T T

η
−

=
−

                                    (8) 

3. Experimental  
3.1. Materials  
Based on thermodynamic data, corrosiveness and handling characteristics, three non-phase change materials 
(NPCM) were selected for experimental investigations: sodium nitrate (NaNO3), potassium nitrate (KNO3) and 
sodium chloride (NaCl). The most important properties of these Three NPCMs and lubricant oil (LO) are given 
in Table 1. 

3.2. Procedure  
A two co-axial cylindrical storage tank was used to house the charging and discharging pipe. The inner tank has 
a diameter and height of 25.8 cm. and 26.8 cm, respectively. The storage tank stranded vertically in ambient air 
during the experiment and the storage temperature was reduced from heat loss to the air through the insulator as 
shown in Figure 1. 

The vertical charging straight pipe was made of stainless steel of 95 cm length, 1.27 cm diameter and 0.1 cm 
thickness. The fluid was pumped through the pipe using a positive displacement pump connected to a variable  
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Table 1. Properties of three NPCMs and lubricant oil [6] [13]. 

Properties NaCl KNO3 NANO3 LO [13] 

Melting temperature (˚C) 800 335 306 340 

Heat of fusion (melting) (kJ/kg) 492 74 172 - 

Density (kg/m3) 2160 2100 2261 863 

Heat capacity of heat transfer solid (kJ/kg-K) 0.85 1.21 1.10 1.882 

Thermal conductivity (W/mK) 7 0.5 0.5 0.133 

 

 
Figure 1. The model of experimental set up. 

 
speed motor. The speed of motor was adjusted to obtain the flow rates of 0.58, 0.87, 1.16 and 1.45 kg/s, respec-
tively. Three non-phase change materials (NPCM) were selected for experimental investigations: sodium nitrate 
(NaNO3), potassium nitrate (KNO3) and sodium chloride (NaCl). These correspond to laminar and turbulent 
flow regimes that depend on the HTF viscosity from the Reynolds numbers. The purpose of using different flow 
rates was to observe the rate of heat transfer from HTF to storage medium. Lubricant oil (LO) (from Shell 
Company) at an average room temperature (25˚C) was used as the inlet HTF and flowed from the inner tank. 
The performance parameters are charging time, energy stored, discharging time, energy recovered and energy 
efficiency. 

For charging process, HTF brings heat from heater 3 kW to the storage tank. The pump is used to circulate 
HTF in the system. For the discharging experiment, thermal oil was used as HTF for drawing the heat from the 
storage tank. The load was made by a boiler vessel that was filled with water of 10 kg for absorbing heat. The 
water tank has a diameter and height of 11.4 cm. and 10.2 cm, respectively. The storage temperature decreased 
from 250˚C with thermal loss to ambient during the time HTF flowed through the pipe that was submersed in 
the storage tank. The HTF temperature increased for around 50 min and went down to 100˚C a minimum tem-
perature of load. 
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4. Results and Discussion 

4.1. Charging 
The temperature distribution of the NPCMs, during charging was taken at four different mass flow rates at 0.58, 
0.87, 1.16 and 1.45 kg/s, respectively. For each mass flow rates, curve was plotted for variation of temperature 
at each point in the wax against time elapsed, to get melting curve in case of charging. Storage and outlet HTF 
temperatures are presented for comparing the temperatures between bulk HTF temperature and mixed storage 
temperature of charging experiment in Figure 2. The storage medium is also used thermal oil, as the same as 
HTF. The results of HTF temperature and storage temperature measurement were shown that HTF temperature 
increases rapidly in the first two hours while the storage temperature is slightly increases. The HTF oil has the 
maximum operating temperature at 250˚C. However, in this experiment, the control switch is used to cut off the 
heater at 250˚C before the maximum after 1 hour. The HTF temperature was set to constant at high temperature 
as its maximum, decomposition point. Figure 2(a) comparison substance (NPCM) with a oil flow rates of 0.58 
kg/s for NaCl are charging of heat faster than KNO3 and NaNO3. The temperature of storage bed is averaged 
over the entire bed volume thus it is the function of time only. Variation of average bed temperature with time is 
shown in Figure 3 for NPCNs [6]. It is seen from Figure 2(a) that initially, the rise in the volume average tem-
perature of storage beds is rapid and decreases with time. This is because of higher driving potential available 
for conduction during initial period of charging cycle and this driving potential reduces with time as the storage 
bed gains the heat of HTF. The charging rates of KNO3 and NaNO3 are more than that NaCl due to the high heat 
capacity and low thermal conductivity. The KNO3 and NaNO3 bed took 620 minutes for complete charging 
whereas NaCl gets completely charged within 500 minutes respectively. In Figure 2(b), stored thermal energy 
as a function of time is depicted for oil flow rate of 0.87 kg/s. The KNO3 and NaNO3 bed took 500 minutes for 
complete charging whereas NaCl gets completely charged within 300 minutes respectively. For Figure 2(c),  
 

  
(a)                                                       (b) 

  
(c)                                                       (d) 

Figure 2. Heat transfer oil temperature over time for three different NPCM configurations and temperature of HTF and 
storage medium in charging experiment at 0.58, 0.87, 1.16, 1.45 kg/s. 
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stored thermal energy as a function of time is depicted for oil flow rate of 1.16 kg/s. The KNO3 and NaNO3 bed 
took 500 minutes for complete charging whereas NaCl gets completely charged within 270 minutes, respectively. 
The finally Figure 2(d), stored thermal energy as a function of time is depicted for oil flow rate of 1.45 kg/s. 
The KNO3 and NaNO3 bed took 450 minutes for complete charging whereas NaCl gets completely charged 
within 300 minutes, respectively. The temperature distribution of the NPCM during charging was taken at four 
different mass flow rates at 0.58, 0.87, 1.16 and 1.45 kg/s, respectively. Comparing of NPCMs with oil flow 
rates for NaCl are more charging heat transfer than KNO3 and NaNO3 due to the high heat capacity and low 
thermal conductivity of NaCl compare with KNO3 and NaNO3, which is consistent with the research of Horst 
Michels and. Robert Pitz-Paal [6]. 

4.2. Discharging 
For discharging experiment, thermal oil was used as HTF for drawing the heat from the storage tank. This load 
power was adjusted for a long period of discharge. The storage temperature started at 250˚C with thermal loss to 
ambient as HTF flows through the pipe submersed in the storage tank. The extracted heat from the storage tank 
is affected on its increasing temperature. The HTF and storage temperatures are parallel decreased after the HTF 
temperatures reach the turning point, the beginning HTF temperature for discharging from storage medium to 
the water heat exchange. The period of discharge was in the range of 450 - 600 minutes. The initial temperature 
of HTF average room temperature at 25˚C, as shown in Figure 3, was increased to 250˚C - 270˚C, a turning 
point, and then decreased to 100˚C, the final point of discharge. Figure 3(a) comparison of NPCMs with oil 
flow rate of 0.58 kg/s, NaNO3 discharging heat transfer was slower than KNO3 and NaCl due to the low heat 
capacity and low thermal conductivity. The discharging time of NaCl was 260 minutes, NaNO3 was 200 minutes 
and KNO3 was 370 minutes respectively. For Figure 3(b) comparison of NPCMs with oil flow rate of 0.87 kg/s, 
NaNO3 was discharging heat transfer slower than KNO3 and NaCl due to the low heat capacity and low thermal 
conductivity. The discharging time of NaCl was 210 minutes, NaNO3 was 275 minutes and KNO3 was 170  
 

  
(a)                                                        (b) 

  
(c)                                                        (d) 

Figure 3. Storage discharging fluid temperatures decreasing at 0.58, 0.87, 1.16, 1.45 kg/s. 
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minutes respectively. In Figure 3(c), comparison of NPCMs with oil flow rate of 1.16 kg/s, for NaNO3 was 
discharging heat transfer slower than KNO3 and NaCl due to the low heat capacity and low thermal conductivity. 
The discharging time of NaCl was 140 minutes, NaNO3 was 205 minutes and KNO3 was 165 minutes, respec-
tively. The finally Figure 3(d) comparison of NPCMs with oil flow rate of 1.45 kg/s for NaNO3 was discharg-
ing heat transfer slower than KNO3 and NaCl due to the low heat capacity and low thermal conductivity. The 
discharging time of NaCl was 165 minutes, NaNO3 is 195 minutes and KNO3 was 155 minutes, respectively. 
Comparing substances (NPCM) with oil flow rate. NaNO3 discharging heat was slower than KNO3 and NaNO3, 
so NaNO3 is appropriate to store thermal energy that corresponding to the literature of Horst Michels and Robert 
Pitz-Paal [6]. 

4.3. Energy Stored  
The thermal energy storage rates at the bed of the system for the sodium nitrate (NaNO3), potassium nitrate 
(KNO3) and sodium chloride (NaCl) was shown in Figure 4. The amount of thermal energy stored in the storage 
materials at their respective charging times is calculated using Equation (5). Figure 4(a) comparison of flow 
with the energy stored of NaCl from figure was shown that the flow rate of 1.45 kg/s reached to time of TES 
faster than the rates in 1.16, 0.87 and 0.58 kg/s respectively for charging at 400 minutes. The Energy Stored at 
flow rate of 1.45 kg/s was 5912 J, the flow rate of 1.16 kg/s was 5898 J, the flow rate of 0.87 kg/s was 5769 J 
and a flow rate of 0.58 kg/s was 5712 J respectively. For Figure 4(b) comparison of flow with the energy stored 
of NaCl from figure was shown that the flow rate of 1.45 kg/s reached to time of TES faster than the rates of 
1.16, 0.87 and 0.58 kg/s respectively for charging at 400 minutes. The Energy Stored the flow rate of 1.45 kg/s 
was 7939 J, the flow rate of 1.16 kg/s was 8167 J, the flow rate of 0.87 kg/s was 7704 J and a flow rate of 0.58 
kg/s was 7350 J respectively. For Figure 4(c) comparison of flow with the energy stored of NaCl from figure 
was shown that the flow rate of 1.45 kg/s reached to time of TES faster than the rates in 1.16, 0.87 and 0.58 kg/s  
 

  
(a)                                                       (b) 

 
(c) 

Figure 4. Flow rates of energy stored in NaCl, KNO3 and NaNO3. 
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respectively for charging at 400 minutes. The Energy Stored the flow rate of 1.45 kg/s was 6930 J, the flow rate 
of 1.16 kg/s was 7117 J, the flow rate of 0.87 kg/s was 6778 J and a flow rate of 0.58 kg/s was 6623 J respec-
tively. For the thermal stored of NPCMs that compared for flow rate 1.45 were summarized as follows: flow rate, 
faster charging are optimum of flow rates 1.16, 0.87 and 0.58 kg/s respectively. The thermal stored of NaCl was 
lain from 5712 - 5912 J, KNO3 was lain from 7350 - 7939 J and NaNO3 was lain from 6623 - 6930 J respective-
ly. The thermal energy stored for experimental results were get with along the KNO3, NaNO3 and NaCl respec-
tively. 

4.4. Energy Efficiency  
The energy was degraded in the process of storage since it was extracted at a temperature lower than that it was 
previously stored. The energy efficiency of storage beds was evaluated using Equation (7). Energy efficiency 
variation with bed temperature difference during discharging cycle was shown in Figure 5. It was increased to 
270˚C - 250˚C, a turning point, and then decreased to 100˚C, the final point of discharge. Figure 5(a) compari-
son of oil flow with energy efficiency of NaCl for a flow rate of 1.45 kg/s reached to time of energy efficiency 
faster than the rates in 1.16, 0.87 and 0.58 kg/s for discharging at a temperature of 100˚C. Energy efficiency of 
flow rate 1.45 kg/s was 66% at 165 minutes, the flow rate of 1.16 kg/s was 70% at 165 minutes, flow rate 0.87 
kg/s was 68% at 210 minutes and a flow rate of 0.58 kg/s was 67% at 275 minutes, respectively. Figure 5(b) 
comparison of oil flow with energy efficiency of NaNO3 for a flow rate of 1.45 kg/s reached to time of energy 
efficiency faster than the rates in 1.16, 0.87 and 0.58 kg/s for discharging at a temperature of 100˚C. Energy ef-
ficiency of flow rate 1.45 kg/s was 66% at 40 minutes, the flow rate of 1.16 kg/s was 70% at 45 minutes, flow 
rate 0.87 kg/s was 68% at 105 minutes and a flow rate of 0.58 kg/s was 67% at 60 minutes, respectively. Figure 
5(c) comparison of oil flow with energy efficiency of KNO3 for a flow rate of 1.45 kg/s reached to time of 
energy efficiency faster than the rates in 1.16, 0.87 and 0.58 kg/s for discharging at a temperature of 100˚C.  
 

  
(a)                                                       (b) 

 
(c) 

Figure 5. Variation of energy efficiency with bed temperature difference during discharging cycle in NaCl, KNO3 and 
NaNO3. 
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Energy efficiency of flow rate 1.45 kg/s was 66% at 40 minutes, the flow rate of 1.16 kg/s was 70% at 40 mi-
nutes, flow rate 0.87 kg/s was 68% at 40 minutes and a flow rate of 0.58 kg/s was 67% at 40 minutes respec-
tively. For the thermal energy efficiency of NPCMs that compared for flow rate 1.45 were summarized as fol-
lows: flow rate, faster charging were optimum of flow rates 1.16, 0.87 and 0.58 kg/s respectively. The thermal 
energy efficiency of NaCl, KNO3 and NaNO3 were in the range of 66% - 70% for discharging at a temperature 
of 100˚C. 

4.5. Radial Thermal Distribution 
The study of the radial thermal distribution for thermal energy storage was using the three non-phase change 
materials that were selected for experimental investigations: NaNO, KNO3 and NaCl. The motor speed was ad-
justed to obtain the oil flow rates of 0.58, 0.87, 1.16 and 1.45 kg/s respectively. The radial flow rate of 1.45 kg/s 
was faster than of 1.16, 0.87 and 0.58 kg/s respectively, as shown in Figure 6. Figure 6(a) comparing the ther-
mal distribution of temperature radial of the NaCl for TR inside the radial thermal distribution of temperature in 
the range of 185˚C - 220˚C, TR middle the thermal distribution of temperature in the range 95˚C - 150˚C and TR 
outside the thermal distribution of temperature in the range of 25˚C - 50˚C for experimental results compared at 
a time 500 min. Figure 6(b) comparing the thermal distribution of temperature radial position of the KNO3 for 
TR inside the thermal distribution of temperature in the range of 150˚C - 200˚C, TR middle the thermal distri-
bution of temperature in the range 55˚C - 125˚C and TR outside the thermal distribution of temperature in the 
range of 25˚C - 45˚C for experimental results comparison at a time 500 min. Figure 6(c) comparing the thermal 
distribution of temperature radial position of the NaNO3 for TR inside the thermal distribution of temperature in 
the range of 125˚C - 200˚C, TR middle the thermal distribution of temperature in the range 65˚C - 25˚C and TR  
 

  
(a)                                                       (b) 

 
(c) 

Figure 6. Flow rates and radial thermal distribution for thermal energy storage (a) NaCl (b) KNO3 (c) NaNO3. 
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outside the thermal distribution of temperature in the range of 25˚C - 40˚C for experimental results compared at 
a time 500 min. The thermal distribution of radial for thermal energy storage as follows: Thermal distribution 
radial of NaCl for TR inside, TR middle and TR outside were optimum of temperature down to NaNO3 and 
KNO3 respectively, due to the higher heat capacity and low thermal conductivity. Oil flow rates have resulted in 
the heat transfer for thermal distribution radial and physics properties of NPCMs. 

5. Conclusion 
The high solar thermal energy storage was presented in terms of thermal distribution as NPCMs experiments. 
For charging experiment, the increasing storage temperature depends on HTF temperature, flow rates, and initial 
temperature. The high heat transfer rate to storage medium was caused by a small flow rate but the storage tem-
perature was closely increasing with the same temperature of other flow rates. The design of thermal storage 
from this conclusion is that the thermal storage with heat exchanger, appropriate HTF, motor pump for a slow 
charge, and the preheating for HTF discharge was used before discharge to heat HTF to turning point for rapid 
discharge process. The radial thermal distribution of NaCl for TR inside, TR middle and TR outside was opti-
mum of temperature down to NaNO3 and KNO3 respectively, due to the higher heat capacity and low thermal 
conductivity. Oil flow rates have resulted in the heat transfer for radial thermal distribution and physics proper-
ties of NPCMs. Comparison of NPCMs with oil flow rates for NaCl was charging and discharging heat transfer 
than KNO3 and NaNO3 due to the high heat capacity and low thermal conductivity. The thermal stored NaCl 
ranged from 5712 - 5912 J; KNO3 ranged from 7350 - 7939 J and NaNO3 ranged from 6623 - 6930 J respec-
tively. The thermal energy recovery of NaCl ranged from 4332 - 6028 J; KNO3 ranged from 6367 - 6887 J and 
NaNO3 ranged from 5453 - 7620 J respectively. The thermal energy stored for experimental results got with 
along the KNO3, NaNO3 and NaCl respectively. The thermal energy efficiency of NaCl, KNO3 and NaNO3 was 
in the range 66% - 70%. 
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