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Abstract 
In this paper, we present a method for finding the solution of the linear multi-delay systems (MDS) 
by using the hybrid of the Block-Pulse functions and the Bernoulli polynomials. In this approach, 
the MDS is reduced to a system of linear algebraic equations by expanding various time functions 
for the hybrid functions and using operational matrices. To demonstrate the validity and the ap-
plicability of the technique, some examples are presented. 
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1. Introduction 
Delays occur frequently in biological, chemical, transportation, electronic, communication, manufacturing and 
power systems [1]. Time-delay and multi-delay systems are therefore very important classes of systems whose 
control and optimization have been of interest to many investigators [2]-[5]. While modeling such phenomena 
naturally requires the use of various systems, in many problems, such systems can not be solved explicitly. 
Therefore, it is important to find their approximate solutions by using some numerical methods. In recent years, 
the hybrid functions consisting of the combination of the Block-Pulse functions with the Chebyshev polyno- 
mials [6], the Legendre polynomials [7] [8], or the Taylor series [9] [10] have been shown to be a mathematical 
power tool for discretization of selected problems. Among these three hybrid functions, hybrids of the Block- 
Pulse functions with the Legendre polynomials have been shown to be computationally more effective. 

Recently a new hybrid function consisting of the combination of the Block-Pulse functions with the Bernoulli 
polynomials is presented [11] [12]. The advantages of the Bernoulli polynomials ( ) , 0,1, 2,m t mβ =  , over 
shifted the Legendre polynomials are: 
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• The operational matrix P , in the Bernoulli polynomials, has less errors than P  for shifted the Legendre 

polynomials for 1 10m< < . This is because for P  in ( )m tβ  we ignore the term 1

1
m

m
β +

+
 while for P  in 

( )mL t  we ignore the term ( )
( )

1

2 2 1
mL t

m
+

+
. 

• The Bernoulli polynomials have less terms than shifted the Legendre polynomials. For example ( )6 tβ , has 
5 terms while ( )6L t , has 7 terms, and this difference will increase by increasing m. Hence for approxi- 
mating an arbitrary function we use less CPU time by applying the Bernoulli polynomials as compared to the 
shifted Legendre polynomials. 

• The coefficient of individual terms in the Bernoulli polynomials ( )m tβ , is smaller than the coefficient of 
individual terms in the shifted Legendre polynomials ( )mL t . Since the computational errors in the product 
are related to the coefficients of individual terms, the computational errors are less by using the Bernoulli 
polynomials. 

In the present paper, we use the hybrid functions consisting of the combination of the Block-Pulse functions 
and the Bernoulli polynomials to solve the MDS. The method is based on converting the MDS into a system of 
multi-delay integral equations through integration. To eliminate integral operations, the unknown functions and 
various functions involved in the equations are approximated by the hybrid function and the operational matrices 
are used. To this end, operational matrices of multi-delay systems for the hybrid function are given. It will be 
seen that the operational matrices have many zero elements and are more sparse than the Legendre polynomials. 
These matrices are used to reduce the solution of MDS to the solution of a system of linear algebraic equations. 

The paper is organized as follows: In Section 2, we describe the basic properties of the hybrid functions of the 
Block-Pulse and the Bernoulli polynomials required for our subsequent development. Section 3 is devoted to the 
formulation of linear time-varying multi-delay systems and the proposed numerical method is applied to the 
MDS. And in Section 4, we report our numerical findings and demonstrate the accuracy of the proposed scheme 
by considering some numerical examples. Finally, Section 5 gives some brief conclusions. 

2. Hybrid of the Block-Pulse Functions and the Bernoulli Polynomials 
Hybrid functions ( ) , 1, 2, , ,   0,1, 2, ,nmb t n N m M= =  , are defined on the interval 0, ft    as [11] 

( ) ( )( ) 11 ,   , ,

0                              otherwise,

m f f f
nm

n nNt n t t t t
b t N N

β − − − ∈  =  


                        (1) 

where n  and m  are the order of the Block-Pulse functions and the Bernoulli polynomials, respectively. The 
Bernoulli polynomials of order m  are defined in [13] by  

( ) ( )
0

,
m

m m k
m k k

k
t tβ α −

=

= ∑  

where , 0,1, ,k k mα =  , are the Bernoulli numbers. These numbers are a sequence of signed rational numbers 
that arise in the series expansion of trigonometric functions [14] and can be defined by the identity  

0
.

!e 1

n

nt
n

t t
n

α
∞

=

=
− ∑  

Let ( )f t  be an arbitrary element in 2 0, fL t   , there exist unique coefficients 10 20, , , NMc c c  such that 
[11] 

( ) ( ) ( )T

0 1
,

M N

nm nm
m n

f t c b t C tφ
= =

= =∑∑  

where 

[ ]T
10 20 0 11 21 1 1 2, , , , , , , , , , , , ,N N M M NMC c c c c c c c c c=      

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T
10 20 0 11 21 1 1 2, , , , , , , , , , , , .N N M M NMt b t b t b t b t b t b t b t b t b tφ =        

By using Equation (2) we obtain 

( ) ( )
0 1 0 1

, ,
M N M N

ij
ij nm nm ij nm nm

m n m n
f c b t b t c k

= = = =

= =∑∑ ∑∑  

1, 2, , , 0,1, , ,i N j M= =   
where ( ), ,ij ijf f b t=  ( ) ( ),ij

nm nm ijk b t b t= , and ,  denotes the inner product. So we get  

T ,K Cϕ =  
with 

[ ]T10 20 0 11 21 1 1 2, , , , , , , , , , , , ,N N M M NMf f f f f f f f fϕ =      

,ij
nmK k =    

where K  is a matrix of order ( ) ( )1 1N M N M+ × +  and is given by  

( ) ( )1 T
0

d .K t t tφ φ= ∫                                       (2) 

Integration of the vector ( )tφ  defined in Equation (4) can be approximated by  

( ) ( )
0

d ,
t

t t P tφ φ′ ′∫                                        (3) 

where P  is the ( ) ( )1 1N M N M+ × +  operational matrix for integration and is given by [11] 

0

2

1

0 0
1 10 0
2 2

,
1 10 0

1 0 0 0
1

f

M

M

P I

I I

t
N

I
M M

I
M

α

α

α +

 
 
 −
 
 

=  
 − 
 
 −  + 





    





P                      (4) 

where I  and 0  are the N N×  identity and zero matrices, respectively, and  

1

1

0

1

1

1 1 1
0 1 1

.
0 0 1
0 0 0

α
α

α
α

− 
 − 
 =
 

− 
 − 





    





P                             (5) 

The following property of the product of two hybrid function vectors will also be used. Let  

( ) ( ) ( )T ,t t C C tφ φ φ                                (6) 

where C  is a ( ) ( )1 1N M N M+ × +  product operational matrix. To illustrate the calculation procedure see 
[11]. 

Multi-Delay Operational Matrix 
The delay functions ( )jt kφ − , 1, 2, ,j r=   are the shift of the function ( )tφ  defined in Equation (4), along 
the time axis by jk , where 1 2, , , rk k k  are rational numbers in ( )0,1 . It is assumed without loss of generality 
that 1 2 rk k k< < < . If we expand ( )jt kφ −  in terms of ( )tφ , we find 
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( ) ( ) , ,j j jt k D t t kφ φ− = >  

where jD  is the ( ) ( )1 1N M N M+ × +  delay operational matrix of hybrid functions corresponding to jk  
and is given by 

( )diag , , , ,j j j jD ψ ψ ψ=                                  (7) 

where elements of the delay matrix are the N N×  matrix jψ  given by 

0 1 0 0
0 0 1 0

.
0 0 0 1
0 0 0 0

j

 
 
 
 =
 
 
  





    





ψ                                  (8) 

It is noted that the first 1 in the first row is located at the ( )1jγ +  th column where  
.j jwkγ λ=  

We define w  as the smallest positive integer number for which jwk Z∈  for 1, 2, ,j r=   and λ  is the 
greatest common divisor of the integers jwk , 1, 2, ,j r=  . 

3. Problem Statement and Approximation Using Hybrid Functions 
Consider the following linear time multi-delay dynamic systems: 

( ) ( ) ( ) ( ) ( )
1

, 0 1,
r

j j
j

X t F t X t k G t U t t
=

= − + ≤ ≤∑                  (9) 

( ) 00 ,X X=                                               (10) 

( ) ( ) , 0,X t t tψ= <                                        (11) 

where ( ) lX t R∈ , ( ) qU t R∈ , ( )G t  and ( )jF t , 1, 2, ,j r=  , are matrices of appropriate dimensions, 0X  
is a constant specified vector, and ( )tψ  is an arbitrary known function. The problem is to find ( )X t , 
0 1,t≤ ≤  satisfying Equations (13) and (14). Let 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) TT
1 2 1 2, , , , , , , ,l qX t x t x t x t U t u t u t u t = =             (12) 

( ) ( ) ( ) ( )1
ˆ ˆ, ,l qt I t t I tφ φ φ φ= ⊗ = ⊗                                 (13) 

where lI  and qI  are the -l  and -q dimensional identity matrices, ( )tφ  is ( )1 1M N+ ×  vector and ⊗  
denotes the Kronecker product [15]. Using the property of the Kronecker product, ( )ˆ tφ  and ( )1̂ tφ  are ma- 
trices of order ( )1l M N l+ ×  and ( )1q M N q+ × , respectively. Assume that each ( )ix t  and each of ( )ju t , 

1, 2, ,i l=  , 1, 2, ,j q=  , can be written in terms of hybrid functions as  

( ) ( ) ( ) ( )T T, .i i j jx t t X u t t Uφ φ= =  

Then, using Equations (15) and (16), we have 

( ) ( ) ( ) ( )T T
1

ˆ ˆ, ,X t t X U t t Uφ φ= =                           (14) 

where X  and U  are vectors of order ( )1 1l M N+ ×  and ( )1 1q M N+ × , respectively, given by  

[ ] TT
1 2 1 2, , , , , , , .l qX X X X U U U U = =     

Similarly, we have 

( ) ( ) ( ) ( )T Tˆ ˆ0 , ,j jX t d t k t Rφ ψ φ= − =                        (15) 

where d  and jR , 1, 2, ,j r=  , are vectors of order ( )1 1l M N+ ×  given by  
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[ ] TT
1 2 1 2, , , , , , , .l j j j jld d d d R α α α = =     

Let approximate ( )G t  and ( )jF t , 1, 2, ,j r=  , by Equations (2)-(4) as follows  

( ) ( ) ( ) ( )T T, ,j jG t t G F t t Fφ φ= =                           (16) 

where jF , 1, 2, ,j r=   are of dimensions ( )1l l M N× + , and G  is of dimension ( )1l q M N× + . 
We can also write ( )jX t k− , 1, 2, ,j r=  , in terms of the hybrid functions as  

( ) ( )
( )

T

T T

ˆ          0 ,
,ˆ ˆ       1,

j j
j

j j

t R t k
X t k

t D X k t

φ

φ

 ≤ ≤− = 
≤ ≤

 

where 
ˆ ,j l jD I D= ⊗  

and jD  is the delay operational matrix. Moreover  

( ) ( )( )( ) ( )T T T T T
0

ˆ ˆ ˆd ,
t

l ls s I t I P t Pφ φ φ= ⊗ ⊗ =∫                                (17) 

( ) ( ) ( )
( ) ( )

T T T

T T T T T T0

ˆ ˆ                                     0 ,
d ,ˆ ˆ ˆ ˆ         1,

t j j j
j j

j j j j j j

t P F R t k
F s X s k s

t Z F R t P F D X k t

φ

φ φ

 ≤ ≤− = 
+ ≤ ≤

∫


 

          (18) 

where 
ˆ ,lP I P= ⊗  

and 

( ) ( )T T
0

ˆ ˆd ,
k j

jt t t Zφ φ=∫  

where jZ , 1, 2, ,j r=  , are constant matrices of order ( ) ( )1 1l M N l M N+ × + . Note jF  is  
( ) ( )1 1N M N M+ × +  product operational matrix that to illustrate the calculation procedure we choose 7M =  

and 3N = . Thus we have  
T

10 20 30 11 36 17 27 37, , , , , , , , ,j j j j j j j j
jF f f f f f f f f =    

0 1 2

1 0 2 1 2

2 1 0 2 1 2

1 1 0 2 1 2

2 1 2 1 0 2 1 2

1 1 2

0 0 0 0 0

1 1 0 0 0 0
12 6
1 1 1 0 0 0

180 6 3
1 1 10 0 0

120 4 2
1 1 1 1 2 0

630 30 30 3 3
1 1 1 50

252 12 2

j j j

j j j j j

j j j j j j

j j j j j j

j
j j j j j j j j

j j j

F F F

F F F F F

F F F F F F

F F F F F F

F F F F F F F F

F F F

+

+

−
+

= − − −
+

− −

  

    

     

     



       

  

F

1 2 0 1 2

2 1 2 1 2 1 0 2 1

1 1 2 1 2 1 0 2

,

5
12 6

1 1 1 1 1 1
840 42 42 6 4 2

1 1 1 7 7 7 70
240 12 9 24 15 12 6

j j j j j

j j j j j j j j j

j j j j j j j j

F F F F F

F F F F F F F F F

F F F F F F F F

 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
 
 − −

+ 
 
− − − +  

    

        

       

  (19) 

where 0  and , 0,1, 2jiF i = , are the 3 3×  matrices given by 

1

2

3

0 0
0 0 .
0 0

j
i

j
ji i

j
i

f
f

f

 
 

=  
 
 

F  
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By integrating Equation (12) from 0  to t  and using Equations (15)-(22), we have  

( ) ( ) ( ) ( ) ( ) ( )T T T T T T T T T T T T T T

0

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆd ,
r

j j j j j j j
j

t X t t P F R t Z F R t P F D X t P G Uφ φ φ φ φ φ
=

− = + + +∑        (20) 

simplifying Equation (23) we obtain 

T T T T T T T T

0 0

ˆ ˆ ˆ ˆd .
r r

j j j j j j j
j j

I P F D X P G U P F R Z F R
= =

 
− = + + + 

 
∑ ∑              (21) 

by solving the set of linear algebraic equations Equation (24), we obtain the coefficients vector X . 

4. Numerical Implementation 
In this section, to give a clear overview of the analysis method presented and to demonstrate the applicability 
and accuracy of the method three examples are given. 

Example 1. Consider the multi-delay dynamic system from [7] described by  

( )
( ) ( )

1 1
1

2
2

2 2

1 2
1 2 03 3

,
2 0 11 2

3 3

x t x t
x t t t

u t
x t t t t

x t x t

      − −                   = + +                    − −      
      





          (22) 

with 

( ) ( ) ( )1 2
20, ,0 ,
3

x t x t u t t  = = = ∈ −  
                    (23) 

and 

( ) 2 1, 0.u t t t= + >                                    (24) 

The exact solutions are 

( ) 2 3
1

2 3 4 5

10                                                                      0 ,
3

7 2 1 1 1 2                                      ,
162 9 6 3 3 3
11 58 31 1 7 1 2         1.

162 243 162 9 72 6 3

t

x t t t t t

t t t t t t

 ≤ ≤

= − + + ≤ ≤

− + + + + ≤ ≤









 

( )

2

2 3 4
2

2 3 4 5 6

1                                                                      0 ,
3

5 7 2 1 1 2                                    ,
486 9 9 2 3 3
1 200 20 29 1 1 2         

486 243 81 72 9 6 3

t t t

x t t t t t t

t t t t t t

+ ≤ ≤

= + + + + ≤ ≤

+ + + + − + 1.t









≤ ≤

 

To solve this problem by the hybrid functions, we select 3N =  and 7M = . Let  

( ) ( ) ( ) ( )T T
1 1 2 2, ,x t X t x t X tφ φ= =                            (25) 

where T
1X , T

2X  and ( )tφ  can be obtained similarly to Equations (3) and (4). By expanding t  and 2t  in 
terms of the hybrid functions we get  

( ) ( )T
1

1 1 5 1 1 1, , , , , ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,
6 2 6 3 3 3

t t F tφ φ = =  
         (26) 
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( ) ( )2 T
2

1 7 19 1 1 5 1 1 1, , , , , , , , ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,
27 27 27 9 3 9 9 9 9

t t F tφ φ = =  
      (27) 

Therefore, we have 

( ) ( )T T
1 1 1 1 2 2 1 1

1 1, ,
3 3

tx t X D F t tx t X D F tφ φ   − = − =   
   

                    (28) 

( ) ( )2 T T
1 1 2 2 2 2 2 1

2 2, ,
3 3

t x t X D F t tx t X D F tφ ϕφ   − = − =   
   

                 (29) 

where 1F  and 2F  the 24 × 24 matrices, can be calculated as Equation (19). Also D1 and D2 are the 24 ×24 
delay operational matrices given by 

( ) ( )1 1 1 1 2 2 2 2diag , , , , diag , , , ,D Dψ ψ ψ ψ ψ ψ= =   

where 

1 2

0 1 0 0 0 1
0 0 1 , 0 0 0 .
0 0 0 0 0 0

   
   = =   
      

ψ ψ  

Integrating Equation (25) from 0  to t  and using Equations (26)-(27) and substituting Equations (28)-(32) 
we get  

( )
( ) ( )

T T
1 1 1 2 2 1

T T
1 1 1 2 2 2 1 1 1 2

2 0,

2 ,

X P D F P D P X D P

X D F P D F P X P D F P F F

 − − − =


− − + − = +



  

             (30) 

where P  is the operational matrix of integration given in Equation (7). By solving Equation (33) the values of 
T
1X  and T

2X  can be found as  

T
1

7 17251 11 637 2 305 1 521 19 10, , ,0, , ,0, , ,0, , ,0,0, ,0,0, ,0,0,0,0,0,0 ,
324 87480 162 1944 27 1458 81 8748 1944 1458

X  =   
 

T
2

11 949 3287617 4 361 2611 1 17 1223 11 2735 1 367, , , , , , , , ,0, , ,0, , ,0,0,
54 1215 1837080 9 486 1944 9 81 2916 243 26244 162 17496

13 1           ,0,0, ,0,0,0 .
4374 4374

X = 



 

To define ( )1x t  and ( )2x t  for t  in the interval 10,
3

 
  

 we map 10,
3

 
  

 into [ ]0,1  by mapping t  into 

3t , and for t  in the interval 1 2,
3 3
 
  

 we map this interval into [ ]0,1  by mapping t  into 3 1t − , and  

similarly for the other intervals. From Equation (28) we get 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

16 17

20 21 22 23 24

25 26 27

30

1 0 1 1 1 2 1 3 1 4 1 510 11 12 13 14 15

1 6 1 7

1 0 1 1 1 2 1 3 1 4

1
1 5 1 6 1 7

1 0

3 3 3 3 3 3

1      3 3 0 ,
3

3 1 3 1 3 1 3 1 3 1

1 2      3 1 3 1 3 1 ,
3 3

3 2

c t c t c t c t c t c t

c t c t t

c t c t c t c t c t
x t

c t c t c t t

c t

β β β β β β

β β

β β β β β

β β β

β

+ + + + +

+ + ≤ ≤

− + − + − + − + −
=

+ − + − + − ≤ ≤

− + ( ) ( ) ( ) ( )

( ) ( ) ( )
31 32 33 34

35 36 37

1 1 1 2 1 3 1 4

1 5 1 6 1 7

3 2 3 2 3 2 3 2

2      3 2 3 2 3 2 1.
3

c t c t c t c t

c t c t c t t

β β β β

β β β










 − + − + − + −

 + − + − + − ≤ ≤
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( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

16 17

20 21 22 23 24

25 26 27

30

2 0 2 1 2 2 2 3 2 4 2 510 11 12 13 14 15

2 6 2 7

2 0 2 1 2 2 2 3 2 4

2
2 5 2 6 2 7

2 0

3 3 3 3 3 3

1      3 3 0 ,
3

3 1 3 1 3 1 3 1 3 1

1 2      3 1 3 1 3 1 ,
3 3

3 2

c t c t c t c t c t c t

c t c t t

c t c t c t c t c t
x t

c t c t c t t

c t

β β β β β β

β β

β β β β β

β β β

β

+ + + + +

+ + ≤ ≤

− + − + − + − + −
=

+ − + − + − ≤ ≤

− + ( ) ( ) ( ) ( )

( ) ( ) ( )
31 32 33 34

35 36 37

2 1 2 2 2 3 2 4

2 5 2 6 2 7

3 2 3 2 3 2 3 2

2      3 2 3 2 3 2 1.
3

c t c t c t c t

c t c t c t t

β β β β

β β β










 − + − + − + −

 + − + − + − ≤ ≤

 

After simplifying the same value as the exact ( )1x t  and ( )2x t  would be obtained. 
Example 2. Consider the delay dynamic system described by 

( ) ( )

( ) ( )

1 2

2 2

0 11
2

x t x t
t

x t x t u t

=
 ≤ ≤  = − +   





                             (31) 

with 

( ) ( ) ( )1 2
10, ,0 ,
2

x t x t u t t  = = = ∈ −  
                          (32) 

and 

( ) , 0.u t t t= >                                             (33) 

The exact solutions are 

( )

3

2 3 4
1

1 10 ,
6 2

1 1 1 1
1 12 2 2 2 1.
48 8 4 6 24 2

t t

x t
t t t t

t

 ≤ ≤


=         − − − −       
        + + + + ≤ ≤



 

( )

2

2 3
2

10 ,
2 2

1 1 1
1 12 2 2 1.
8 2 2 6 2

t t

x t
t t t

t


≤ ≤

=       − − −      
      + + + ≤ ≤



 

To solve this problem by using of the hybrid functions, we select 2N =  and 5M = . Let 

( ) ( ) ( ) ( )T T
1 1 2 2, ,x t X t x t X tφ φ= =                            (34) 

where T
1X , T

2X  and ( )tφ  can be obtained similarly to Equations (3)-(4). Using Equation (37) we get  

( )T
2 2 1

1 ,
2

x t X D tφ − = 
 

 

where 1D  is the 12 12×  delay operational matrix given by  

( )1 1 1 1diag , , , ,D ψ ψ ψ=   

where 

1

0 1
,

0 0
 

=  
 

ψ                                         (35) 



K. Maleknejad et al.  

 
2024 

By expanding ( )u t  in terms of hybrid functions we obtain  

( ) ( )T .u t U tφ=                                      (36) 

Integrating Equation (34) from 0  to t  and using Equations (35)-(36) and substituting Equations (37)-(39), 
we get  

( )

T T
1 2
T T
2 1

0,
,

X X P
X I D P U P

 − =


− =
                               (37) 

where P  is the operational matrix of integration given in Equation (7). By solving Equation (40) the values of 
T
1X  and T

2X  can be found. By using from Equation (37) and simplifying the same value as the exact ( )1x t  
and ( )2x t  would be obtained. 

Example 3. Consider the following multi-delay system with delay in both control and state described by  

( ) ( )

( ) ( )

2

2 1 2

  0 11 2
3 3

x t x t
t

x t x t x t u t

=
 ≤ ≤    = + − + −       





                  (38) 

with 

( ) ( ) ( ) ( )1 2
20, ,0 , 1, 0,
3

x t x t u t t u t t = = = ∈ − = > 
            (39) 

and 

( ) ( )1 20 0 0.x x= =                             (40) 

The exact solutions are 

( )

( )

( )

( )

1 1
3 3

2
1

1cosh 0 ,
3

1 1 1 1 2cosh cosh e e ,
2 3 6 3 3 3

1 1 1 2 2 2sinh 1 cosh cosh cosh cosh
4 4 3 16 3 3 3

1 1 2 1 2      sinh sinh sinh sinh(
3 3 3 3 3

t t

t t

tt t t

tt t t t tx t

t t

 − − − 
 

≤ ≤

 + − + − ≤ ≤ 
 

       − − + − + − + −=        
       

     + − + −     
     

1 2
13 3

1 2 1) sinh cosh
6 3 3

2 35 2 1 1 1 1 1 2      cosh cosh sinh e e e 1 1
24 3 36 3 4 3 3 12 8 6 3

t t t

t

t tt t t t
− − −










    + −    

   
         − − + − − − − + − + − ≤ ≤               

 

( )

( )

( )

( )

1 1
3 3

2
2

1sinh 0 ,
3

1 1 1 1 1 1 2sinh sinh cosh e e ,
2 3 2 3 3 6 3 3

1 1 1 2 2 2cosh 1 sinh sinh cosh sinh
4 2 3 8 3 3 3

1 1 2 2      cosh cosh sinh
6 3 3 3

t t

t t

tt t t t

tt t t t tx t

t

− −

≤ ≤

   − − + − − − ≤ ≤   
   

       − − + − + − + −=        
       

     + − +     
     

1 2
13 3

2 1 2 1cosh cosh sinh
3 3 3 3

2 61 2 1 1 1 1 1 2      sinh sinh sinh e e e 1.
24 3 72 3 4 3 12 8 12 6 3

t t t

t t

t tt t t t
− − + −










      − + −      

     
         − − + − − − − + − + ≤ ≤               

 

To solve this problem by using the hybrid functions, we select 3N =  and 7M = . Let  

( ) ( ) ( ) ( )T T
1 1 2 2, ,x t X t x t X tφ φ= =                        (41) 
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where T
1X , T

2X  and ( )tφ  can be obtained similarly to Equations (3) and (4). By expanding ( )u t  and 
( )1 0x  in terms of hybrid functions we get  

( ) ( ) ( ) ( )T T
1 0 , .x E t u t E tφ φ= =                             (42) 

Using Equation (44) and (45) we obtain  

( )T
2

2 ,
3

u t E D tφ − = 
 

                                 (43) 

( )T
2 2 1

2 ,
3

x t X D tφ − = 
 

 

where 1D  and 2D  are the 24 24×  delay operational matrices given by  

( ) ( )1 1 1 1 2 2 2 2diag , , , , diag , , , ,D Dψ ψ ψ ψ ψ ψ= =                   (44) 

where 

1 2

0 1 0 0 0 1
0 0 1 , 0 0 0 .
0 0 0 0 0 0

   
   = =   
      

ψ ψ  

By integrating Equation (41) from 0 to t and using Equations (42) and (43) and substituting Equations (44) 
and (47), we get  

( )

T T
1 2

T T
1 2 1 2

,
,

T

T

X X P E
X P X I D P E D P

 − =

− + − =

                        (45) 

where P  is the operational matrix of integration given in Equation (7). By solving Equation (48) the values of 
T
1X  and T

2X  can be found. By using from Equation (44) and simplifying the same value as the exact ( )1x t  
and ( )2x t  would be obtained. In Table 1 a comparison is made between the exact solution and the approxima- 
tion solution of ( )1x t  and ( )2x t  for 0 1t≤ ≤ . The approximation value of ( )1x t  and ( )2x t  on [ ]0,1 , is 
the same as the exact solution. 

( )

11 2 3 4

8 5 6 7

2 3 4

1 5 6

1. 2.1196 10 0.5 1.26823 10 9 0.0416674
1      2.39729 10 0.00137581 0.0000333761 0 ,
3

0.993758 0.0565911 0.3271 0.185487 0.0129901

      0.0182755 0.000222216 0.00071

t t t t

t t t t

t t t t
x t

t t

− −

−

+ × + − × +

+ × + + ≤ ≤

+ + + +
=

+ − + 7

2 3 4

5 6 7

1 23909 ,
3 3

1.2329 0.712896 1.06433 0.066174 0.128371
2      0.000320482 0.00331394 0.00112221 1
3

t t

t t t t

t t t t









≤ ≤


− + − +

 + + + ≤ ≤


 

( )

11 9 2 3 7 4

5 6 6 7

2 3 4

2 5 6

2.1196 10 3.80469 10 0.166667 1.19864 10
1      0.00833348 2.15927 10 0.000202107 0 ,
3

0.05659 0.654221 0.556305 0.0525749 0.0899829

      0.000479554 0.00374231

t t t t

t t t t

t t t t
x t

t t

− − −

−

× + − × + + ×

+ − × + ≤ ≤

+ + + +
=

+ + + 7

2 3 4

5 6 7

1 20.000358585 ,
3 3

0.713338 2.1327 0.214113 0.546471 0.0396684
2      0.0504241 0.00452581 0.0021225 1
3

t t

t t t t

t t t t









≤ ≤

− + − + −

 + − + ≤ ≤


 



K. Maleknejad et al.  

 
2026 

Table 1. Approximate solutions and exact solutions of Example 3.                                                                                        

 ( )1x t  ( )2x t  

t  Approximatesolution Exactsolution Approximatesolution Exactsolution 

0 1 1 112.1196 10−×  0 

0.1 1.00500 1.00500 0.100167 0.100167 

0.2 1.02007 1.02007 0.201336 0.201336 

0.3 1.04534 1.04534 0.304520 0.304520 

0.4 1.08112 1.08112 0.412976 0.412976 

0.5 1.12840 1.12840 0.535049 0.535049 

0.6 1.18865 1.18865 0.672632 0.672632 

0.7 1.26405 1.26405 0.860668 0.860668 

0.8 1.36366 1.36366 1.135120 1.135120 

0.9 1.49187 1.49187 1.433400 1.433400 
1 1.65129 1.65129 1.760070 1.760070 

5. Conclusion 
The hybrid of the Block-Pulse functions and the Bernoulli polynomials and the associated operational matrices 
of integration and delay are applied to solve the linear multi-delay dynamic systems. The method is computa- 
tionally very attractive, at the same time keeping the accuracy of the solution. It is also shown that the hybrid 
functions provide exact solutions in each subintervals for Examples 1, 2 and 3. The presented method reduces 
multi-delay systems to the solution a system of algebraic equations, and so the calculation is easy. The matrices 
K , P  and jD  in Equations (5), (7) and (10) are sparse, hence the present method is very attractive and re- 
duces the CPU time and computer memory. 
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