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Abstract 
 
The objective of this paper is to derive the analytical solution of the EOQ model of multiple items with both 
demand-dependent unit cost and leading time using geometric programming approach. The varying purchase 
and leading time crashing costs are considered to be continuous functions of demand rate and leading time, 
respectively. The researchers deduce the optimal order quantity, the demand rate and the leading time as de-
cision variables then the optimal total cost is obtained. 
 
Keywords: Inventory, Geometric Programming, Leading Time, Demand-Dependent, Economic Order  
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1. Introduction 

The problem of the EOQ model with demand-dependent 
unit cost had been treated by some researchers. Cheng [1] 
studied an EOQ model with demand-dependent unit cost 
of single-item. The problem of inventory models involv-
ing lead time as a decision variable have been succinctly 
described by Ben-Daya and Abdul Raouf [2]. Abou- 
El-Ata and Kotb [3] developed a crisp inventory model 
under two restrictions. Also, Teng and Yang [4] exam-
ined deterministic inventory lot-size models with 
time-varying demand and cost under generalized holding 
costs. Other related studies were written by Jung and 
Klein [5], Das et al. [6] and Mandal et al. [7]. Recently, 
Kotb and Fergany [8] discussed multi-item EOQ model 
with varying holding cost: a geometric programming 
approach. 

The aim of this paper is to derive the optimal solution 
of EOQ inventory model and minimize the total cost 
function based on the values of demand rate, order quan-
tity and leading time using geometric programming tech-
nique. In the final a numerical example is solved to illus-
trate the model.  
 
2. Notations and Assumptions 

To construct the model of this problem, we define the 

following variables: 

rD  = Annual demand rate (decision variable). 

pr

C
C  = Unit purchase (production) cost. 

hr  = Unit holding (inventory carrying) cost per item 
per unit time. 

orC  = Ordering cost. 

SS = rK L = Safety stock. 

n = Number of different items carried in inventory. 

rL
Q

 = Leading rate time (decision variable). 

r  = Production (order) quantity batch (decision vari-
able). 

TC  , ,r r rD Q L  = Average annual total cost. For the 
rth item. 

The following basic assumptions about the model are 
made: 

1) Demand rate  is uniform over time. r

2) Time horizon is finite. 
D

3) No shortages are allowed. 

4) Unit production cost     ,b
p r r p r rC D C D

1, 2 3, , , 1r , n b 
b

 is inversely related to the de-
mand rate. Where  is called the price elasticity. 

5) Lead time crashing cost is related to the lead time  

by a function of the form    , 1, 2,3, , ,r rR L L r n   
0, 0 0 5.    . where ,   are real constants 

selected to provide the best fit of the estimated cost func-
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tion.  
6) Our objective is to minimize the annual relevant to-

tal cost. 
 
3. Mathematical Formulation 
 
The annual relevant total cost (sum of production, order, 
inventory carrying and lead time crashing costs) which, 
according to the basic assumptions of the EOQ model, is: 
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Substituting  p r rC D  and  rR L  into (1) yields: 
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      (2) 

To solve this primal objective function which is a 
convex programming problem, we can write it in the 
form: 
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        (3) 

Applying Duffin et al. [9] results of geometric pro-
gramming technique to (3), the enlarged predual function 
could be written in the form: 
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  (4) 

Since the dual variable vector j r , 
 is arbitrary and can 

be chosen according to convenience subject to: 

W
,1, 2, 3, 4, 5, 1, 2,3, ,j r   n

01 2 3 4 5 1r r r r r jrW W W W W , W           (5) 

We choose jr  such that the exponents of r r  
 are zero, thus making the right hand side of (4) 

independent of the decision variables. To do this we re-
quire: 

W D , Q
and rL

  1 2 5

2 3 5

4 5

1 0

0

1
0

2

r r r

r r r

r r

b W W W

W W W

W W


   
    

 


       (6) 

These are called the orthogonality conditions which 
together with (5) are sufficient to determine the values of 

, 1 2, 3, 4, 5,j rW j ,  1, 2, 3, ,r n  . 
Solving (5) and (6) for jrW , we get:  
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       (7) 

Substituting , 1,2,3, 4, 1, 2,3, ,jrW j r n  
 5rg W

 in 
(4), we get the dual function . To find 5rW  
which maximize  5rg W , the logarithm of both side of 
 5rg W

5rW
, and the partial derivatives were taken relative 

to . Setting it to equal zero and simplifying, we get: 
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where:  
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It is clear that  0 0f   and  which means 
that there exists a root 

 1 0f 
 5r .  The trial and error 

method can be used to find this root. However, we shall 
0 ,1W 
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first verify the root 5  calculated from (8) to maxi-
mize . This is confirmed by the second deriva-
tive to  with respect to , which is always 
negative. 

*
rW

*
r


, r

*
jrW j

*
rW

 5rg W
lng W

1,2 ,W j

5r

W
g W

3,4,

5rW

, n
2,3,4

* *D Q

 

Thus, the root  calculated from (8) maximize the 
dual function . Hence, the optimal solution is 

, where 5  is the 
solution of (8) and  are evaluated by 
substituting value of  in (7). 

5

 5r

5, 1,2,3,*
jr  

, 1,

*
rW

*
5

To find the optimal values r r r , we apply 
Duffin et al. [9] of geometric programming as indicated 
below: 
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By solving these relations, the optimal demand rate is 
given by: 

1

1 2b2
1

2
2 3

,
2

*
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*
r            (9) 

The optimal order quantity is: 

2 1 2
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2
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      (10) 

The optimal lead time is: 
2

2
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1 4 1
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2 3 2 32
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or

K C
 (11) 

By substituting the values of  in 
(3), we deduce the minimum total cost as: 

and* * *
r r rD , Q L
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As a special case, we assume 0 , 0rL    and 
  0b R L   ,  and  1 4

* *
r rW W  5 0,*

rW 

2 3

1

2
* *
r rW W  . This is the classical EOQ inventory 

model. 
 
4. An Illustrative Example 
 
We shall compute the decision variables (optimal order 
quantity , optimal demand rate  and optimal 
lead time ) whose values are to be determined to 
minimize the annual relevant total cost for three items (n 
= 3). The parameters of the model are shown in Table 1. 

*
rQ

*
rL

*
rD

Assume that the standard deviation 6   unit/year 
and K = 2. 

For some different values of   and b, we use equa-
tion (8) to determine 5 , whose value is to be deter-
mined to obtain 

*
rW

*
jrW , j = 1, 2, 3, 4, r = 1, 2, 3 from (6). 

It follows that the optimal values of the production 
batch quantity Q  demand rate *

rD ad time *
rL  and 

minimum annual total cost are given in Tables 2-7. 

*
r , , le

Table 1. The parameters of the model. 

r orC  prC  hrC  r  

1 $ 200 $ 10 $ 0.8 $ 1 
2 $ 140 $ 08 $ 0.5 $ 2 
3 $ 100 $ 05 $ 0.3 $ 3 

 
Table 2. The optimal solution of  and *

rQ *
rD
 

as a func-
tion of b ( for all  ). 

b 1
*Q  2

*Q  3
*Q  1

*D  2
*D  3

*D  

2 28.21 31.17 33.10 1.450 1.550 1.540 
5 26.41 28.55 31.00 1.395 1.455 1.440 
8 25.65 27.49 29.90 1.316 1.350 1.340 

10 25.25 26.99 29.40 1.280 1.300 1.295 
20 24.20 25.72 28.03 1.170 1.180 1.178 

 
Table 3. The optimal solution of  and  as a 
function of b ( ). 

*
rL min TC

= 0.1

b 1
*L  2

*L  3
*L  min TC 

2 8.4 10–9 8.9 10–8 1.3 10–6  59.6932 
5 4.2 10–17 2.4 10–14 4.9 10–11 66.0704 
8 2.1 10–23 2.4 10–17 1.0 10–12 71.6195 
10 1.2 10–26 8.1 10–20 2.7 10–13 83.8121 
20 3.4 10– 39 6.9 10–26 1.5 10–14 422.838 

 
Table 4. The optimal solution of  and  as a 
function of b (

*
rL min TC

= 0.2 ). 

b 1
*L  2

*L  3
*L  min TC 

2 2.7 10–9 5.1 10–8 6.5 10–7 77.539200 
5 2.5 10–17 2.2 10–14 2.3 10–11 243.99000 
8 2.2 10–24 4.3 10–19 3.7 10–14 2906.5400 
10 7.1 10–28 1.4 10–21 1.7 10–15 15175.300 
20 6.8 10–43 7.7 10–31 9.2 10–20 1.3203 107
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Table 5. The optimal solution of  and  as a 
function of b ( ). 

*
rL min TC

= 0.3
 

b 1
*L  2

*L  3
*L  min TC 

2 2.6 10–9 2.5 10–8 5.5 10–7  112.62400 
5 2.4 10–17 2.1 10–14  1.2 10–11 6729.1300 
8 1.7 10–24 8.7 10–20  4.1 10–15 75148.000 

10 6.4 10–29 5.4 10–23  2.3 10–17 1.495 107

20 1.2 10–46 2.8 10–35  1.9 10–25 2.858 1012

 
Table 6. The optimal solution of  and  as a 
function of b (

*
rL min TC

= 0.4 ). 

b 1
*L  2

*L  3
*L  min TC 

2 5.9 10–10 1.2 10–8 2.0 10–7  309.50100 
5 3.9 10–17 1.6 10–14  5.4 10–12  99640.100 
8 3.4 10–25 3.9 10–20  4.6 10–16  1.317 108 
10 7.9 10–29 2.9 10–24  8.7 10–19  2.050 109 
20 6.8 10–51 5.0 10–41  1.5 10–32  5.629 1018 

 
Table 7. The optimal solution of  and  as a 
function of b (

*
rL min TC

= 0.5 ). 

b 1
*L  2

*L  3
*L  min TC 

2 1.2 10–10 3.6 10–9 7.4 10–8 1013.00000 
5 6.1 10–18 7.2 10–15 8.4 10–12 2.5485 106 
8 5.2 10–26 6.0 10–21 7.1 10–17 2.2880 1010

10 4.9 10–30 5.6 10–25 6.7 10–19 2.31429 1012

20 4.3 10–52 4.8 10–44 5.7 10–38 2.3888 1024

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. The optimal order quantity against b (for all  ). 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The optimal demand rate against b (for all  ). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The minimum total cost against b (for all  ). 

 

Figure 4. The minimum total cost against 

 
 
 
 
 
 
 
 
 
 
 
 

  (for all b). 

Solution of the problem may be determined more 
re

 
 

adily by plotting ( min* *
r rQ , D , TC ) against b and min 

TC against  , for each values of  . 
 
5. Conclusions 

his paper is devoted to study multi-item inventory 

tal cost is found 
at

 
T
model that consider the order quantity, the demand rate 
and the leading time as three decision variables. These 
decision variables , and , 1,2, 3, ,* * *

r r rQ D L r n   
are evaluated and the  
is deduced. The classical system is derived as special 
case and a numerical example is solved. 

The smallest value of the minimum to

minimum annual total cost min TC

 the smallest values of b and  . 
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