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Abstract

j-lanes tree hashing is a tree mode that splits an input message into j slices, computes j indepen-
dent digests of each slice, and outputs the hash value of their concatenation. j-pointers tree hash-
ing is a similar tree mode that receives, as input, j pointers to j messages (or slices of a single mes-
sage), computes their digests and outputs the hash value of their concatenation. Such modes ex-
pose parallelization opportunities in a hashing process that is otherwise serial by nature. As a re-
sult, they have a performance advantage on modern processor architectures. This paper provides
precise specifications for these hashing modes, proposes appropriate IVs, and demonstrates their
performance on the latest processors. Our hope is that it would be useful for standardization of
these modes.
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1. Introduction

This paper expands upon the j-lanes tree hashing mode which was proposed in [1]. It provides specifications,
enhancements, and an updated performance analysis. The purpose is to suggest such modes for standardization.
Although the specification is general, we focus on j-lanes tree hashing with SHA-256 [2] as the underlying hash
function.

The j-lanes mode is a particular form of tree hashing, which is optimized for contemporary architectures of
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modern processors that have SIMD (Single Instruction Multiple Data) instructions. Currently deployed SIMD
architectures use either 128-hit (e.g., SSE, AVX [3], NEON [4]) or 256-hit (AVX2 [3]) registers. For SHA-256, an
algorithm that (by its definition) operates on 32-bit words, AVX and AV X2 architectures can process 4 or 8 “lanes”
in parallel, respectively. The j-lanes mode capitalizes on this parallelization capability.

The AV X2 architecture [3] includes all the necessary instructions to implement SHA-256 operations efficiently:
32-hit shift (vpsrld) and add (vpaddd), bitwise logical operations (vpandn, vpand, vpxor), and the 32-bit rotation
(by combining two shifts (vpsrld/vpslld) with a single xor/or (vpxor) operation).

The future AVX512f instructions set [3] [5] supports 512-hit registers, ready for operating on 16 lanes. It also
adds a few useful instructions that would increase the parallelized hashing performance: rotation (vprold) and
ternary-logic operation (vpternlogd). The (vpternlogd) instruction allows software to use a single instruction for
implementing logical functions such as Majority and Choose, which SHA-256 (and other hash algorithms) use.
Rotation (vprold) can perform the SHA-256 rotations faster than the vpsrld + vpslld + vpxor combination.

2. Preliminaries

Hereafter, we focus on hash functions (HASH) that use the Merkle-Damgard construction (SHA-256, SHA-512,
SHA-1 are particular examples). Other constructions can be handled similarly. Suppose that HASH produces a
digest of d bits, from an input message M whose length is length (M). The hashing process starts from an initial
state, of size i bits, called an Initialization Vector (denoted HashlV). The message is first padded with a fixed
string plus the encoded length of the message. The resulting (padded) message is then viewed and processed as the
concatenation M||padding = mg||my]|...||mk- Of k consecutive fixed size blocks mom;...my_;.

The output digest is computed by an iterative invocation of a compression function compress (H, BLOCK). The
inputs to the compression function are a chaining variable (H) of i bits, and a block (BLOCK) of b bits. Its output is
an i-bit value that can be used as the input to the next iteration. The output digest (of HASH) is f(H* ™). We call an
invocation of the compression function an “Update” (because it updates the chaining variable).

We use here the following notations:

e [x]: floor(x).

e |x]: ceil(x) = floor(x + 1).

e S[y: x]: bits x through y of S.

* ||: string concatenation (e.g., 04|08 = 0408).

e HASH: the underlying hash function; HASH = HASH (message, length (message)).

e HashlV the Initialization Vector used for HASH (e.g., for SHA-256 Hash IV = 0x6a09e667, Oxbb67ae85,
0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19; when written as 8 integers).

* compress (H, BLOCK): the compression function used by HASH. It consumes a single fixed sized data chunk
(BLOCK) of the message, a state (H), and updates H (at output) according to a specified algorithm ([2] defines
the compression function for SHA-256).

e M: the hashed message.

¢ N: the length, in bits, of M.

e L:the length, in bytes, of M (L = [N/8]).

e d: the length, in bits, of the digest that HASH produces.

e D: the length, in bytes, of the digest that HASH produces (D = [d/8]).

e B: the length, in bytes, of the message block consumed by the compression function compress (e.g., for
SHA-256, B = 64).

¢ j: the number of lanes used by the j-lanes hashing process (in this paper, we discuss only j = 4, 8, 16).

e Q: the size, in bits, of the “word” that HASH uses during the computations (Q = 32 for SHA-256, and Q = 64
for SHA-512).

e W: the size, in bytes, of the “word” that HASH uses during the computations (W = Q/8).

* S: the number of lanes that a given architecture supports, with respect to the word size of HASH (e.g., AVX
architecture has registers (xmm’s) that can hold 128 bits. For HASH = SHA-256, Q = 32, therefore, S = 128/Q
=4).

e P: the length, in bytes, of the minimal padding length of HASH (for SHA-256, a bit “1” is concatenated, and
then the message bit length (N), encoded as an 8-byte Big Endian integer. Therefore, with SHA-256, we have

P=09).
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3. The j-Lanes Tree Hash

The j-lanes tree hash is defined in the context of the underlying hash function HASH, and j (f > 2) is a parameter.
We are interested here in j = 4, 8, 16. The input to the j-lanes hash function is a message M whose length is N bits.

This message is (logically) divided into k (k > 0) consecutive Q-bit “words” m;, i =0, 1, ..., k— 1 (if M is the
NULL message, then k = 0).

When k > 1, the words m;, j = 0, 1, ..., k — 2 (if k — 2 < 0, there are no words in the count) consist of Q bits
each. If N is not divisible by Q, then the last word m,_, is incomplete, and consists of only (N mod Q) bits.

We then split the original message M into the j disjoint sub-messages (buffers) Buff,, Buffy, ..., Buff;; as fol-
lows:

BUffo = mollmj”msz

Buff, = mlllmj+1||mjx2+1

BUffjfl = mj,lllmszflllmjngl

Note if N <Q x (j — 1), then one or more buffers Buff; will be a NULL buffer. If N = 0 all the buffers are de-
fined to be NULL, and will be hashed as the empty message (i.e. only the padding pattern is hashed in that
case).

After the message is split into j disjoint buffers, as described above, the underlying hash function, HASH, is
independently applied to each buffer as follows:

Ho = HASH (Buffy, length (Buffy))

H; = HASH (Buff;, length (Buff,))

H, = HASH (Buff,, length (Buff,))

H;-1 = HASH (Buffj_;, length (Buff;_,))

The j-lanes digest (H) is defined by

H = DIGEST (HASH, M, length (M), j) = HASH (Ho||H4|Hz|l...|[Hj-1, j x D)

Remark 1: The final stage of the process is called the wrapping stage. It hashes a message with a fixed size
of j x D bytes. The number of updates required is [(jxD+P)/B] that are likely to be serial updates.

Remark 2: The API for a j-lanes hash for a fixed j would be the same as for the underlying hash, i.e. for
SHA-256, the j-lanes implementation could have the following API: SHA256 j lanes (uint8_t* hash, uint8_t*
msg, size_tlen).

Example 1: Consider a message M with N = 4096 bits, and the hash function HASH = SHA-256 that oper-
ates on 32-bit words (Q = 32). Here, k = [4096/32] = 128. For j = 8 we get

Buffy = mo||mg|Imss ... [|M120

Buffy = myf|mg|Imy7 ...[|M12

Buff, = my|[myolimys ... [IM12

Buffz = mg||myg[Imag ...[|M123

Buff, = my|[myplimyg ... [IMy24

Buffs = ms||mys|Imy; ...[[M12s

Buffs = mg|[myalimy; ... [IM126

Buff; = my|[mys|imys ... [Imy27
where each one of the eight buffers is 512 bit long.

Example 2: Consider a message M with N = 2913 bits, and HASH = SHA-256 (Q = 32). Here, k = [2913/32]
= 92. Since 2913 mod 32 = 1, the last word, mg;, consists of only a single bit. For j = 8, we get

Buffy = mo|[mg|[ms ... ||MsolImss

Buffy = my||mg|[myy ...[[Mgy|IMegg

Buff, = my||myol[mys ... [[Mgz|lMgo

Buff; = ms|Imyy|[myg ... ||Mgsllmey

Buff, = myl|my|lmy ... [[Mgy

Buffs = ms||mys|[myy ...[IMgs

Buffs = mg||my4llmy; ...[[mgs

Buff; = my||mys|imys ... [Img;

Here, |Buffy| = |Buff;|=|Buff,| = 384 bits, |Buffs| = 353 bits, |Buff,| = |Buffs| = |Buffs| = |Buff;] = 352 bits.
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Example 3: Consider a message M with N = 100 bits, and HASH = SHA-256 (Q = 32). Here, k = [100/32] =
4. Since 100 mod 32 = 4, the last word, ms, consists of only 4 bits. For j = 8, we get

Buffo =My
BUffl =my
BUff2 =my
Buff3 =m3
Buff, = NULL
Buffs = NULL
Buff, = NULL
Buff; = NULL

Here, |Buffy| = |Buff;| = |Buff,]=32 bits, |Buffs| = 4 bits, |Buff,| = |Buffs| = |Buffs] = |Buff;| = 0 bits.

Remark 3: Similarly to the serial hashing, the j-lanes hashing can process the message incrementally (e.qg.,
when the messages is streamed). Since the parallelized compression operates (in parallel) on consecutive blocks
of j x B bytes, it needs to receive only the “next j x B bytes” in order to compute an Update.

4. The j-Pointers Tree Hash

An alternative way to define j “slices” of the message M, is to provide j pointers to j disjoint buffers Buffy, ...,
Buffj_;, of M, together with k values for the length of each buffer. In this case, it is also required that Z; length (Buff;)
= length (M).

In this case, the j-pointers tree hash procedure would be the following. Compute the j hash values for each of
the disjoint buffers:

Ho = HASH (Buff,, length (Buffy))

H; = HASH (Buffy, length (Buffy))

H, = HASH (Buff,, length (Buff,))

H;-1 = HASH (Buffj_;, length (Buff;_,))

Produce the output digest

H = HASH (Hol[H4|H|....[[Hj-1, j x D)

Remark 4: In a software implementation, the API of the j-lanes function is the same as the API for any other
hash function (see Remark 2).The function computes the buffers and their length internally. On the other hand,
the API to a j-pointers hash requires a pointer to each buffer and its length, to be provided by the caller. For
example:

SHA256 4 pointers(uint8_t* hash, uint8_t* buff0, size tlen0, uint8 t* buffl, size_tlenl, uint8_t* buff2,
size_tlen2, uint8_t* buff3, size_tlen3)

or, alternatively:

SHA256_j pointers(uint8_t* hash, uint8_t** buffs, size_t*lengths, unsigned int j)

5. The Difference between j-Pointers Tree Hash and j-Lanes Tree Hash

The j-pointers and the j-lanes tree modes are essentially the same construction, and the difference is in how the
message is viewed (logically) as j slices. The j-lanes tree mode has a performance advantage when implemented
on SIMD architectures because it supports natural sequential loads into the SIMD registers: each word is natu-
rally placed in the correct lane (see Figure 1).

The j-pointers tree mode expects the data to be loaded from j locations. It is more suitable for implementa-
tions on multi-processor platforms, and for hashing multiple independent messages into a single digest (e.g.,
hashing a complete file-system while keeping a single digest). Of course, a j-pointers tree can also be used on a
SIMD architecture, but in that case it requires “transposing” the data in order to place the words in the correct
position in the registers. This (small) overhead is saved by using the j-lanes tree mode.

6. Counting the Number of Updates

The performance of a standard (serial) hash function is closely proportional to the number of Updates (U) that the

computations involve, namely
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Lane 3 Lane 2 Lane 1 Lane 0
Xmmreg 0 m; m;y my mp
Xmmreg 1 m;y me ms my
Xmm reg 2
my Mig Mg mg
Xmm reg 3 mys Mig mys mj;
Xmm reg 15 Mes3 Mez Me1 Meo

Figure 1. The j-lanes tree mode natural data alignment with SIMD architectures (here, with
128-hit registers (xmm’a) as 4 32-hit words).

U =[{L+P)/B| @)

In Equation (1), each Update consumes B additional bytes of the (padded) message, and the number of bytes
in the padded message is at least L + P (with no more than a single block added by the padding).

For the j-lanes hash (with the underlying function HASH), the number of serially computed Updates can be
approximated by

U <[ L/(min(j,8)xB)|+1+[(ixD+P)/B] @)

Note that some of the j-lanes Updates are carried out in parallel, compressing min(S, j) blocks per one Update
call. Equation (2) accounts for parallelizing at most min(S, j) block compressions, thus contributing the term
[L/(min(j,S) x B)], plus one Update for the padding block. A padding block is counted for each lane, although,
depending on the length of the message, some Updates are redundant. The wrapping step cannot be parallelized
(in general) and adds [(j x D + P)/B] serial Updates to the count.

Example 4: Suppose that HASH = SHA-256, and consider a message of 1024 bytes. The standard SHA-256
function requires [(1024 + 9)/64] = 17 Updates. We compare this to the count of j-lanes Updates for a few val-
ues of j:

For the AV X2 architecture (Haswell architecture [3]) we have D = 32, B =64, P =9, S = 8. This implies that
the 8-lanes SHA-256 (j = 8) is optimal. It requires [1024/(8 x 64)] + 1 + [(8 x 32 + 9)/64] = 8 Updates.

For the AV X architecture (Sandy Bridge architecture), we have S = 4, so, j = 4 is the optimal choice for this
setup, and the 4-lanes SHA-256 (j = 4) requires [1024/(4 x 64)] + 1 + [(4 x 32 + 9)/64] = 8 Updates. Of course,
it is possible to use the 8-lanes SHA-256 on this architecture, but we can only parallelize 4 Updates using the
xmm registers. Therefore, the 8-lanes SHA-256 (j = 8) on the AV X architecture (where S = 4) requires [1024/(4

x 64)] + 1 + [(8 x 32 + 9)/6] = 10 Updates.
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Figures 2-4 show the number of Update calls (some are parallelized). As seen on Figure 2, when the number
of lanes is limited by the SIMD architecture, the total number of Updates for the different choices of j, varies
only by the number of Updates that are required by the final wrapping stage.
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However, in Figure 4, we see the differences when the choice of j = 16 becomes the most efficient for mes-
sage sizes of 4 KB and up, requiring the fewest Updates. For 4 KB messages, both j = 16 and j = 8 require 14
Updates, j = 4 requires 20 updates and the serial SHA-256 requires 65 Updates.

7. The j-Lanes Hash and the j-Pointers Hash with Different IVs

The Merkle-Damgard construction uses one d-bit IV to initialize the computations. For j-lanes hashing, one might
prefer to modify the 1Vs and this section proposes a method to achieve that.
Define j + 1 “Prefix” blocks (“Pre”) as follows:

Pre, = j[i|[type| HASH||0® """ %i = 0,1.., | @)

where

e jisencoded as a 32-hit integer in little-endian notation.

e iinthe “index” of the lane, and is encoded as a 32-bit integer in little-endian notation. The valuesi =0, ...,
— 1 are used for the lanes, and the value i = j is used for the wrapping step.

* type is a single byte with the value 0x0 for a j-lanes hash, and 0x1 for a j-pointers hash.

e HASH is the name of the underlying hash function, encoded as a string of ASCII characters. For SHA-256
we write HASH = “SHA256” or, as ASCII, 0x53, 0x48, 0x41, 0x32, 0x35, 0x36 (encoding “S” = 0x53, “H”
= 0x48, “A” = 0x41 etc.).

¢ The number of characters (NCHAR) in the string that indicates HASH should be such that NCHAR + 9 <B.

The Prefix blocks are prepended to the j + 1 hashed messages, and modify the “effective” IV that is being
used. In other words, the j-lanes algorithm executes the following computations:

Ho = HASH (Pre||Buffy, length (Buffy) + B)

H,; = HASH (Pre,||Buff;, length (Buff,) + B)

H, = HASH (Pre,||Buff,, length (Buff,) + B)

Hj-.=HASH (Pre;..||Buff;.1, length (Buff;-,) + B)

H = HASH (Prej|[Hol|...||Hj-1, j * D + B)

Remark 5: SHA-256 allows hashing a message of any length less than 2* bits. In the j-lanes/j-pointers mod-
es, the length of the message should be less than 2°* — 512 bits.

Pre-Computing the IVs

The Prefix blocks do not need to be re-computed for each message. Instead, the j + 1 IV values can be pre-
computed by:

IV, = compress (HashlV, Pre;); i=0,1..., ] 4)

Note that the Prefix blocks can also be viewed as a modification of HASH, to use the new IVs instead of a
fixed IV. For convenience, denote the hash function that uses IV; by HASH’;. In that case the SHA-256 padding
shall still accommaodate the length of the prefix block.

With this notation, the j-lanes hashing can be expressed in terms of HASH’ by:

Ho = HASH’,, (Buff, length (Buffy))

H; = HASH’; (Buffy, length (Buffy))

H, = HASH’, (Buff,, length (Buff,))

Hj_l = HASH’j_l (BUffj_l, Iength (BUffj_l))

H = HASH'; (Hol[Hal[Holl...IH; 1. j D)

Figure 5 shows the values of the prefix blocks and the new 1Vs (for HASH = SHA-256).

Remark 5: the following alternative can be considered, for saving the space of storing j + 1 IV values. In-
stead, use a single (new) IV value for all the j + 1 hash computations. We fixed one value of idx, namely idx = j
+ 1, and define the j-lanes hash by:

Ho = HASH’J'.;.l(BUffo, Iength (Buffo))

H,= HASH’J'.;.l(BUffl, Iength (Buffl))
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j = 4, type = j-lanes (0), HASH = “SHA256"”

Pre0:
0400000000000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000

Prel:
0400000001000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000

Pre2:
0400000002000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000

Pre3:
0400000003000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000Pred:
0400000004000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000

Vo =

Presented as 8 integers:

0xf516dd7d O0xcc53773b 0x6a704b3e 0x89f00ca7 0x901d044b Oxadllbeld 0x8a947006 Oxa758cccl

Presented as a string of bytes:

7ddd16£53b7753cc3e4b706aa70cf0894b041d901dbella40670948aclcc58a7IVl =

Presented as 8 integers:

0x6£8070fd 0x6c2f2e6c 0x297ab335 0x6350bfd7 0x7b824607 0xf72e344b 0xcb5bc352 0x23210247

Presented as a string of bytes:

£d70806£6c2e2f6c35037a29d7bf50630746827b4b342e£752¢c35bcb470221231IV2 =

Presented as 8 integers:

0x2940ecl8 0x72886£93 0x5b5c5579 0x917315de 0x5696e2f0 Oxcacb3551 0xd0b3e70b 0x007675ae

Presented as a string of bytes:

18ec4029936£887279555c5bdel157391£0e296565135cbcalbe7b3d0ae757600IV3 =

Presented as 8 integers:

0x496c7792 Oxb05ad6ed 0x4c00£749 0x98d32ced 0x363032ec 0x08eacd68 0x410b62b8 0x35a6feld

Presented as a string of bytes:

92776c49edd65ab049£f7004ced2cd398ec32303668cdeal8b8620b410dfeab35IVs =

Presented as 8 integers:

0x57899183 0x99b442ef OxabSaf28ed 0x27del291 0xb2d00080 0x62ec26ld Oxddbac391 Oxba39fc75

Presented as a string of bytes:

085b642c34919£260d33b61al3chbd5d114650dee900bfb7915f3c5a004ade274

Figure 5. An example for the Prefix blocks and the Vs generation for the 4-lanes SHA-256 hash function.

Hj_l = HASH’jﬂ(BUﬁj_l, Iength (BUffj_l))

H = HASH’j41(Hol[H1l[Hzl|.... [|Hj-1, j % D)

Figure 6 shows the values of the prefix block and the new 1V (for HASH = SHA-256) for the alternative.
Test vectors for j-lanes SHA-256 with j = 4, 8, 16 are provided in the Appendix.

8. Performance

This section shows the measured performance of j-lanes SHA-256, for j = 4, 8, 16, and compares it to the per-
formance of the serial implementation of SHA-256. The results are shown in Figure 7 and Figure 8.

Clearly, the j-lanes SHA-256 has a significant performance advantage over the serial SHA-256, for messages

that are at least a few kilobytes long. The choice of j affects the hashing efficiency: for a given architecture,
j-lanes SHA-256 with j > S is slower than j-lanes SHA-256 with the optimal choice of j = S, due to the longer
wrapping step. However, the differences become almost negligible for long messages.
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j = 4, type = j-lanes (0), HASH = “SHA256"”

Pre5:
0400000005000000005348413235360000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000

IV5 =

Presented as 8 integers:

0x62d6641f 0x34eb3e8a 0x9e58le8c 0x48lceflc 0x5382d06c 0x0b2d9%ace 0x2214143d Oxedld7412

Presented as a string of bytes:

1f64d6628a3eeb348cle58%elceflcd86cd08253ce%9a2d0b3d14142212741ded

Figure 6. An example of the Prefix block and the (single) IV generation, for the 4-lanes, SHA-256 hash function
for the variant that uses only one modified 1V.

Cycles/Byte

1,024 4,096 7,168 10,240 13,312 16,384
Message size
—j=4 ——j=8 j=16 ———SHA-256 serial

Figure 7. Performance of SHA-256 j-lanes compar-
ed to the serial SHA-256 implementation, Intel Archi-
tecture Codename Sandy Bridge (S = 4).
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Figure 8. Performance of SHA-256 j-lanes compared
to the serial SHA-256 implementation, Intel Architec-
ture Codename Haswell (S = 8).

9, Conclusions

This paper showed the advantages of a j-lanes hashing method on modern processors, and provided information

on how it can be easily defined and standardized.

The choice of j is a point that needs discussion. If a standard supports different j values, then the optimal
choice can be selected per platform. This, however, could add an interoperability burden, and we can imagine
that a single value of j would be preferable. In this context, we point out that Figure 2 and Figure 3 (theoretical
approximations) are consistent with Figure 7 and Figure 8 for j = 4 and j = 8 (actual measurements). Therefore,
Figure 4 can be viewed as a good indication for what can be expected when using j = 16 on the future archi-
tectures that would introduce the AVX512f architecture (supporting S = 16). Furthermore, j = 16 allows better
parallelization on multicore platforms. Consequently, our conclusion is that if only one value of j is to be speci-

fied by a standard, then the choice of j = 16 would be the most advantageous.
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S. Gueron

Appendix: Test Vectors

The test vectors provided below use the same 1024 bytes message (M) that is defined by (Figures 9-12).
uint8_t M[1024];
for(inti=0;i<512;i++){M[i*2]=i>>8 M[i*2+1]=i &0 x ff;}

The message M (1024 bytes):

00000001000200030004000500060007000800090002000b000c0004000e000£0010001100120013001400

150016001700180019001a001b001c001d001e001£0020002100220023002400250026002700280029002a

002b002c002d002e002£0030003100320033003400350036003700380039003a003b003c003d003e003£00

40004100420043004400450046004700480049004a0040004c004d004e004£005000510052005300540055

0056005700580059005a0050005c005d4005e005£0060006100620063006400650066006700680069006a00

60006c006d006e006£0070007100720073007400750076007700780079007a0070007c007d007e007£0080

008100820083008400850086008700880089008a0080008c008d008e008£00900091009200930094009500

96009700980099009a0090009c009d009e009£00a0002100a200a300a400a500a600a700a800a900aa00ab

00ac00ad00ae00af000000b1000200b300b400b500b600b700b800b900bal0bb00bc00bd00be00b£00c000

c100c200c300c400c500c600c700c800c900cal0cb00cc00cd00ce00cf00d4000d100d4200d300d4400d500d6

00d700d800d900da00db00dc00dd00de00df00e000e100e200e300e400e500e600e700e800e900ea00eb00

ec00ed00ee00ef00£f000£100£200£300£400£500£600£700£800£900£fa00fb00£fc00£d00£fe00££01000101

01020103010401050106010701080109010a010b010c010d010e010£011001110112011301140115011601

1701180119011a011b011c011d011e011£0120012101220123012401250126012701280129012a012b012¢c

012d012e012£0130013101320133013401350136013701380139013a013b013c013d013e013£0140014101

4201430144014501460147014801490142014b014c014d014e014£01500151015201530154015501560157

01580159015a015b015c015d015e015£0160016101620163016401650166016701680169016a0160b016c01

6d016e016£0170017101720173017401750176017701780179017a017b017¢c017d017e017£018001810182

0183018401850186018701880189018a018b018c018d018e018£0190019101920193019401950196019701

980199019a0190019¢c019d019e019f01a00121012201a301a401a501a601a701a801a901aallab0lac0lad

01ae01af01b001b101b201b301b401b501b601b701b801b901ba0lbb01bc01bd01be01bf01c001c101c201

c301c401c501¢c601c701c801¢c901callcb01cc01cd01ce01cf01d001d101d201d301d401d501d601d701d8

01d901da01db01dc01dd01de01df01e001e101e201e301e401e501e601e701e801e901leallebllecOledll

ee01ef01£f001£101£f201£301£f401£501£601£701£801£901fa01fb01£fc01£fd01fe01ff

Figure 9. The message M used for the test vectors.
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Lane 0 =
0000000100020003000400050006000700080009000a0000000c000d000e000£0010001100120013001400150016001700
180019001a001b001c001d001e001£0080008100820083008400850086008700880089008a008b008c008d008e008£0090
009100920093009400950096009700980099009a009009c009d009e009£01000101010201030104010501060107010801
09010a010b010c010d010e010£0110011101120113011401150116011701180119011a011b011c011d011e011£01800181
01820183018401850186018701880189018a018b018c018d018e018£019001910192019301940195019601970198019901
9a019p019c019d019e019f

J =4, idx = 0, type = 0, Pre0 =
04000000000000000053484132353600000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000

Vo =

Presented as 8 integers:

0xf516dd7d 0xcc53773b 0x6a704b3e 0x89f00ca7 0x901d044b Oxadllbeld 0x8a947006 Oxa758cccl

Presented as a string of bytes:

7ddd16£53b7753cc3e4b706aa70cf0894b041d901dbellad40670948aclcc58a7

HO =

Presented as 8 integers:

0x0cb691a2 0x4ce7931lc 0x2ble9055 0xb6a518a9 0xb5e29a80 0x96f7e78d Oxbef9a629 0x1c236631

Presented as a string of bytes:

a291b60c1c93e74c55901e2ba918a5b6809ae2b58de7£79629a6£9be3166231c

Lane 1 =
0020002100220023002400250026002700280029002a002b002c002d002e002£f0030003100320033003400350036003700
380039003a003b003c003d003e003f00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af00b0
00010002000300040005000600b70008000900ba00bb00bc00bd00be00bf01200121012201230124012501260127012801
29012a012b012c012d012e012£0130013101320133013401350136013701380139013a0130013c013d013e013£01a001al
01a201a301a401a501a601a701a801a901aa0lab01ac01ad01ae01af01b001b101b201b301b401b501b601b701b801b901
bal0lbb01bc01bd01lbellbf

J =4, idx = 1, type = 0, Prel =
04000000010000000053484132353600000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000

vl =

Presented as 8 integers:

0x6£8070fd Ox6c2f2ebc 0x297ab335 0x6350bfd7 0x7b824607 0xf72e344b OxcbS5bc352 0x23210247

Presented as a string of bytes:

£d70806f6c2e2f6c35b37a29d7bf50630746827b4b342ef752¢c35bcb47022123

H1 =

Presented as 8 integers:

0x013a4d4cfb 0xa8823916 0x6dc2a602 0xlldb24fd Oxc2bd4e3la 0x6208£5f9 0xel0998ef 0xc3252aff

Presented as a string of bytes:

fb4c3a01163982a802a6c26dfd24dblllae3b4c2f9f50862ef9809el1ff2a25c3

Lane 2 =
0040004100420043004400450046004700480049004a004b004c004d004e004£0050005100520053005400550056005700
580059005a005b005c005d005e005£00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf00d0
00d100d200d300d400d500d600d700d800d900da00db00dc00dd00de00df01400141014201430144014501460147014801
49014a014b014c014d014e014£0150015101520153015401550156015701580159015a015b015c015d015e015£01c001cl
01c201c301c401c501¢c601c701c801c901callcb01lcc01cd01ce01cf01d001d101d201d301d401d501d601d701d801d901
da01db01dc01dd01de01df

J =4, idx = 2, type = 0, Pre2 =

04000000020000000053484132353600000000000000000000000000000000000000000000000000000000000000000000
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000000000000000000000000000000

v2 =

Presented as 8 integers:

0x2940ecl8 0x72886£93 0x5b5c5579 0x917315de 0x5696e2f0 Oxcacb3551 0xd0b3e70b 0x007675ae
Presented as a string of bytes:
18ec4029936£887279555¢c5bde157391£0e296565135cbcalbe7b3d0ae757600

H2 =

Presented as 8 integers:

0xaSbff793 0x54e0b9c7 0x38ad4abf5 0xf51d6858 0xd4786561 0x51b0b779 0xf92c6680 0x62962aeb
Presented as a string of bytes:

93f7bfa5c7b%e054£5abad3858681df5616578d479b7b05180662cf9¢62a9662

Lane 3 =
0060006100620063006400650066006700680069006a0060006c006d006e006£0070007100720073007400750076007700
780079007a0070007c007d007e007£00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef00£0
00£100£200£300£400£500£600£700£800£900£a00£fb00£c00£d00£fe00££01600161016201630164016501660167016801
69016a016b016c016d016e016£0170017101720173017401750176017701780179017a017b017c017d017e017£f01e001el
0le201e301e401e501e601e701e801e901lealleb0lec01ed01ee0lef01f001£f101£201£301£f401£501£601£701£801£901
fa0lfb01fc01£fd01fe01ff

J =4, idx = 3, type = 0, Pre3 =
04000000030000000053484132353600000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000

IvV3 =

Presented as 8 integers:

0x496c7792 0xb05ad6ed 0x4c00£749 0x98d32ced 0x363032ec 0x08eacd68 0x410b62b8 0x35a6feld

Presented as a string of bytes:

92776c49edd65ab049£7004ced2cd398ec32303668cdeal8b8620b410dfeab3s

H3 =

Presented as 8 integers:

Oxda669dfe Ox86fabdSe 0Oxc9bacdf8 0x1452d42d 0x51dafl0a3 0x0e072407 0x4ble0240 OxcS5b4fdlé

Presented as a string of bytes:

fe9d66daSebdfa86f8cdbac92dd45214a3f0da510724070e40021ed4bl6fdb4cs

The wrapping string (the concatenation of j digests) =
a291b60clc93e74c55901e2ba918a5b6809%ae2b58de7£79629a6f9be3166231cfb4c3a01163982a802a6c26dfd24dbllla
e3b4c2f9f50862ef9809%9e1ff2a25¢c393f7bfa5c7b9e054f5abad3858681df5616578d479b7b05180662cf%e62a9662fe9d
66daSebdfa86f8cdbac92dd45214a3£0da510724070e40021e4bl6fdb4cs

J =4, idx = 4, type = 0, Pred =
04000000040000000053484132353600000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000

Iv4 =

Presented as 8 integers:

0x57899183 0x99b442ef OxaS5af28ed 0x27del291 0xb2d00080 0x62ec261ld Oxddbac391 0Oxba39fc75

Presented as a string of bytes:

83918957ef42b499ed28afa59112de278000d0b21d26ec6291c3badd75fc39%ba

The output digests, H =

Presented as 8 integers:

0x2c645p08 0x269f9134 0x1ab6330d 0xdld5cbl3 Oxee0d6514 0x79fb0b90 0xa0c5f315 0x74e2ad04

Presented as a string of bytes:

085b642c34919£260d33b61al3cbd5d114650dee900bfb7915f3c5a004ade274

Figure 10. Test vector for SHA-256 4-lanes.
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Lane 0 =
0000000100020003000400050006000700080009000a000b000c000d000e000£0010001100120013001400
1500160017001800190012001b001c001d001e001£0100010101020103010401050106010701080109010a
010b010c010d010e010£0110011101120113011401150116011701180119011a011b011c011d011e011f

J =8, idx = 0, type = 0, PreQ =
08000000000000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivo =

Presented as 8 integers:

0x787£6051 0x684c02c0 Oxde7ccd48 0x2c6382de 0x903£f8ccO 0x74c60570 0xd8e5e679 Oxfcad483d
Presented as a string of bytes:
51607£78c0024c6848cd7cdede82632cc08c3£907005¢c67479%e6e5d83d48adfc

HO =

Presented as 8 integers:

0xd90a9208 0xblcd8603 0x967eld4lc 0x9dc938f7 0x28005edc 0x549a7429 Oxac6c2d6f 0x576bd8bl
Presented as a string of bytes:

08920ad90386cdbl1cl47e96£738c99ddc5e002829749%a546f2d6cacbld86b57

Lane 1 =
0020002100220023002400250026002700280029002a002b002c002d002e002£0030003100320033003400
350036003700380039003a003b003c003d003e003£0120012101220123012401250126012701280129012a
012b012c012d012e012£0130013101320133013401350136013701380139013a0130013c013d013e013f

J =8, idx = 1, type = 0, Prel =
08000000010000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivl =

Presented as 8 integers:

0x39fab5544 0x74d24640 0x£f0435922 0xcdl£f50b4 Oxdfd3eaf6 0x4£295f3a Oxcebedb2a 0xe3126408
Presented as a string of bytes:
4455£a394046d274225943£f0b4501fcdf6ead3dfl3a5£294f2adbbece086412e3

H1 =

Presented as 8 integers:

0x86753c04 0xa3825b56 0xd9dcaad7 0xf84d0f91 0x1b412197 0x1135f42b 0x953abbal 0x30d5f9b4
Presented as a string of bytes:

043c7586565b82a347aadcd9910£4d£89721411b2bf43511a16b3a9504£9d530

Lane 2 =
0040004100420043004400450046004700480049004a004b004c004d004e004£0050005100520053005400
550056005700580059005a0050005c005d005e005£0140014101420143014401450146014701480149014a
014b014c014d014e014£0150015101520153015401550156015701580159015a0150015¢c015d015€015¢f

J =8, idx = 2, type = 0, Pre2 =
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08000000020000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv2 =

Presented as 8 integers:

0x6662dd71 0x809cbd72 0x3fe09a5f 0xb75372fa 0x87ef7577 0x7e317792 0x010d9ccf 0xb474ba3b
Presented as a string of bytes:
71dd626672bd9c805f9ae03££fa7253b77775e£879277317ec£9c0d013bba74b4

H2 =

Presented as 8 integers:

0x518lafc2 0x8118f2e6 0x054e5ab0 0xcf2d00le 0x15ad7615 0x6e57d085 0x49d20875 0x315£1180
Presented as a string of bytes:

c2af8151e6£21881b05a4e051e002dcf1576ad1585d0576e7508d24980115£31

Lane 3 =
0060006100620063006400650066006700680069006a006b006c006d006e006£0070007100720073007400
750076007700780079007a007b007c007d007e007£0160016101620163016401650166016701680169016a
016b016c016d016e016£0170017101720173017401750176017701780179017a0170017c017d017e017£

J =8, idx = 3, type = 0, Pre3 =
08000000030000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IV3 =

Presented as 8 integers:

Oxllae33b4 0x5dc9d2c8 0xa5f61621 Ox48adaed6 0x4bafl946 0xf0092642 0x9202bdda 0x023111fe
Presented as a string of bytes:
b433aellc8d2c95d2116f6a5d6aecad484619af4b422609£0dab40292£fe113102

H3 =

Presented as 8 integers:

Oxbe9d443c 0x4a550840 0xb28919fd 0x52502fa2 0x226211c8 0x911f847c 0xb97cala5 Oxa20e2aba
Presented as a string of bytes:

3c449dbe4008554afd1989b2a22£5052c81162227c841f91a5a07cb96a2alea2

Lane 4 =
0080008100820083008400850086008700880089008a008b008c008d008e008£0090009100920093009400
950096009700980099009a0090009c009d009¢009£0180018101820183018401850186018701880189018a
018b018c018d018e018£0190019101920193019401950196019701980199019a0190019c019d019e019f

J =8, idx = 4, type = 0, Pred =
08000000040000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv4 =

Presented as 8 integers:

0x08ed680a 0xc788£0c0 0x497d59% 0x79c12056 0xf9435c3d 0x28bdd5b0 0xd953912f 0xbe006e9f
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Presented as a string of bytes:
0a68ed08c0£088c79e597d495620¢1793d5¢c43£900d5bd282£9153d99f6e00be

H4 =

Presented as 8 integers:

0x971d4£80 0x536dc3ff Oxddbae5f2 Oxlaa7f7b9 0x07a9061f Oxbbedbal2b 0xc7e941b8 0x76fdddf7
Presented as a string of bytes:

804f1d97ffc36d53f2e5baddb9f7a71alf06a9072bbaedbbb841e9c7£7ddfd76

Lane 5 =
00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af00b000b100b200b300b400
b500b600b7000800b900ba00bb00bc00bd00be00bf01a001lal0la201a301a401a501a601a701a801la90laa
01ab01ac01ad01ae01af01b001b101b201b301b401b501b601b701b801b901bal0lbb01lbc01bd01lbe0lbf

J =8, idx = 5, type = 0, Pre5 =
08000000050000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IVS =

Presented as 8 integers:

0xb29%eccbd 0xb82ec5ca 0x65166adb 0x85526bfb 0xfcad492fl 0x12d2b13d 0xd90715d1l Oxcaeatadd
Presented as a string of bytes:
bdcc9eb2cac52eb8db6al665fb6b5285£192a4fc3dbld212d115b7d9%446aeaca

HS5 =

Presented as 8 integers:

0xbf2dbb52 0x59e79dd7 0x8b93e78b 0xf5ddb28c 0x9cd2635e Oxddd27a82 0x80e55ea7 0xal013ded0
Presented as a string of bytes:

52bb2dbfd79de7598be7938b8cb2ddf55e63d29c827ad2dda75ee58040de13a0

Lane 6 =
00c000c100c200c300c400c500c600c700c800c900ca00cb00cc00cd00ce00cf00d000d4100d4200d4300d400
d500d600d700d800d900da00db00dc00dd00de00d£f01c001¢c101c201c301c401c501c601c701c801c901ca
01cb01cc01cd01ce01cf01d001d101d201d301d401d501d601d701d801d901da01db01dc01dd01de01df

J =8, idx = 6, type = 0, Pre6 =
08000000060000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IvVe =

Presented as 8 integers:

0x0137b128 Oxe3aed4ba 0x456£7743 0x591aa3d8 0xc86940d9 0x53adal52 Oxdadc486c 0x204e367c
Presented as a string of bytes:
28b13701bad4aee343776£45d8a31a59d94069c852alad536c48dcda7c364e20

H6 =

Presented as 8 integers:

Oxae024e7e 0x4c2098ba 0x6deladld 0x35294e44 0x9caflcbe 0xd9cflcfl 0x70e9fcd3 Oxle3£2d49
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Presented as a string of bytes:

Tede02aeba98204cldade06d444e2935belcafIcf0lccfd943fce970492d3fle

Lane 7 =

00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00e£f00£000£100£200£300£400
£500£600£700£800£900£fa00fb00£fc00£fd00£fe00£f£f01e001el01e201e301e401e501e601e701e801le901ea

0leb01lec01ed01ee01ef01£001£101£201£301£401£501£601£701£801£901fa01fb01£c01£d01fe01fE
J =8, idx = 7, type = 0, Pre7 =
08000000070000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv7 =

Presented as 8 integers:

0x4980b595 Ox4efad2bb 0x73b812b9 0xd67cOcdd 0x1076165b 0x954dd185 0x62848d5f Oxbl4abl23
Presented as a string of bytes:
95b58049bb42fadeb912b873dd0c7Tcd65b16761085d14d955£8d846223bl4abl

H7 =

Presented as 8 integers:

0x247779f2 0x88b7a8b4 0x7b1l8ed57 0x6328bc2a 0x5c2903da 0x54028aa2 0x5c284bbe 0x402847bl
Presented as a string of bytes:

£2797724b4a8b78857e4187b2abc2863da03295ca28a0254bedb285cb1472840

The wrapping string (the concatenation of j digests) =

08920ad90386cdb11c147e96£738c99ddc5e002829749%9a546£2d6cacbld86b57043¢c7586565b82a347aadc
d9910£4df89721411b2bf43511a160b3a95b4£9d530c2af8151e6£21881b05a4e051e002dcf1576ad1585d0
576e7508d24980115£313c449dbed4008554afd1989b2a22£5052¢c81162227c841£f91a5a07cb96a2alea280
4£1d97ffc36d53f2e5baddb9f7a71al£06a9072bbaedbbb841e9c7£7ddfd7652bb2dbfd79de7598be7938b
8cb2ddf55e63d29c827ad2dda75ee58040del13a07e4e02aeba98204cl4ade06d444e2935belcaf9cfOlcct

d943£fce970492d3£f1e£2797724b4a8b78857e4187b2abc2863da03295ca28a0254bed4b285¢cb1472840

J =8, idx = 8, type = 0, Pre8 =
08000000080000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ive =

Presented as 8 integers:

O0x1lcaa6939 0x5843a5d3 0xd55f3568 0x9f8b2a9%e 0xcd717b92 Oxed47c03de 0xa5452624 0xea38329a
Presented as a string of bytes:
3969aalcd3a5435868355fd59e2a8b9£927b71cdde037ce4242645a59%9a3238ea

The output digests, H =

Presented as 8 integers:

0xfc872de3 0x5dlecbd8 0x49305e5e 0xc00977ed Oxc7baa3la 0xe5093d7d 0xf698fdéc 0x22dfe516
Presented as a string of bytes:

e32d87fcd8cble5d5e5e3049ed7709c01laa3bac77d3d09%e56c£d98f616e5df22

Figure 11. Test vector for SHA-256 8-lanes.
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Lane 0 =
0000000100020003000400050006000700080009000a000pb000c000d000e000£0010001100120013001400
150016001700180019001a001b001c001d001e001£f

J = 16, idx = 0, type = 0, PreQ =
10000000000000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IvVo =

Presented as 8 integers:

0x301b4698 0x421bd4dc OxalOcclce 0x486bb23c 0x51378b93 0x3eecd201l 0x9d59%9a094 Oxlbad62fc
Presented as a string of bytes:
98461b30dcd41b42cecl0cal3cb26b48938b375101d2ec3e94a0599dfc62adlb

HO =

Presented as 8 integers:

0x472d67f1 0x3ed556ca 0x88516bfb Ox0adaae63 0x43af34ce 0x0353eaab 0xb01635dc O0x3af7d38d
Presented as a string of bytes:

fl1672d47ca56d53efbbb518863aedalace34af43abea5303dc3516b08dd3£73a

Lane 1 =
0020002100220023002400250026002700280029002a002b002c002d002e002£0030003100320033003400
350036003700380039003a003b003c003d003e003£

J =16, idx = 1, type = 0, Prel =
10000000010000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

vl =

Presented as 8 integers:

0xe584be20 Ox6be7e96c 0x59d99116 Oxcd3cd22e 0xbb9d678c 0x782af33d Oxacec6lac Oxbeedcead
Presented as a string of bytes:
20be84e56ce9e76b1691d9592ed23ccd8c679dbb3df32a78ac6lecacadceedbe

H1 =

Presented as 8 integers:

0x383545a8 Oxebccaf84 0xe25793bf 0xaf8d34d3 0x8f07e023 Oxf7la2ab5 0x663d4152 0x8798c2ef
Presented as a string of bytes:

a845353884afccebbf9357e2d3348daf23e0078fb52alaf752413d66efc29887

Lane 2 =
0040004100420043004400450046004700480049004a004b004c004d004e004£0050005100520053005400
550056005700580059005a0050005c0054005e005£

J =16, idx = 2, type = 0, Pre2 =
10000000020000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

vz =

Presented as 8 integers:

0x83d278b8 0x5b8e8240 0x2b4df96c Oxafbeb60a O0xfla51l9%ee 0xab829302 0xe518a3d9 0x55belfbd
Presented as a string of bytes:
b878d28340828e5b6cf94d2blabbbeafeel9a5£1029382abd%a318e5bd0fbe55

H2 =

Presented as 8 integers:

0x824307a9 OxdaBacc6c Oxffebled6 0x£f3315f02 Oxb4bb635e Oxafee9d3d Oxbcc2b49d 0x42c3daae
Presented as a string of bytes:

a90743826ccc8adad6leebff025£31£35e63bbb43d9deecafIdbic2bcaedac342
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Lane 3 =
0060006100620063006400650066006700680069006a006b006c006d006e006£0070007100720073007400
750076007700780079007a0070007c007d007e007£

J =16, idx = 3, type = 0, Pre3 =
10000000030000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IvV3 =

Presented as 8 integers:

0x1b5600c7 0x3cl2c7a0 0x31dfl44c 0xd105£19d 0xc5106b02 Oxeeb323de 0xb808d185 0xfb6£6550
Presented as a string of bytes:
c700561ba0c7123c4c14df319df105d1026b10c5de23b3ee85d108b850656ffb

H3 =

Presented as 8 integers:

0x419b79f5 0x7e42bcl0 0xaf93b5a6 0xa07fc24f 0x2441al0cl 0xe8427787 Oxaa3a4d22 0x590e2dbb
Presented as a string of bytes:

£57990b4110bcd427eabb593afdfc27fa0cla04124877742e8224d3aaabb2d0e59

Lane 4 =
0080008100820083008400850086008700880089008a008b008c008d008e008£0090009100920093009400
950096009700980099009a0090009c009d009e009f

J =16, idx = 4, type = 0, Pred =
10000000040000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv4 =

Presented as 8 integers:

0x270865f5 Oxda90a5e7 0x004ed5ac 0xb399cf28 0x598b21a3 0x4alb7bd4 0xb298a277 0x0c9d36d9
Presented as a string of bytes:
£5650827e7a590daacd54e0028cf99b3a3218b59d47blb4a77a298b02d9369d0c

H4 =

Presented as 8 integers:

0x0bdea332 0x489e23c0 0x489f243d 0x08b4404b 0xfdbdad480 0x9f019c35 0x0e98ecl7 0x1788130e
Presented as a string of bytes:

32a3de0bc0239e483d249f484b40b40880a4bdfd359c019£f17ec980e0e138817

Lane 5 =
00a000a100a200a300a400a500a600a700a800a900aa00ab00ac00ad00ae00af00b000b100b200b300b400
b500b600b7000800b900ba00bb00bc00bd00be00bE

J =16, idx = 5, type = 0, Pre5 =
10000000050000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IV5 =

Presented as 8 integers:

0x33aeaf06 0x9d5efd54 0xa98aa2le 0x8df52647 0x730bafed 0x4e3076af 0xel6e9154 Oxbdld7£07
Presented as a string of bytes:
Obafae3354fd5e9dlea28aa94726£58dedaf0b73af76304e54916eel1077f1dbd

HS =

Presented as 8 integers:

0xb02d93fc 0xe29f0086 0x84fc3565 0x1£300e86 Ox1bf43a85 0x71f91lac8 0xd9742ecO 0x179312e5

Presented as a string of bytes:
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£c932db086009£fe26535£c84860e301£853af41bc81af971c02e74d9e5129317

Lane 6 =
00c000c100c200c300c400¢500c600c700¢800c900ca00cb00cc00cd00ce00c£004000d100d42004300d400
d500d600d700d800d900da00db00dc00dd00de00df

J =16, idx = 6, type = 0, Pre6 =
10000000060000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ive =

Presented as 8 integers:

0x03205e22 0x345b8bdb 0xdf24elff 0x249e2c65 0xa8c30e39 0x77£91a58 Oxelcb85a4 0x3b6c7448
Presented as a string of bytes:
225e2003db8b5b34£ffel24df652c9e24390ec3a8581laf977a485cbel48746¢3b

H6 =

Presented as 8 integers:

0x83af3937 0x7f30aaf8 0x45fbl6ed 0x49ef08ca O0x6lal9f7a 0x21lb2eccd 0x2676295c 0x22blcded
Presented as a string of bytes:

3739%af83f8aa307fedl6fb45cal8efd97a9fal6lcdech2215c297626e4cdbl22

Lane 7 =
00e000e100e200e300e400e500e600e700e800e900ea00eb00ec00ed00ee00ef00£000£100£200£300£400
£500£600£700£800£900£a00fb00£c00£d00fe00ff

J =16, idx = 7, type = 0, Pre7 =
10000000070000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

w7 =

Presented as 8 integers:

0x4744b3b3 0xdb42bded Oxabed499fb Oxacf298a4 0x929%e92ae 0x71c071dc 0xc091lcbf5 0xaf33d9lf
Presented as a string of bytes:
b3b34447edb442dbfb99%e4abad98f2acae929e92dc71c071£5cb91c01£d933af

H7 =

Presented as 8 integers:

0x17£fc7d87 0x91385485 0x5892e618 0x2fe0f492 0x4914a63d 0x8e3b87f1 0x24f2a715 0x648e0065
Presented as a string of bytes:

877dfcl178554389118e6925892f4e02£3da61449f1873b8el15a7£22465008e64

Lane 8 =
0100010101020103010401050106010701080109010a010b010c010d010e010£0110011101120113011401
150116011701180119011a011b011c011d011e011£f

J =16, idx = 8, type = 0, Pre8 =
10000000080000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ive =

Presented as 8 integers:

0x88d9773e 0x227b996¢c 0xb045c986 0x0c6568ca 0x5a3le35f 0xd68a998b 0xaB8l25b79 0x5e2c8leb
Presented as a string of bytes:
3e77d9886c99702286c945b0ca68650c5fe3315a8b998ad6795b12a8e6812c5e

H8 =

Presented as 8 integers:

0xd1b89671 0x8ce702c4 Oxaf5a504c Oxa8cd425fa 0x8d44bcO0b 0x2407529d 0xb06eebld 0x4494bc66
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Presented as a string of bytes:

7196b8d1lc402e78c4c505aaffa25c4a80bbc448d9d52072414ebbeb066bc9444

Lane 9 =
0120012101220123012401250126012701280129012a012b012¢c012d012e012£0130013101320133013401
350136013701380139013a013b013c013d013e013f

J =16, idx = 9, type = 0, Pre9 =
10000000090000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivo =

Presented as 8 integers:

Ox6dcb53a7 0x91aa3069 0xf594281f 0x5e3c2a06 0xd9d6474b 0x7b5f£f762 Ox4ad96clec Oxlcfdbc57
Presented as a string of bytes:
a753cb6d6930aa911£2894f5062a3c5e4b47d6d962f75f7beccl964a57bcfdlc

H9 =

Presented as 8 integers:

Ox7aed3aae 0xcc9df426 0x49f39%ecl Oxebad8048 0x931b5909 0xd0cl5bd9 0x46bb8dl4 0x38daf8f2
Presented as a string of bytes:

ae3aed7a26£49dcccl19e£3494880adeb09591b93d95bc1d0148dbb46£2£8da38

Lane 10 =
0140014101420143014401450146014701480149014a014b014c014d014e014£0150015101520153015401
550156015701580159015a015b015¢c015d015e015f

J = 16, idx = 10, type = 0, Prel0 =
100000000a0000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv10 =

Presented as 8 integers:

0x6e7bel56 0x9%a9%e3d68 0x835a8de7 0xbc56536d 0x010759e0 Oxedale726 0x60cfll3a 0xd3b9d737
Presented as a string of bytes:
56e17b6e683d%e%ae78d5a836d5356bce059070126e7aled3allcf6037d7b9d3

H10 =

Presented as 8 integers:

0x66755c29 0xa3a52b52 0xe9d80979 0x1482e24d 0x2clled0f 0x9302cbcd 0x09b76d4a 0x3816530d
Presented as a string of bytes:

295¢c7566522ba5a37909d8e94de282140fed4112ccd4cb02934a6db7090d531638

Lane 11 =
0160016101620163016401650166016701680169016a016b016c016d4016e016£0170017101720173017401
750176017701780179017a0170017c017d017e017£

J =16, idx = 11, type = 0, Prell =
10000000000000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivil =

Presented as 8 integers:

0x8cbccael 0x6l6bdba3 0xf2labde3 0x551fe2d4 0x0a846720 0x318a5e23 0xcfl0df64 0xd3830b54
Presented as a string of bytes:
elcabcB8ca3db6b6le3bdlaf2d4e21£552067840a235e8a3164df10cf540b83d3

H11 =

Presented as 8 integers:
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0xf5a975al 0xc0f9e9%e0 0x1a33230f 0x283d99b6 0xdfdf95fb 0x2563b811 0x47e85a61 0x777a92bd
Presented as a string of bytes:

al75a9f5e0e9£9c00£23331ab6993d28fb95dfdf11b86325615ae847bd927a77

Lane 12 =
0180018101820183018401850186018701880189018a018b018c018d018e018£0190019101920193019401
950196019701980199019a0190019¢c019d019e019f

J =16, idx = 12, type = 0, Prel2 =
100000000c0000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivliz =

Presented as 8 integers:

0xf30aeal8 0x6327cb9c 0xe090d724 0xf55belbl 0x356bac3a 0x259e2a90 0x1474593e 0x317eb9f7
Presented as a string of bytes:
08ealaf39ccb276324d790e0blel5bf53aac6b35902a9e253e597414£7b97e31

H12 =

Presented as 8 integers:

0x60aad4972 0xb64cf665 0x01elld8d 0x17a2408b 0xd43ad3b3 0x43c75ac6 0xfcb5a860 0x32fa397d
Presented as a string of bytes:

7249aa6065£64cb68d1del018b40a217b3d33ad4c65ac74360a8b5fc7d39fa32

Lane 13 =
01a001al01a201a301a401a501a601a701a801a90laallab0lac01ad01ae01af01b001b101b201b301b401
b501b601b701b801b901bal01lbb01bc01lbd01lbe0lbf

J = 16, idx = 13, type = 0, Prel3 =
10000000040000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

IvV1l3 =

Presented as 8 integers:

Oxeeabddcb Oxecdc55c4 0xd8554d0a 0xall207dl 0xe654142b 0xa29989f6 Oxdab88e31 0xc66e5305
Presented as a string of bytes:
cbddabeec455dcec0a4d55d8d10712a12b1454e6£68999a2318eb8dal5536ec6

H13 =

Presented as 8 integers:

Oxcc4eadd6 0xe06b3d10 0x9c7cb023 0x36856036 0x6fb62968 0xd7d29cal 0x62f748f4 0x54b4753f
Presented as a string of bytes:

d6addeccl03d6be023b07¢c9¢c366085366829066faldcd2d7£448£7623£75b454

Lane 14 =
01c001c101¢c201c301c401c501c601c701c801c901callcb01lcc01cd01lce01cf01d001d101d201d301d401
d501d601d701d801d901da01db01dc01dd01de01df

J =16, idx = 14, type = 0, Preld =
100000000e0000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Iv1i4 =

Presented as 8 integers:

0x36c346a5 0x715bbcbe 0xfd5cf994 0x6c4dl6b7 0x1al9c99f 0x4c777619 0x412a6300 0x89b25e19
Presented as a string of bytes:
a546c336bcbc5b7194£95¢cfdb7164d6c9fc9191a1976774c00632a41195eb289

H14 =
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Presented as 8 integers:
0x1d3bf0al 0x7d399bf7 Oxe64b64c0 Oxf7ba2434 0xad409ab5d 0x7870£632 0x82e76833 Oxcbdbccal
Presented as a string of bytes:

a0f03b1df790397dc0644be63424baf75dab0%9a432£670783368e782alccdbct

Lane 15 =
01e001e101e201e301e401e501e601e701e801e901lealleb01lec01ed01lee01ef01£f001£101£201£301£401
£501£601£701£801£901fa01fb01£fc01fd01fe01ff

J =16, idx = 15, type = 0, Prel5 =
100000000£0000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivls =

Presented as 8 integers:

Oxe9f3a324 0x739f1383 Ox06e52eaf 0x6608f137 0x61lela290 0x688aeba8 Oxcalll224 0x66b3d938
Presented as a string of bytes:
24a3f3e983139f73af2ee50637£1086690a2e161a8e58a68241211ca38d9b366

H15 =

Presented as 8 integers:

0x8d0£f2b54 0x743ac7fl 0x4fd432ef 0x56074b6b 0xa9aled82 0xb61£363a 0x81518dee 0xd7£215ch
Presented as a string of bytes:

542b0£f8dflc73a74e£32d44£6b4b0756826dala93a361lfbbee8d5181cbl5£f2d7

The wrapping string (the concatenation of j digests) =
£1672d47ca56d53efb6b518863aedalace34af43abea5303dc3516b08dd3£73aa845353884afccebbf9357
€2d3348daf23e0078fb52a1af752413d66efc29887a90743826ccc8adad6leebff025£31£35e63bbb43d9d
eeaf9dbdc2bcaedac342£5799b4110bc427eabb593af4fc27fa0c1a04124877742e8224d3aaabb2d0e5932
a3de0bc0239e483d249f484b40b40880a4bdfd359c019f17ec980e0e138817£c932db086009fe26535fc84
860e301£853af41bcB81af971c02e74d9e51293173739%9af83f8aa307fedl6fb45cal8ef497a9falolcdech2
215c297626e4cdb122877dfc178554389118e6925892f4e02£3da61449f1873b8e15a7£22465008e647196
b8d1lc402e78c4c505aaffaz25c4a80bbc448d9d52072414ebbeb066bc9444ae3aed7a26£49dcccl9e£34948
80adeb09591b93d95bc1d0148dbb46£2£8da38295¢c7566522ba5a37909d8e94de282140fe4112cc4cb0293
4a6db7090d531638a175a9f5e0e9£9c00£23331ab6993d28fb95dfdf11b86325615ae847bd9%927a77724%aa
6065£64cb68d1del018b40a217b3d33ad4c65ac74360a8b5fc7d39fal32d6ad4eccl03d6be023b07¢c9c3660
85366829066£fal19cd2d7£448£7623£75b454a0£03b1df790397dc0644be63424baf75dab09a432£6707833
68e782alcc4bc6542b0£8dflc73a74e£32d44£6b4b0756826dala93a361fbbee8d5181cbl5£2d7

J =16, idx = 16, type = 0, Prelé6 =
10000000100000000053484132353600000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000

Ivle =

Presented as 8 integers:

0xd60422aa 0x2c91c9e5 0xf0e28121 Oxeda94d92 0xf24c4a68 O0xbf8abl0b9 0x4d118432 0x8354983d
Presented as a string of bytes:
aa2204d6e5c9912c2181e2£0924da%ed684a4cf2b9b08abf3284114d3d985483

The output digests, H =

Presented as 8 integers:

0xf984dec6t 0x48df8956 0x50£32833 0x638b076b Oxed4cl8b6l 0x887a9f35 Oxa%eel’d3 0x6668d586
Presented as a string of bytes:

c60de84£95689d£483328£3506b0780b63618bcle4359£7a88d317eea986d56866

Figure 12. Test vector for SHA-256 16-lanes.
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