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Abstract 
 
We consider a two-regime threshold autoregressive model where the driving noises are sequences of inde-
pendent and identically distributed random variables with common distribution function  which 

belongs to the domain of attraction of double exponential distribution. If in addition, 
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   where F *G  denotes the con-

volution of the distribution function and 1 ,F F   we determine the tail behavior of the process and give 
the exact values of the coefficient. 
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1. Introduction 
 
Switching regimes is stylized facts encountered in finan-
cial data analysis, concerning either financial returns, in- 
terest rates or volatilities. The threshold autoregressive 
(TAR) model was introduced by Tong [1] and has since 
become quite popular in non-linear time series modeling. 
The TAR model can be seen as a stochastic difference 
equation. The tail behavior of a stationary solution of 
such equation has been widely studied in a variety of 
context. 

A result of Kesten [2] shows that the stationary solu-
tion to the stochastic recurrence equation has regularly 
varying distribution, under quite general conditions on 
the multiplicative coefficient and the noise term. Davis 
and Resnick [3] treat the bilinear process with regularly 
varying innovations. Resnick and Willekens [4] consider 
a stochastic recurrence equation with regularly varying 
noise. 

In these papers, either the multiplier in the stochastic 
difference equation is a positive random coefficient or 
the noise term is an independent and identically distri- 

buted    valued random variable. Furthermore, in 
general, the coefficient and the noise are assumed to be 
independent. The latter condition is often not satisfied in 
applications. Diop and Guégan [5] studied the threshold 
autoregressive stochastic volatility model where the dri- 
ving noises are sequences of independent and identically 
distributed regularly varying random variables. 

In our framework, the TAR model is a stochastic dif-
ference equation where the multiplicative coefficient and 
the noise term are dependent. The random coefficient 
model does not necessarily satisfy the positivity condi-
tion on the multiplier and the noise term. In addition, the 
innovations are assumed to belong to the maximum do-
main of attraction of the double exponential distribution. 
To our knowledge the literature is not abundant for this 
framework. 

A distribution function F is in the domain of attraction 
of the extreme value distribution    exp e ,xx     
x  if there exists  such that  1n 0,n na b 
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A distribution F is in the class  rS   for 0   if 
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where 1F F   and *F G  denote the convolution of 
the distribution function F and G. See Cline [6] and Em-
brechts [7] for further details on convolution tails. The 
constant d is known to equal . In the sequel, we 
set 

12 e X
  e X

Fm     when F is the distribution function 
of the random variable X. 

The aim of this paper is to study the tail behavior of a 
two-regime threshold autoregressive model when the 
driving noise of each regime has distribution function 

     , 1, 2i rF D S i    .
Let us give the motivation to justify why these results 

are needed to be extended to the proposed class of resid-
ual processes. First, the distribution in  rS   are 
among others used to model claim size in risk theory 
Klüppelberg [8], Beard et al.[9], Hogg and Klugman [10], 
Goldie and Resnick [11]. Second,    rSD   is a 
large class of distributions which constitute the domain 
of attraction of mean residual lifetimes to the exponential 
limit law whose behavior is preserved under convolu-
tions. In this paper, precisely we determine the exact 
value of the coefficient in the tail behavior of the sta-
tionary solution when the model is stationary in some 
regimes and mildly explosive in others. 

The rest of this paper is organized as follows: Section 2 
describes the model and conditions for strict stationarity are 
provided. Some preliminary results with respect to the in-
novation processes are given. Section 3 presents the main 
results. 
 
2. The Model 
 
The threshold autoregressive (TAR) model is defined by 
the following relation 
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where  ,  are non random constants and with thre-
shold variable . 

Φi

1tY 

 
2.1. Assumptions 
 
We will use the following assumptions. 

H1- 
  1
iZ  is sequence of independent and identically  

distributed random variables (i = 1, 2) and satisfied the 
following conditions: 

 
1log ,iZ                   (5) 

where  log max 0, log .x x   
H2- For each i = 1, 2, the two sequences of random  

variables   i
t

t
Z  and  t t

Y  are independent and 
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2
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H3- The sequence of independent and identically dis-
tributed random variables 

t
 whose common dis-

tribution Fi is both in the domain of attraction of 

  i
tZ

   exp e ,xx  x     and in  and 
satisfies the tail balancing condition. 
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We define   ,tY     11 tt Y1 ,I 
  2 11 .t tI I   

Then Equation (4) can be rewritten as: 

  1Φ ,t tt tZ                    (7) 
where 

  1 1 2 2Φ Φ Φtt t tI I   and    1 2
1 2 .t t t t tZ Z I Z I   

We easily check that the tail balancing condition (6) 
holds for random variables  kZ  whose distribution 
function  1 21F qF q F   . 
 
2.2. Preliminary Result 
 
The Equation (7) is a stochastic difference equation 
where the pair   Φ , tt

t
Z  are sequences of iid 2   

values random variables under 1H  and 2H . The next 
proposition gives the strict stationarity of the process 
 t t
  defined in (7). The result follows from Theorem 1 

of Brandt [12]. 
Proposition 1 (strict stationarity) Assume 1H  and 

2H  and suppose that 
1

1 2Φ Φ 1
q q  . Then, for all 

t , the series  t t
  defined in (7) admits the fol-

lowing expansion 
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which converges almost surely. Then the process  t t
  

is the unique strictly stationary solution of (7). 
Proposition 2 Let  1 21 .F qF q F    

1) If   , 1, 2iF D i   , then   .F D 

2) If   ,i rF S   1, 2, 0i   , then  .rF S   

Proof 
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Without loss of generality, we can assume that 
 
 

2

1

,
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tends to some constant  as 0c  x   which we 
denote by 2 2~F cF  with  Then the proof of 1) 
follows from Proposition 3.3.28 of Embrechts and et al. 
[13]. Indeed 
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which tends to some positive constant  as 0k  x   
Hence F belongs to  Now we prove 2).  D 

First, using 2 1~F cF  with , it is easy to show 
by simple calculations that 
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where        1 21F x qF x q F x   . 

Since F1 and F2 belongs to the class  rS   we have 
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Using Theorem 1 of Cline [6], we show that 
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The proposition is entirely demonstrated. 

3. Main Results 

Our aim in this section is to establish the tail behavior of 
the stationary distribution of  t t

  defined in (4). 
Theorem 1 Let  t t

  be the stationary solution of 
Equation (7) and the process 

t tZ  be an iid sequence 
of random variables with common distribution  

   iF D Sr     satisfying (6). Suppose that the 
assumptions of Proposition 1 hold. Then the tail behavior 
of the stationary distribution of  t t

  is 
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Remark: We may give an financial example of model 
(4) introduced by Breidt [14] for a financial return Yt 
defined by the following relation 

exp
2

t
tY


t    

 
               (14) 

Where t  is an open-loop threshold autoregressive 
process (Tong [15], p. 101) 
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The model is called a threshold autoregressive sto-
chastic volatility model (TARSV). The log-volatility 
process  t t

  has a piecewise linear structure. It switches 
between two first-order autoregressive process according 
to the sign of the previous return. In this framework,   
is positive constant and  tt  is a sequence of inde-
pendent and identically distributed random variables 
with zero mean and its variance is taken to be one. When 
either 1Φ 1  and 2Φ 1  or 2Φ 1  and 1Φ 1 , 
the process defined in (15) is stationary in some regimes 
and mildly explosive in others. These models are sta-
tionary in some regimes and mildly explosive in others. 
See Gongalo and Montesinos [16]. Gouriéroux and 
Robert [17] studied the ACR(1) process where there is a 
switching between white noise and a random walk. 

Before proving Theorem1 we establish three lemmas. 
The next lemma is due to Davis and Resnick [18]. Its 
proof will then be omitted. The second lemma is an ex-
tension of Proposition 1.2 in Davis and Resnick [18] 
where the hypothesis of independence is relaxed. See 
also Cline [6]. They are needed for the proof of the tail 
behavior of  t . 

Lemma 1  
Suppose  so the Balkema and de Haan[19] 
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 F D 
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For any 0 1c   
This following lemma is quite general since it does not 

require the hypothesis of independent between the Yi’s. 
Lemma 2 
Let  , 1iY i n 
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Proof 
When 2n  , then this lemma is the formulation of 

Theorem 1 of Cline [6]. When , set 
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Proof 
For 0   and for all b such that 
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We have 
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The result follows. 
Proof of Theorem 1 
Set 
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Denote by Gj the distribution function of Yj. First, it is 
easy to check that the moment generating function Yj 
exists and is given by 
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j  is given by (12). 
By Lemma 2, we have 
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Moreover, by lemma 3 
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