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ABSTRACT 

The in silico prediction of peptide binding affinities to MHC proteins is a very important first step in the process of epi-
tope-based vaccine design and development. Five MHC class II binding prediction servers were combined in different 
ways and the resulting performance of these combinations was evaluated using a test set, which consisted of 4540 known 
HLA-DRB1 binders. The five servers were: NetMHCIIpan, NetMHCII, ProPred, RANKPEP, and EpiTOP. The top 5% of 
the ranked predictions from each server were combined using union and intersection operators. The outputs were evalu-
ated in terms of sensitivity and positive predictive value (PPV). The union operator showed high sensitivity (65% - 79%) 
and low PPVs (6% - 8%), while intersection outputs had low sensitivities (4% - 41%) yet significantly higher PPVs (14% 
- 31%). Thus there is a defining trade-off between sensitivity and PPV for each combination. The union of outputs from 
different servers brings more “noise” than “signal” to the resulting set of predicted binders. Conversely, selecting only 
commonly predicted binders increases the probability that an identified binder is a true binder. 
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1. Introduction 

The epitope-based vaccines are a new generation of vac-
cines which are very well tolerated and have fewer side 
effects than the conventional vaccines. The in silico pre-
diction of peptide binding affinities to MHC proteins is a 
very important first step in the process of vaccine design 
and development. Peptides which act as T-cell epitopes 
bind to MHC molecules; thus all T-cell epitopes are 
MHC binders but not all MHC binders are T-cell epi-
topes. Binding to a MHC protein is a necessary but not a 
sufficient condition for a peptide to be an epitope. Pep-
tides presented by an MHC on the cell surface have ei-
ther an intracellular or an extracellular origin. MHC class 
I molecules, present on most cell types, present peptides 
primarily from protein synthesized within the cell (en-
dogenous processing pathway). MHC class II molecules, 
expressed on a restricted number of cell types, such as 
dendritic cells, B cells and macrophages, can present 
peptides derived from endocytosed extracellular proteins 
(exogenous processing pathway) [1]. A principal feature 

of MHC molecules is their allelic polymorphism: 3,411 
human leukocyte antigens (HLA) class I and 1,222 HLA 
class II molecules were listed by the ImMunoGeneT-
ics/HLA database in July 2010 [2]. 

Peptides binding to MHC class II proteins are typically 
between 10 and 20 residues in length. The complex 
comprising peptide and class II molecule is expressed on 
the cell surface and interacts exclusively with CD4+ T 
cells (helper T-cells, THC). TH cells help to trigger an 
appropriate immune response which may include local-
ized inflammation and swelling due to recruitment of 
phagocytes or may lead to an antibody-mediated immune 
response via B-cell activation. X-ray data from pep-
tide-MHC class II [3-6] and TCR- peptide-MHC class II 
complexes [7-9] indicate that nine amino acids are bound 
in an extended conformation within the peptide binding 
groove of the MHC. The MHC class II binding groove is 
formed by two separate protein chains: α and β [10]. A 
dozen hydrogen bonds are formed between the MHC and 
the peptide main-chain carbonyl and amide groups. 
There are five pockets in the binding groove: one deep 
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pocket (denoted p1), and four shallow pockets (p4, p6, 
p7 and p9), that accept peptide side chains. Peptide side 
chains at p2, p3, p5 and p8 project outward toward the 
T-cell. Compared to MHC class I, the MHC class II pep-
tide binding groove is open at both ends. The degree to 
which this allows many potential registers in which a 
peptide might bind remains a controversial issue [11,12]. 

Systematic mapping of peptides binding to MHC pro-
teins involves the synthesis and testing of all overlapping 
peptides spanning the whole length of a target antigen: a 
costly and time-consuming task. Alternatively, computa-
tional methods which can predict the best binding pep-
tides can be used before any experimental work, fol-
lowed by synthesis and testing of a tiny subset of the 
potential peptides. There are now several servers for 
MHC class II binding prediction. A recent study indi-
cates that only certain servers perform sufficiently well 
to be useful and useable [13]. 

Combining results from multiple prediction tools often 
increases overall accuracy. Such a consensus strategy 
was proposed by Mallios [14], who combined SYFPEITHI 
[15], ProPred [16] and the iterative stepwise discriminant 
analysis meta-algorithm [17]. MULTIPRED [18] inte-
grates hidden Markov models (HMMs) and artificial 
neural networks (ANN). Six MHC class II predictors 
were combined by Karpenko et al. [19] basing its overall 
prediction on the probability distributions of the different 
scores. Wang et al. [20] applied a consensus method to 
calculate the median rank of the top three predictive 
methods for each MHC class II protein initially evaluated 
so as to rank all possible 8-, 9- and 10-mers from one 
protein. This rank was used then to select the top 1% of 
peptides within each protein. 

Here, we explore the effectiveness of different strate-
gies for combining five servers for MHC class II binding 
prediction: ProPred [16], RANKPEP [21], NetMHCIIpan 
[22], NetMHCII [23], and EpiTOP [24,25]. Previous 
work identified these servers as the best single predictors 
available [26]. Our aim here is to test their combined use, 
with the hope of generating more accurate and more re-
liable overall predictions than when used individually. 
The servers were used in union and intersection modes. 
Union output compiles the results of two or three servers, 
while the intersection output selects only commonly pre-
dicted binders. 

2. Materials and Methods 

2.1. Test Set 

The test set comprised 4540 binders of different length, 
originating from 167 proteins. The data was extracted 
from the immune epitope database (December 2009) [27]. 
The study was performed on 12 DRB1 Alleles. The pep-
tides bind the following alleles: DRB1*0101 (2051 Bind-
ers), DRB1*0301 (190 Binders), DRB1*0401 (392 
Binders), DRB1 *0404 (159 Binders), DRB1*0405 (244 
Binders), DRB1*0701 (336 Binders), DRB1*0802 (153 
Binders), DRB1*0901 (160 Binders), DRB1*1101 (275 
Binders), DRB1*1201 (24 Binders), DRB1*1302 (243 
Binders) and DRB1* 1501 (313 Binders). Some of the 
servers do not predict binding to all DRB1 alleles used in 
the test set. Only servers NetMHCIIpan and EpiTOP 
make predictions for all 12 DRB1 alleles. Although 
many methods give quantitative predictions, in our 
evaluation they were used as classification methods. 
Each server was evaluated only on the alleles it predicts. 
The test set is available as supporting information. 

2.2. Servers Used in the Study 

The five best performing servers from our preliminary 
study were used here (Table 1) [26]. NetMHCIIpan 
and NetMHCII are ANN-based servers. ProPred pre-
dicts MHC class II binding peptides using quantitative 
matrices (QM) based on pocket profiles [28]. RANK-
PEP uses position-specific scoring matrices (PSSM) 
which represent the observed sequence-weighted fre-
quency of all amino acids in every position of a se-
quence alignment. EpiTOP is a newly developed 
method for MHC class II binding prediction based on 
proteochemometrics [25]. It is a matrix-based method 
which considers both peptide and protein binding-site 
amino acids contributions. 

2.3. Union Method 

The complete sequence of each protein was submitted to 
each server and the results recorded. The top 5% of the 
ranked predicted binding nonamers was used as a thresh-
old. Two-and three-server combinations were inspected. 
The top 5% of the best predicted binders from each 

 
Table 1. Servers for MHC class II binders prediction used in the present study. 

Server Method URL Reference 

NetMHCII pan ANN http://www.cbs.dtu.dk/services/NetMHCIIpan [22] 

NetMHCII ANN http://www.cbs.dtu.dk/services/ NetMHCII/ [23] 

ProPred QM http://www.imtech.res.in/raghava/propred/ [16] 

RANKPEP QM http://bio.dfci.harvard.edu/RANKPEP/ [21] 

EpiTOP QM http://www.pharmfac.net/EpiTOP/ [25]  
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server were compiled into one set and compared to the 
set of known binders originating from the same protein. 
An identified binder was considered to be any nonamer 
sequence available within the tested binder peptide, 
which may be of arbitrary but longer length. Identified 
binders are shown as a percentage of all binders (sensi-
tivity). Additionally, to test the precision of prediction, a 
positive predictive value (PPV) was calculated as a ratio 
of true binders to all predicted binders included in the top 
5%. 

In mathematical terms, the union method corresponds 
to applying the logical operator OR ( ). If the predicted 
top 5% best binders generated by server A form set a, 
and the top 5% of the best binders predicted by server B 
form set b, then the union set c = a b. 

2.4. Intersection Method 

The same sets of the top 5% of the best predicted bind-
ers generated by each server were used in the intersec-
tion method. Intersection sets contain only common 
nonamer binders identified from a particular protein, as 
predicted by different numbers of servers. Two-, three-, 
four-and five-server combinations were inspected. The 
common binders were compared to the set of known 
binders originating from the same protein. An identified 
binder was considered to be any nonamer sequence 
available within the tested binder peptide, which may 
be of arbitrary but longer length. The final sensitivity 
and PPV were assessed from the number of true binders 
identified by two, three, four, or five servers simulta-
neously. 

In mathematical terms, the intersection method corre-
sponds to the logical operator AND ( ). If the predicted 
top 5% best binders generated by server A form set a, 
and the top 5% of the best binders predicted by server B 



form set b, the intersection set c = a b. 
 

2.5. Performance Measures 

Sensitivity is the proportion of experimentally deter-
mined binders that are predicted as binders. It is defined 
as true positives/(true positives + false negatives). Posi-
tive predictive value (PPV) is defined as true positives / 
(true positives + false positives). Server performance was 
assessed using the sensitivity and PPV at the top 5% of 
the best predicted binders. 

3. Results 

For this assessment, servers were selected on the basis of 
the following criteria: computational or machine-learning 
method-based, free web access, and the ability to predict 
binding to at least 9 of the 12 HLA-DRB1 alleles con-
sidered in this study. Given these criteria, previous stud-
ies indicated that the following were the best performing 
servers: NetMHCIIpan, NetMHCII, ProPred, RANKPEP, 
and EpiTOP. 

3.1. Single Predictor Performance 

The performance of single predictors is shown in Figure 1. 
At the top 5% threshold, NetMHCIIpan and NetMHCII 
perform best with 55% sensitivity. ProPred, EpiTOP and 
RANKPEP perform almost as well with sensitivities of 
46%, 45% and 44%, respectively. PPVs range from 8% 
for RANKPEP and EpiTOP to 10% for NetMHCIIpan, 
NetMHCII and ProPred. 

3.2. Union Method Performance 

The results of combining two or three servers are shown 
in Figures 2 and 3. Any union combination performs 
better than single predictors. At the top 5% level, sensi- 
tivity ranges from 65% to 70% in two-server combina-
tions and from 72% to 79% in three-server combinations. 
However, in terms of PPV, union outputs perform poorly. 
The highest PPV is 8%. 

 

Figure 1. Single predictor performance. 
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Figure 2. Two-server union method performance: 1 - NetMHCIIpan+NetMHCII; 2 - NetMHCIIpan+ProPred; 3 - 
NetMHCIIpan + RANKPEP; 4 - NetMHCIIpan + EpiTOP; 5 - NetMHCII + ProPred; 6 - NetMHCII + RANKPEP; 7 - 
NetMHCII + EpiTOP; 8 - ProPred + RANKPEP; 9 - ProPred + EpiTOP; 10 - RANKPEP + EpiTOP. 

 

 

Figure 3. Three-server union method performance: 1 - NetMHCIIpan + NetMHCII + ProPred; 2 - NetMHCIIpan + 
NetMHCII + RANKPEP; 3 - NetMHCIIpan + NetMHCII + EpiTOP; 4 - NetMHCIIpan + ProPred + RANKPEP; 5 - 
NetMHCIIpan + ProPred + EpiTOP; 6 - NetMHCIIpan + RANKPEP + EpiTOP; 7 - NetMHCII + ProPred + RANKPEP; 8 - 
NetMHCII + ProPred + EpiTOP; 9 - NetMHCII + RANKPEP + EpiTOP; 10 - ProPred + RANKPEP + EpiTOP. 
 
3.3. Intersection Method Performance 

When servers are used in intersection mode, their sensi-
tivities are typically poor (Figure 4). The common bind-
ers predicted by five servers identify only 4% of the 
known binders at the top 5% threshold. The four-server 
combinations recognize between 5% and 14%, three- 
server combinations identify between 6% and 27%, and 
two-server combinations yield between 9% and 41% of 
the known binders. In contrast to the union mode, in-

creasing the number of servers within the intersection 
decreases the sensitivity; yet the opposite is true for 
PPVs: increasing the number of servers increases the 
precision of the prediction, PPV reaches 31% for 5- 
server combination. 

4. Discussion 

In the present study, the impact on predictive accuracy of 
ombining up to five servers for MHC class II binding c   
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Figure 4. Intersection method performance: 1 - NetMHCIIpan + NetMHCII + ProPred + RANKPEP + EpiTOP; 2 - 
NetMHCIIpan + NetMHCII + ProPred + RANKPEP; 3 - NetMHCIIpan + NetMHCII + ProPred + EpiTOP; 4 - NetMHCII-
pan + NetMHCII + RANKPEP + EpiTOP; 5 - NetMHCIIpan + ProPred + RANKPEP + EpiTOP; 6 - NetMHCII + ProPred + 
RANKPEP + EpiTOP; 7 - NetMHCIIpan + NetMHCII + ProPred; 8 - NetMHCIIpan + NetMHCII + RANKPEP; 9 - 
NetMHCIIpan + NetMHCII + EpiTOP; 10 - NetMHCIIpan + ProPred + RANKPEP; 11 - NetMHCIIpan + ProPred + Epi-
TOP; 12 - NetMHCIIpan + RANKPEP + EpiTOP; 13 - NetMHCII + ProPred + RANKPEP; 14 - NetMHCII + ProPred + 
EpiTOP; 15 - NetMHCII + RANKPEP + EpiTOP; 16 - ProPred + RANKPEP + EpiTOP; 17 - NetMHCIIpan + NetMHCII; 
18 - NetMHCIIpan + ProPred; 19 - NetMHCIIpan + RANKPEP; 20 - NetMHCIIpan + EpiTOP; 21 - NetMHCII + ProPred; 
22 - NetMHCII + RANKPEP; 23 - NetMHCII + EpiTOP; 24 - ProPred + RANKPEP; 25 - ProPred + EpiTOP; 26 - RANK-
PEP + EpiTOP. 
 
prediction was evaluated. The top 5% of the best pre-
dicted binders for each server were combined using un-
ion and intersection operators. The outputs were evalu-
ated in terms of sensitivity and positive predictive value. 
Union outputs showed high sensitivities (65% - 79%) 
and low PPVs (6% - 8%), while intersection outputs had 
low sensitivities (4% - 41%) but high PPVs (14% - 31%). 
The trade-off between sensitivity and PPV thus defines a 
combination. Uniting the outputs of different predictors 
brings more “noise” than “signal” to the resulting set of 
predicted binders. Conversely, selecting only the com-
mon predicted binders increases the probability of iden-
tifying true binders. 

The predictive ability of any model depends strongly 
on the data used to derive it. Models work better interpo-
lating between data than extrapolating from them. Gen-
erally, data used in MHC binding prediction methods fall 
into two categories: ligand-based and structure-based. 
Ligand-based data are focused on the structure of binding 
peptides, while structure-based data makes use of the 3D 
structures of target macromolecules and especially from 
structures of their binding sites. The nature of any analy-
sis determines the choice of data and methods. Limita-
tions in the quality and availability of data can have pro-
found consequences for the efficiency and predictivity of 
resulting methods. 

The aim of both ligand-based and structure-based 
MHC binding prediction is to identify viable biophores 
that interact with the great variety of binding sites im-
plicit within the population of MHC molecules. In im-
munology, such biophores are typically called motifs. 
Ligand-based methods achieve this using sets of binding 
(and non-binding) peptides. Most of the known predic-
tors are ligand-based, starting with motif-searching algo-
rithms, progressing though different quantitative matrices, 
to more sophisticated machine-learning methods, such as 
ANN, HMM and SVM. Among the servers used in the 
present study NetMHCII and RANKPEP are ligand- 
based methods for MHC binding prediction. 

In contrast, structure-based methods identify biophores 
using the structures of MHC binding sites. Sturniolo’s 
method based on MHC pocket profiles is an example of a 
structure-based method for MHC binding prediction [28]. 
Each MHC pocket on the binding site is determined by a 
set of amino acids; some are conserved, others are poly-
morphic. The interactions made by all natural amino acids 
with a given pocket establish the pocket profile. Pocket 
profiles are nearly independent of the remaining MHC 
binding site. QMs were generated for a large number of 
HLA class II alleles based on different combinations of 
pocket profiles. Among the servers used in the present 
study ProPred uses QMs based on Sturniolo’s pocket pro-
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files. NetMHCIIpan and EpiTOP are mixed ligand- and 
structure-based methods, because they consider informa-
tion from both binding ligands and binding sites. 

Apart from using different training sets, MHC class II 
binding predictors also differ in methodology. Each 
method can be evaluated in two ways: interpretative abil-
ity and predictive ability. The interpretation of models is 
a vital issue in immunoinformatics. In terms of interpre-
tation, methods used for prediction could be classified 
into “easy to interpret” and “black boxes”. Motif-based 
search and QMs are “easy to interpret” methods, while 
machine-learning methods, like ANN, HMM and SVM, 
belong to the “black box” class. Because of many ap-
proximations, “easy to interpret” models often have 
moderate predictive ability, especially those using ligand 
-based training sets, while “black box” methods have a 
high capacity for identifying binders [29]. Thus there is 
often a trade-off between the interpretative and predictive 
abilities of MHC binding prediction methods. One must 
choose between easy to interpret but moderately predic-
tive and highly predictive but uninterruptable methods. 
Using methods from the two groups in combination is a 
sensible compromise. 

Peptides which bind to MHC proteins are extremely 
flexible molecules with very many low-energy confor-
mations. Also, the binding site on class II proteins is 
open-ended which potentially allows a peptide to bind in 
several different registers [11,12]. To reduce this inherent 
uncertainty, MHC class II predictors use the “one binder- 
one pattern” assumption. Another approximation used by 
QM methods is the additivity concept based on the hy-
pothesis of independent binding of residues [30], which 
considers the binding affinity as a linear sum of the 
binding affinities at each peptide position. Of the servers 
tested, only EpiTOP avoids this assumption by including 
cross terms. Peptide binding to MHC molecules is nei-
ther single pattern-based, position-independent, or linear 
additive. 

Because of its complexity, predicting MHC binding is 
seemingly beyond the power of a single predictor. We 
can seek to overcome such limitations by combining 
several predictors, each using different training sets and 
implementing different methods. In terms of the training 
sets used to develop the predictors, NetMHCII and 
RANKPEP are pure ligand-based, ProPred is pure struc-
ture-based, while NetMHCIIpan and EpiTOP are mixed 
methods. In terms of methodology used, ProPred, 
RANKPEP and EpiTOP use QMs, while NetMHCIIpan 
and NetMHCII use ANN. ProPred and RANKPEP apply 
the hypothesis of independent binding of peptide side 
chains, NetMHCIIpan and NetMHCII as ANN methods 
represent nonlinear relationships, while EpiTOP is a QM 

containing cross terms to capture the non-linearity of 
binding. 

Considering all these differences between the predic-
tors, it is not surprising that the intersection of the five 
servers has low sensitivity but high PPV. Single servers 
do not make good or bad predictions, they just make 
quite different predictions. Only 4% of the known bind-
ers in the test set are predicted by all five servers at the 
top 5% threshold. Four servers identify 14%, three serv-
ers find 27%, two servers recognize 41% of the known 
binders. At the same time, PPV increased with the num-
ber of servers: from 14% for two-server combinations to 
31% for five-server combination. Thus, using the pre-
dictors in an intersection mode decreases the overall 
number of identified binders but increases the precision 
of prediction. Each prediction is much more likely to be 
correct, though many binders will be missed. 

Results are quite different for the approach using data 
union. The sensitivity of all two-server combinations 
ranges from 65% to 70% at the top 5% threshold. The 
three-server combinations reach 79% sensitivity at the 
same level. Such sensitivity is currently beyond that of 
any single predictor. The best performing combination is 
NetMHCIIpan, RANKPEP and EpiTOP, followed 
closely by the NetMHCII, RANKPEP and EpiTOP com-
bination with 78% sensitivity. Unfortunately, the preci-
sion of the predictions made by the union method is very 
low; the highest PPV is 8%. This means that increasing 
the number of predicted also increases false positives 
relative to the number of true positives, or more “noise” 
than “signal”. 

Due to the high resource implications of experimental 
testing, when scanning a large proteome high numbers of 
false positives present a greater problem than high num-
bers of false negatives. Taking into account only the best 
predicted binders significantly reduces the number of 
false positives. With this in mind, three conclusions 
could be derived from the present study. First, combina-
tions of different servers work better than single servers. 
Second, when the aim of the immunological study is to 
identify as many binders as possible, servers should be 
used in union mode. Third, when efficiency is a priority, 
and experimental work aims to pick out only a few, 
highly probable binders, server outputs should be com-
bined using the intersection mode. 

Meta-prediction is a now a well-established strategy 
within bioinformatic prediction [31-33]. This approach 
seeks to amalgamate the output of various predictors, 
typically internet servers, in an intelligent way so that the 
combined results possess greater accuracy than that of 
any individual predictor. Within Immunoinformatics, 
Trost et al. have used a heuristic method to address class 
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I peptide-MHC binding [34], while Dai and co-workers 
have applied these methods to predicting peptides bind-
ing to class II MHCs [35]. Making use of such a tactic 
may in time prove of significant utility. In the current 
work, we have explored the optimality of combining 
server results, and largely verified the sagacity of this 
approach. In future work, the possibility remains to lev-
erage the protocol we have developed in order to coa-
lesce diverse server outputs in a similar reinforcing 
manner. Our work lays the solid foundation upon which 
to build future success. While limits exist to what com-
putational vaccinology can achieve, it certainly offers 
tools and methods that can transform wider clinical and 
experimental endeavour. Immunoinformatic techniques 
are of true utilitarian value which can used by to foster 
and facilitate the design and discovery of vaccines, di-
agnostics, and reagents. 

Supporting Information: The test set used in the study 
is given as supporting information. 
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