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Abstract 
Wavelet has rapid development in the current mathematics new areas. It also has a double mean-
ing of theory and application. In signal and image compression, signal analysis, engineering tech-
nology has a wide range of applications. In this paper, we use wavelet method, for estimating the 
density function for censoring data. We evaluate the mean integrated squared error, convergence 
ratio of given estimator. Also, we obtain empirical distribution of given estimator and verify the 
conclusion by two simulation examples. 
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1. Introduction 
One of data types, which researchers are extremely interested in, is caring to the time interval till the occurrence 
of certain events such as death etc. Any process waiting for a specific event produces survival data. Survival 
function, which is shown by ( )S t , indicates the ratio of people who survived since the base time which is the 
point they enter the experiment. Failure in survival analysis means the occurrence of the event we were waiting 
for. The time, where survival is measured after that point, is called the start time. The failure time is the time that 
failure occurs for each individual which is denoted by iT  for 1, 2,3,i =  . The failure time is occurred from 
the base time up to when the failure occurs and it’s known as iT . It’s not always possible to observe the failure 
time for each individual. In such cases, censorship occurs. The rate of occurrences of an event (failure) in a spe-
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cific short period of time providing that no failure occurred before that time is the concept which is discussed by 
the name hazard function in survival analysis. Hazard function for the failure time line is as follows: 

( ) ( ) ( )
( )

( )
( )0

lim .
1t t

P t T t t T t F t S t
h t

t F t S t∆ →

≤ ≤ + ∆ ≥ ′ ′
= = = −

∆ −
 

Wavelets can be used for transient phenomena analysis or functions analysis which sometimes changes ra-
pidly, and they are symmetrical and have limited period unlike rugged Sine waves, thus the signals with radical 
changes are analyzed better. The close relationship between wavelet coefficients and some spaces, wavelet bases 
being orthogonal and also useful properties of them in wavelet issues simplify the computational algorithms.  

Wavelets theory was proposed by Alfred Harr [1] for the first time in 1910. He showed that a continuous 
function can be approximated as follows: 

( ) ( ) ( ) ( )0 0 1 1, , , .n n nf x f  x f  x  f  xφ φ φ φ φ φ= + + +                     (1) 

Such that ( ) ( ), d ,i if f x x xφ φ= ∫  
( ) 1 1

12 2   
2 2 2 2

  ,    0  0,1, , 2 1  ,   2

j j j j

j j
n k kk kx x

x I I j k n kφ
+ + +

≤ < ≤ <

= − ≥ = − = +  

Also for mother wavelet and father wavelets the following: 

( ) ( ) ( ) ( ), ,2 ,   2 .j j
j k j kx x k x x kφ φ ψ ψ= − = −  

Definition 1-1: Assume that { },span :j j kV k zϕ= ∈ ; { }, ,j k k zϕ ∈
 

is an orthogonal unit base for jV  and 
jV  contains all sectionally constant functions and their exact length is twice the interval length of 1jV + . 
Spaces { },jV j Z∈

 
are called multiresolatio analysis or scale function ϕ , if it satisfies the following condi-

tions: 
1- 1j jV V j Z+⊂ ∀ ∈ , 2- ( )22

j
j z

V L R
∈

=


, 3- { }0j
j z

V
∈

=


, 

4- ( ) ( ).  ,   j jj z f x V f x V∈ ∈ ∈ , 5-‘ ( ) ( )0 0. ,   k z f x V f x h V− ∈ ⇔ ∈ − ∈ . 
6- ( ) 0x Vϕ∃ ∈  in condition that ( ){ } :x k k zϕ − ∈

 
is an orthogonal base for 0V . 

If we consider the scale function in the interval [ ]0,1 , then the image of f on the space Vj is defined as  
( ), ,j

f
V j k j k

k z
P xα ϕ

∈

= ∑  which is a function with the resolution, 2 j  and because of the fact that ( )2
j

j z
V L R

∈

=


  

thus 
j

f
VP  is a good approximation of function f  for large amounts of j . 

Let the nested sequence of closed subspaces; … 1 1 , ,j j j j− +⊂ ⊂ ⊂ ∈V V V Z  be a multiresolutuon approx-
imation to ( )2 RL . Define jW , j∈Z  to be orthogonal complement of jV  in 1j+V . 

The term wavelets are used to refer to a set of basis functions with very special structure. The special of wave- 
lets basis for function ( )2f R∈L  as scaling function ϕ  and mother wavelet ψ  such that ( ){ }k Z

x kϕ
∈

−  
forms an orthogonal basis for 0V  and ( ){ }k Z

x kψ
∈

−  forms an orthonormal basis for 0W . Other wavelets in 
the basis are then generated by translation of the scaling function and dilations of the mother wavelet by using 
the relationships: 

( ) ( ) ( ) ( )0 0
0

2 2
, ,2 2 ,    2 2m m j j

m k j kx x k x x kϕ ϕ ψ ψ= − = −                   (2) 

Given above Wavelet basis, a function ( )2f R∈L  can be written a formal expansion: 

0 0
0

, , , ,m k m k j k j k
k Z j m k Z

f α ϕ β ψ
∞

∈ = ∈

= +∑ ∑ ∑                             (3) 

where ( ) ( ) ( )
0 0, , , ,d ,   dj k j k j k j kf x x x f x xα ϕ δ ψ= =∫ ∫  

As for general orthogonal series estimator, Daubechies [2], density estimator can be written as: 

( ) ( )
0 0 0

0 0

, , , , , ,
ˆ ˆ ˆˆ .m k m k j k j k m j k j k

k Z j m k Z j m k Z
f x x fα φ β ψ β ψ

∈ ≥ ∈ ≥ ∈

= + = +∑ ∑ ∑ ∑ ∑P               (4) 
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where the obvious coefficient estimator can be written: 

( ) ( ) ( ) ( )
0 0 0, , , , , ,

1 1

1 1ˆˆ ,   
n n

m k m k m k i j k j k j k i
i i

E X X E X X
n n

α ϕ ϕ β ψ ψ
= =

   = = = =   ∑ ∑             (5) 

We divide time axis into two parts, the intervals and the number of events in each interval. We determine 
number of events and hazard function according to the observations. Then we flatten them separately via linear 
wavelet density estimation on the whole time and then we calculate the function estimator and evaluate the 
asymptotic distribution. 

In this paper we obtain estimator density for censoring data by using wavelet method and evaluate mean 
integral square error with convergence ratio and empirical distribution of given estimator. 

2. Estimator of Density by Using Wavelet Method 
Wavelets can be used for transient phenomena analysis or functions analysis which sometimes changes rapidly, 
and they are symmetrical and have limited period unlike rugged Sine waves, thus the signals with radical 
changes are analyzed better. The close relationship between wavelet coefficients and some spaces, wavelet bases 
being orthogonal and also useful properties of them in wavelet issues simplify the computational algorithms. As 
a result, numerous articles have been published about density function estimation. The mathematical theorem of 
wavelets and their application in statistics have been studied as a technique for nonparametric curve estimators 
by Antoniadys [3]. 

Afshari [4]-[6] have done some researches about density function estimator, the density functional derivative 
and the nonparametric regression function for the mixing random variables. Donohu [7], kyacharyan, Picard [8], 
Malat [9], Meyer [10], and some articles have been published in this field. Hall and Patil [11] have found a for-
mula for the Mean Integrated Squared Error of Nonlinear Wavelet based on density estimators. Antoniadys et al. 
[12] achieved the density function estimator and the hazard function for right-censored data with the wavelets. 
In this section we obtain estimator of density function for censoring data by using wavelet method. 

Suppose 1 2 3, , , , nX X X X are failure time of n  tests that are studied. They are non-negative, independent, 
identically distributed, with the density function f  and distribution function F  and 1 2 3, , , , nC C C C  are 
corresponding to censored times, non-negative, independent, identically distributed, with the density function 
g  and distribution function G . 

Assuming independency of failure times and censored time of the observed random variable, iZ  and the 
function iδ  and Hazard function are shown as below: 

( ) ( ) ( ) ( )
( ) ( )  min , ,   .    ,  1.

1i ii i i i X C

f t
Z X C I h t F t

F t
δ ≤= = = <

−
 

Such that ( )AI is indicator function of A . For data censoring, if ( ) 1G t <  then we have as the following: 

( )
( ) ( )( )
( )( ) ( )( ) ( )

1
 ,       1.

1 1
f t G t

h t F t
F t G t

−
= <

− −
 

Also we definite as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )
( ) ( )

1 1 , 1 1 1 .

1 .    ,   1.
1

i i i iL t P Z t P Z t P X t C t F t G t

f t
f t f t G t h t L t

L t

∗
∗

= ≤ = − > = − > > = − − −

= − = <
−

 

To estimate ( )f t∗ , we divide the time axis into two parts of small intervals and the amounts of events (0 or 
1) in each interval, and then we divide these values to the length of intervals. 

Estimation procedures of ( )f t∗  can be summarized as the following: 
Select 0∆ >  and collect the observed failures in 1k +  intervals with the length ∆  and using wavelet es-

timation on the collected data. We find an estimate of sub density. This means that we calculate the collected 
wavelet coefficients data on the scale of ( )j n  by choosing the decomposition level ( )j n  and then we esti-
mate ( )f t∗ . It is necessary to state the following symbols to show the details: 
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( ){ } ( ){ } ( ){ } { }sup : 1   sup : 1   sup : 1 min , .F G L F GT t F t T t G t T t L t T T= < ⋅ = < ⋅ = < =  

We figure estimators on the finite interval [ ]0,τ  in which LTτ < . Note that if ( )iZ  is the ordinal order sta- 
tistic i  of the sequence iZ  then ( )n

n
L LnT Z T→∞= → . In fact we suppose ( )nZτ = . 

Suppose that N  is an integer that could be dependent to n  and the estimated points are as follows: 

,         0, , 2 1
2

N
k N

kt k Kτ
= = = − ⋅  

Suppose that 2 Nτ −∆ =  and we divide the interval [ ]0,τ  of time axis to 1k +  intervals with ∆  long 

0 1,     , 1, , ,     .
2 2k k Kt k Kτ τ τ τ+
∆ ∆

= − = − = =  

The k -th interval is marked by kJ  so: [ )1,k K kJ τ τ += for [ ], , 1,   ,0 K Kk K J τ τ= − = . 
Now we define the following indicator function that indicates the number of uncensored failures in the time 

interval ( ): ,    1, ,    0, ,
kk ik J i iJ Y I Z i n k Kδ= = = ⋅   We assume that kU  the observed failures ratio in the  

interval kJ  n other words: 
1

1 ,    0, , .
n

k ik
i

U Y k K
n =

= =∑ 

 Theorem 2-1: Suppose that the sub density f ∗

 is a continuous function on [ ]0,τ  and it’s m times diffe-
rentiable, then if v 0∆ → or n →∞ , we have: 

( ) ( ) ( )1 ,kk k
k

f tU U
Var O E f t O

n n

∗
∗    = + = + ∆    ∆ ∆ ∆    

 

( ) ( )1,  ,       .k
k

U UCov f t f t O k
n n

∗ ∗ ∆   = − + ≠  ∆ ∆   




  

Proof: see [13]. 

We smooth the data kU
∆

 by an appropriate wavelet smoother to find the estimation of f ∗ . 

We can write, 

( ) ( ) ( )
0

0 0
0

2 1 2 1

, , , ,
0 0

, , .
j j

j k j k j j
k j j

f t f t f tφ φ ψ ψ
− −

∗ ∗ ∗

= ≥ =

= +∑ ∑ ∑
 



                 (6)

 
where, ( ) ( )

0
,  df g f t g t t

τ
≡ ∫  

The complex structural polymorphism analysis causes an efficient tree construction algorithm for analysis of 
functions in NV  with theoretic scale wavelet coefficients ,, N kf ϕ∗ . However, the integral scale ,, N kf ϕ∗  
is not well available and we need an initial value for a fast wavelet transform. Antonyadys [4] suggested the fol-
lowing initial amount: 

2 2
,, 2 2 2 ,  0 2 1

N N
Nm N

N k kf f t O kφ
− −∗ ∗ − 

= + ≤ ≤ −  
   

As a result a reasonable estimate for image of f ∗

 with clarity N  is: 

( ) ( )2
,2 .

N K
k

N N k
k

U
f t tϕ

−∗

=

=
∆∑



                                   (7) 

If we assume that the collected values kU which are equal to the estimators of ( )Nf t∗
 , are in Sobolev space 

[ ]( )W 0,m τ  and ϕ  is regular of degree m . We estimate the unknown function *f  as follows to level the 
data with a better rate for the sample size n  and the sequence ( )j n N< : 

( )

*
ˆ fN

j nn Vf P=


                                        (8) 

That it is the orthogonal image of ( )Nf t∗
  on the leveler approximation space 

( )njV . 



M. Afshari 
 

 
2066 

Theorem 2-2: Suppose that the sub density f ∗  is a continuous function on [ ]0,τ  and it’s m times diffe-
ren- tiable, then if 0∆ →  for n →∞  we have: 

( ) ( ) ( ) ( ) ( ){ } ( )1 1, .
N

f t
N NVE f t P O Var f t O n O n

∗ −∗ ∗ −   = + ∆ = ∆ +   
   

Proof: by using theorem (2-1) we can write: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
, ,

0 0

2 2
, ,

0 0

2  2  

                                                  2 ( )2

N NK K
k

N N k k N k
k k

N NK K

k N k N k
k k

U
f t E t f t O t

f t t O t

φ φ

φ φ

− −∗ ∗

= =

− −∗

= =

    = = + ∆     ∆ 

= + ∆

∑ ∑

∑ ∑



       (9) 

Since, ( )supt k t k Mφ − =∑ , then ( ) ( )2
, 2 2

N
N

N k t t kϕ ϕ= −  and we can write as the following: 

( )2
,sup 2 .

N

t N kk t Mφ
−

=∑  

So Equations (9) can be written as follows: 

( ) ( ) ( ) ( )2
,

0
2

N K

N k N k
k

E f t f t t O Mφ
−∗ ∗

=

  ≤ + ∆  ∑                          (10) 

By using Equation (1) we have: 

( ) ( ) ( ) ( ) ( )

( ) ( )

1
2 2

, , ,
0 0

1
2

, ,
0

2 ,  

                                                ,  .

N K K m

k N k N k N k
k k

K m

N k N k
k

f t t O M f O t O

f t O O

φ φ φ

φ φ

− +∗ ∗

= =

+∗

=

   + ∆ = + ∆ + ∆      
 

= + ∆ + ∆  
 

∑ ∑

∑
         (11) 

By using Equations (10) and (11) we have: 

( ) ( ) ( ).
N

f t
N VE f t P O

∗∗  = + ∆ 
  

( ) ( ) ( ) ( )22
, , ,

0 0 0,
2 2 ,  

N K K K
Nk k l

N N k N k N k
k k l l k

U U U
Var f t Var t Cov t tφ φ φ

−∗ −

= = = ≠

     = +     ∆ ∆ ∆   
∑ ∑ ∑  

By using theorem (2-1) we can writhe as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2
,

0

1
, ,

0 0,

2  

12  

K
kN

N N k
k

K K
N

k l N k N l
k l l k

f t
Var f t O n t

n

f t f t O n t t
n

φ

φ φ

∗
∗ − −

=

− ∗ ∗ −

= = ≠

 
  = +   ∆  

 + − + ∆  

∑

∑ ∑



 

Using this fact that f ∗

 is uniformly bounded on [ ]0,τ  and ( )2 NO −∆ = , we have: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
1 , , 2 , ,

0 0

2

, ,

1

.

K K

N N k N k N k N l
k k k k l

N k N l
k k l

Var f t C t O t C t t
n n n

O t t
n

φ φ φ φ

φ φ

∗

= = ≠

≠

∆ ∆   ≤ + +    
 ∆

+  
 

∑ ∑ ∑∑

∑∑



        (12) 

Since ϕ  is regular in order m  we can write: 

( ) ( ) ( ) ( ) ( )2 2
, , ,

0
2 ,     2

K
N N

N k N k N l
k k k l

t O t t Oφ φ φ
= ≠

= =∑ ∑∑                  (13) 
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According Equation (13), we can write: ( ) ( ){ } ( )1 1
NVar f t O n O n−∗ −  = ∆ + 
 , complete the proof. 

3. Evaluate of Mean Integral Square Error with Convergence Ratio 
In this section we evaluate mean integral square error and convergence ratio is investigated. 

Definition 3-1: The mean integrated square error (MISE) of kernel estimator of a density function f  is 
given ( ) 1 2

1 2MISE rC nh C h−≈ + . In this formula ≈  denotes the right and left convergence, when n →∞ , n  
denotes the sample size, h  denotes the estimator bandwidth core, r  denotes core level and 1C , 2C  denote 
kernel dependent quantities with unknown density. 

Theorem 3-1: Suppose that the sub density f ∗  is a continuous function on [ ]0,τ  and it’s m  times diffe-
rentiable, then if 0∆ →  for n →∞ and ( )j n →∞ , then ( )2 j nn − → ∞ , 

( ) ( ) ( ){ } ( )( ) ( )
( )2 2 2

 0

2ˆ ˆMISE d 2
j n

j n m
n nf E f t f t t O O O

n
τ −∗   = − ≤ + ∆ +        
∫           (14) 

Proof:
  

( ) ( ) ( )
( )
( ) ( )

( )
( )

( )
( )

( )
( ) ( ) ( ) ( )ˆ .N N

j n j n j n j n

f t f t f t f t
n V V V VE t f t f t P f t P P P f t S t A t

∗ ∗ ∗ ∗∗ ∗ ∗= − = − = − + − = +
 

        (15) 

By using Equation (15) and theorem (2-2) for 1m ≥ , we can write as the following: 

( ) ( ) ( )
( )
( ) ( )

( )
( ) ( )

j n j n

f t f t
V VE E t E S t A t P O P A t

∗ ∗

= + = + ∆ − +        

Because ( ) Nj nV V⊂  we can write as the following: 

( ) ( ) ( )E E t O A t= ∆ +                                  (16) 

( )
( ) ( ) ( )( )

2
2

j n

f t mj n
VP f t O

∗ −∗− =                            (17) 

So by using Equations (16) and (17), we can write: 

( ) ( ) ( )( )2ˆMISE 2 .mj n
nf O O −= ∆ +                         (18) 

For evaluate ( )ˆMISE nVar f 
  , we can write: 

( )
( )

( )

( )

( ) ( ) ( )

( )

( ) ( )
2 1 2 1 2 1

2
,, , , ,

0 0 0
, 2 ,

j n j n N

N
j n

N
f t l

N N lV j n k j n k j n k j n k
k k l

U
P f t tφ ϕ ϕ ϕ ϕ

∗ − − − −∗

= = =

  = =  
∆  

〈 〉∑ ∑ ∑


  

Also we can write: 

( )
( )

( )

( )( ) ( )
( ) ( ) ( )2

, , ,2 ,NN
j n j n

N
E f tf t l l

N lV V j n k j n k
k l

U E U
P P tφ φ φ

∗∗ − −
− =

∆
〈 〉∑ ∑





 
then, 

( )
( )

( )

( )( ) ( )
( )

2

, ,d 2 ,NN
j n j n

E f tf t l lN
N kV V j n l

l k

U E U
P P t φ φ

∗∗ −  −  − =   
∆    

∑ ∑∫




              (19) 

By using theorem (2-1) and expectation of Equation (19), we can write as the following: 

( )( )
( )

( ) ( )

2

, ,2

2

, ,, ,

2 ,

2 , , ,

k kN
N k j n l

l k

N k h
N k N hj n l j n l

l k h k

U E U
Var E

U U
Cov

ϕ ϕ

ϕ ϕ ϕ ϕ

−

−

≠

 − =  
∆  

 +  ∆ ∆ 

∑ ∑

∑ ∑∑

               (20) 

By using theorem (2-1) we have: 
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( )( ) ( ) ( ) ( )

( ) ( ) ( )

2
21

, ,2
,

21
, ,

,

2 ,   

                                             ,

k k kN
N k j n l

l k k l

k
N k j n l

k l

U E U f t
E O n

n

f t
O n

n

φ φ

ϕ ϕ

∗
− −

∗
−

 −     = ∆ +   
∆∆      

  = ∆ + 
∆  

∑ ∑ ∑

∑

                 (21) 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )( ),
22 2 2

, , , ,22
,  d 2 2 d 1j n l t

N

j n j n
N k Vj n l j n l j n l

k
P t t t l tϕ

ϕ ϕ ϕ ϕ φ= = = = − =∑ ∫ ∫        (22) 

By using Equation (22) and this fact that f ∗

 is uniformly bounded, we can write as the following: 

( )( )
( )

( ) ( ) ( )2
2

, ,2

2 2 22 , .
j n j n j n

k kN
N k j n l

l k

U E U
E O O O

n n n
φ φ−

 −      ∆  = + =            ∆        
∑ ∑  

The second part of Equation (20) can be written as the following: 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

, ,, ,

1
, ,, ,

, ,, ,

2

, , ,, , ,

2 2

, , , 2

2 , , ,

12 , ,

, ,

, , ,

2 , 2

N k h
N k N hj n l j n l

l k h k

N
k h N k N hj n l j n l

l k h k

N k N hj n l j n l
k h k

N k N h N kj n l j n l j n l
k h k

N N
N k j n l j n l

k

U U
Cov

f t f t O n
n

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

φ φ φ

−

≠

− ∗ ∗ −

≠

≠

 
 ∆ ∆ 

 = − + ∆ 
 

=

 ≤ =  
 

≤ =

∑ ∑∑

∑ ∑∑

∑∑

∑∑ ∑

∑ 2N=

 

By using 
( ) ( ) ( )2 2 2j n j n j n

O O O
n n n

     ∆
+ =          

     
, the proof is complete. 

4. Empirical Distribution of Purpose Estimator 
In this section we investigate empirical distribution of estimator under some condition. 

Theorem 4-1 Suppose that the sub density f ∗

 is a continuous function on [ ]0,τ  and it’s m times differen-
tiable, for n →∞ , n∆ →∞ , 3 0n∆ → , ( )( )2 12 0j n mn − −∆ → , then for interval [ ]0,τ , we have: 

( ) ( )( ) ( ) ( )2ˆ 0,n
k

n f t f t N f t kϕ
∞

∗ ∗

=−∞

 ∆ − →  
 

∑ . 

Proof: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ ˆ   n n n nn f t f t n f t E f t n E f t f t∗ ∗   ∆ − = ∆ − + ∆ −     

By using theorems (2-1) and (2-2), we can write as the following: 

( ) ( ) ( )
( )
( )( ) ( )ˆ ,N

j n

f t
n VE f t f t O P f t

∗∗ ∗  − = ∆ + −   

( )
( ) ( )

( )

( )
( ) ( )( ) ( )1 1

2 2sup 2 , 2 .
j n j nm

j n m j n mf t f t
V V

f W
P f t O P f t O

∗
   − − − −   ∗   

∞∈

   
   − = − =
   
   

      (23) 

( ) ( ) ( )
( ) 1

2ˆ 2 .
j n m

nE f t f t O O
 − − ∗  

 
   − = ∆ +   

 
                         (24) 
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So by using equation of (23) and (24) we can write as the following: 

( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )
( )( ) ( )( )( )

ˆ ˆ ˆ  

ˆ                                          . 

n n n N N N

N n

n f t E f t n f t f t n f t E f t

n E f t E f t

∗ ∗ ∗

∗

∆ − = ∆ − + ∆ −

+ ∆ − = Ι + ΙΙ + ΙΙΙ

  



 
We prove that II has asymptotically normal distribution and also I, III tend to zero when n →∞  
First, we show that I, III tend to zero when n →∞ . According to Equation (24) we have: 

( ) ( )
( )
( ) ( )

( ) 1
2ˆ 2

j n

j n mf t
n N NVf t f t P f t O

∗
 − − ∗ ∗  

 
 − = = ⋅
 
 



   

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )
( ) 1

2ˆ ˆ ˆ 2 .
j n m

N n N n N nE f t E f t E f t E f t E f t f t O
 − − ∗ ∗ ∗  

 
 − ≤ − ≤ − =
 
 

          (25) 

By using Equation (23) we have: 

( )
( ) ( )

( ) 1
22

j n

j n mf t
VP f t K

∗
 − − 
 − ≤ . 

So by using Equation (24) and (25), the phrase I, III tend to zero when n →∞ , and finally we have: 

( ) ( ) ( )

( ) ( )

2 2

0 0

0 1  0

2 2 2 2

1 1                 2 2 .

N NK K
N Nk

N k
k k

K n K
N N

k ik
k i k

U nn f t n t k U t k

nU t k Y t k
n n

φ φ

φ φ

−∗

= =

= = =

∆ = ∆ ⋅ − = −
∆ ∆

= − = −
∆ ∆

∑ ∑

∑ ∑ ∑



 

So we have: 

( ) ( )( )( ) ( ) ( )
1 0 1

1ˆ ˆ 2   
n K n

N
n n ik k ni

i k i
n f t E f t Y p t k Z

n
φ

= = =

∆ − = − − =
∆

∑ ∑ ∑               (26) 

Such that for each fixed k , while 1, 2, ,i n=  , ikY  is defined as an independent and identically distributed 
random sample with the mean as follows: 

( ) ( )( ) ( ) ( )2
,

0 1

1 2 .
N K n

k N N N k ik k
k i

p f t E f t t Y p
n

φ
−∗ ∗

= =

  
− ≤ −  

∆   
∑ ∑   

By using cushy Schwartz inequality: 

( ) ( )( ) ( ) ( ) ( )
2 222 2

,2 2 2 2
0 0 1 0 1

1 2 .
K K n K n

N
N N N k ik k ik k

k k i k i

Mf t E f t t Y p Y p
n n

φ∗ ∗ −

= = = = =

    − ≤ − ≤ −       ∆ ∆    
∑ ∑ ∑ ∑ ∑     (27) 

So we can write as the following: 

( ) ( )( ) ( )
22

2 2
0  0
sup .

K

N N ik
t k

ME f t E f t Var Y
nτ

∗ ∗

≤ ≤ =

  − ≤    ∆   
∑   

Using this fact that f ∗

 is uniformly bounded and, ( ) ( ) ( )2 ikVar Y f t O∗= ∆ + ∆ , 1, 2, , 2 1Nk = − , we can 
write: 

( ) ( ) ( )2 ikVar Y f t O∗= ∆ + ∆ , 

( ) ( )( ) ( )( )
22

2 2 2
  0
sup

K

N N k
t k

M cE f t E f t f t c
n nτ

∗ ∗ ∗

≤ ≤ =

  − ≤ + ≤   ∆ ∆   
∑



   

Thus, the Equation (26) state is convergent in 2L  and thus in the distribution.  
Also by using Theorem (2-2), we have: 

[ ] ( ) ( ) ( )2

0

1 2 .
K

N
ni

k
Var Z f t t k O

n
φ∗

=

 = − + ∆ 
 
∑  
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Thus we have: 

( ) ( )( )( ) ( ) ( )2

0
 

K

N N
k

Var n f t E f t f t kφ∗ ∗ ∗

=

 ∆ − → ⋅
  ∑   

We control the Lindberg condition in order to prove that II is asymptotically normal. For this purpose, we  

set: ,ni
ni

ni

Z
U

VarZ
=  and we show that { }2  0

nini U nE U
ε>

Ι → ⋅
 

By using cushy Schwartz inequality: 

( ) ( ) ( ) ( ) { } ( ){ } ( )
1

144 2 4 4 2 2
2

1,  ,    
nini ni ni ni niU nE U O n E Z E Z O E U E U n

n ε
ε

−

>

 = = Ι ≤ ∆ 
, So we can write as the  

following: 

{ }2 1 ,
nini U nE U O

nε>

 
Ι =  

∆   
and complete the proof. 

5. Simulation and Numerical Computation for Target Estimator 
In this section we simulate, ( )n̂ kf t  on the data of size n  by using Semlayt’s wavelet. We consider conver-
gence ratio of given estimator by computing of average mean square error of given estimators. We use R  
software and wavelet package for simulation. 

Example 1: We generate ( )1 2 3, , , , ~ 5,1nX X X X Γ  and ( )1 2 3, , , , ~ 6nC C C C E  from the Samples of 
size 400n =  and 600n =  with 8K = , 16K = , 32K =  and 0.05∆ =  for optimal surface 2j = . 

The results in Table 1 displays the average mean square errors of subdensity function estimator for sample 
sizes 400n =  and 600n = . 

The panel in Figure 1 displays the wavelet estimator of subdensity ( )n̂ kf t  of observed failures for a tradi-
tional censoring data. The solid line is the density estimator and the dotted line is the true density. 

Example 2: Suppose that 1 2 3, , , , ~ 0.6 0.4nX X X X f Y W= + , where ( )~ 0,1Y LN  and ( )~ 3,.04W N . 
We generate ( )1 2 3, , , , ~ 3nC C C C E  from sample size of 400n =  and 600n =  with 8K = , 16K = , 

32K =  and 0.05∆ = . 
The results in Table 2 displays the average mean square errors of subdensity function estimator for sample 

sizes 400n =  and 600n = . 
The panel in Figure 2 displays the wavelet estimator of subdensity of observed failures for a traditional cen-

soring data. The solid line displays the subdensity estimates based actual data and the dotted line is the true den-
sity. 
 

Table 1. The average mean square errors of subdensity func-
tion estimator by wavelet method.                             

( ) ( ) ( )( )
2

0

1 ˆAMSE
K

n k k
k

f f t f t
K

∗ ∗

=

= −∑   

600n =  400n =  K  
17.9 
10.1 
7.2 

26.1 
19.2 
18.6 

8 
16 
32 

 
Table 2. The average mean square errors of subdensity func-
tion estimator by wavelet method.                             

( ) ( ) ( )( )2

0

1 ˆAMSE
K

n k k
k

f f t f t
K

∗ ∗

=

= −∑   

600n =  400n =  K  
610 
275 
278 

680 
420 
379 

8 
16 
32 
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Figure 1. The wavelet subdensity and true density estimator.  

 

 
Figure 2. The wavelet subdensity and true density estimator. 

6. Conclusion 
In this paper we obtain density estimation for censoring data by using wavelet method and evaluate mean 
integral square error. We show that convergence ratio is acceptable and empirical distribution of given estimator 
under some condition is normal. 
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