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ABSTRACT 

This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a 
composite material. Our contribution is to track the Evolution of the thermomechanical behavior by establishing a new 
mathematical model that describes the variation of shear stress along the interface. This model has been implemented 
in code in C++. The results revealed that the shear of the interface increases with temperature. This increase is partly 
due to the difference in expansion coefficient between fiber and matrix. The composite studied is T300/914; Carbon- 
Epoxy. 
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1. Introduction 

Composite materials with fiber reinforcements are used 
in structural applications where mechanical properties 
are essential. The charge transfer fiber-matrix is largely 
conditioned by the mechanical response of the interface. 
Unlike the constituent fiber and matrix, which may be a 
specification and be subject to specific controls, the in- 
terface escapes in part to the efforts of analysis and fore- 
casting and may be the spot of concentration of defects 
what Bikerman called weak boundary layers [1]. Thanks 
to finite element analysis, Broutman and Agarwal [2] 
have confirmed the role of the interface, this study has 
been illustrated by the work of Théocaris [3], and the 
model of Adams [4]. 

For a single fiber surrounded by matrix, many analyti- 
cal solutions have been proposed to evaluate the shear 
stress along a fiber, the Cox model [5] in the elastic case 
and the model of Kelly [6] in the case plastic. These de- 
pend of course the mechanical characteristics of the re- 
inforcing fiber and matrix, but also how the stress is 
transmitted from the matrix to the fiber. 

The purpose is to illustrate on simple cases, the me-
chanisms of charge transfer at fiber-matrix interface and 
show their impact on macroscopic mechanical prop- er-
ties of the composite is seen clearly in the work of Pig-

gott [7] and [8] On the other hand, the technique is well 
explained by Favre [9] and Amestoy [10]. 

To better understand the mechanical behavior of the 
interface we may refer to works of Berthelot [11] and 
J.Garrigues [12]. 

Our contribution has been to follow the evolution of 
the thermomechanical behavior by establishing a new 
mathematical model that describes the variation of the 
shear stress along the interface and viewed on a micro- 
scopic scale, the distribution of shear stresses in the fiber 
and interface based on thermomechanical properties of 
each component, their respective volume fraction of the 
fiber length renfortet especially differance expansion 
coefficients of the fiber and matrix. We became inter- 
ested in two materials: the Peek/ APC2 and T300/914. 

2. Development Model 

2.1. Hypotheses 

Consider a representative volume element RVE consist- 
ing of a  fiber radius and length 2L  surrounded by a 
matrix cylinder of radius R . The fiber gives a volume  

fraction with: 
2

2f

a
V

R
 .

 
The resolution by transfer stress method is:  
 Enter the equilibrium equations. 
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 Proposition a solution through the law of thermo- 
linear elasticity. 

 Check the boundary conditions in effort. 

2.2. Setting Equations 

The load transfer between fiber and matrix operates in 
the vicinity of a discontinuity in the fiber or the matrix. 
This results in a stress gradient in the fiber is balanced by 
an interfacial shear i : 

d 2

d
f i

x a

 
                   (1) 

A first we assume the behavior of the elastic matrix:  

mG                      (2) 

where 12   is the shear deformation, mG  the shear 
modulus of the matrix and   is the shear matrix. Let 
W  be the matrix displacement along the direction of x ; 
One compatibility condition follows:  
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The balance of shear forces is written as:  

ia

r


                    (4) 

After integration of (3) on  ,a R , using (4): 
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We found the expression of known shear interface: 
  

 
ln

m
i R a

G
W W

R
a

a

  
 
 
 

            (5) 

The linear thermo elasticity gives: 
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     (6) 

where ,  ,  ,  E    are respectively the strain, Young’s 
modulus, the coefficient of thermal expansion and the 
temperature differance. 

The indices “f ” and “m” spot sizes on either the fiber 
or the matrix, which allows describing the equilibrium 
thermo elastic system by the following differential equa- 
tion: 
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With: 2 2
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and given the following equilibrium conditions [7]: 

 1 0f f f mV V                  (8) 

It comes: 
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We assume: 
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The general solution of Equation (9) is of the form: 

     cosh sinhf x A nx B nx C          (10) 
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 (11) 

By using the boundary conditions 0f   at the ex- 
tremities of the fiber x L   and x L , we find after 
integration of the Equation (9) , the value of coefficients 
A, B, C and D:  
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The general shape of the resulting stress: 
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2.3. Model Interface 

The interface shear model in terms of the various pa- 
rameters can be expressed as: 
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After variable change: 2
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For 0X  ; The shear is maximal: 
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2.4. Isothermal Case and Comparison with the  
Cox Model 

To understand the shear model of the interface expressed 
by (16) It would be interesting to see the isothermal case 
by asking: 0  . 

It comes:  
2

1max 1 tanh .
2 2
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            (17) 

It is at near constant the Cox model [6]. 

2.5. Development of the Cox Model 

Consider a representative volume element RVE consist- 
ing of a  fiber radius and length 2L  surrounded by a 
matrix cylinder of radius R  [9]. 

We apply the direction parallel to fibers (longitudinal 
direction) uniaxial traction 11 0   . Every direction 
normal to the fibers is called transverse direction. 

The law of elasticity applied to isotropic elastic ma- 
terial is written: 

 trace 2  1               (18) 

With ,     Lame constants and ,    are respec- 
tively the tensors of stress and strain Inversely: 
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This explains the existence of a transverse strains 
where the shear stresses and in the matrix and interface 
respectively. 

The method of load transfer between fiber and matrix 
[8] and [9], gives: 
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A near constant, the two expressions shear (17) and 
(21) are the same. 

3. Results and Discussion 

We were interested at T300/914 carbon epoxy com- 
posite with known mechanical properties and a well de- 
fined fiber length; the variable parameters are the tem- 
perature and the volume fiber fraction, taking into ac- 
count the considerable difference of thermal expansion 
coefficients of the fiber and matrix.  

Figure 1 shows the shearing of the interface corres- 
ponding to the thermomechanical model which we have 
accomplished in Subsection 2.3, while Figure 2 and 
Figure 3 represent the Cox model we developed in 
Subsection 2.5. 

The Figure 1 allows us to conclude and compare; 
shear increases with temperature and our model is con- 
sistent with Cox model. 

The Figure 2 and Figure 3 indeed, in the Cox model 
[7] the shear varies with the deformation applied, we have 
shown it for the two different materials Peek/APC2 (Fig- 
ure 2) and Carbone-epoxy T300/914 (Figure 3). We note 
that the shear strength of fiber-matrix interface is 4000 
MPa at the extremity of Peek, while of carbon epoxy is 
3500 MPa for a strain and for the same length of fiber. 
We find that our model describes the behavior of the 
interface; the comparison with the Cox model is the 
proof. 

The Figure 4 shows the influence of temperature on 
the stress for a fixed fraction at 10% and the Figure 5 
shows the influence of fiber volume fraction on the stress    
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Figure 1. Influence of temperature on the shear interface. 

 

 

Figure 2. Shear interface of Peek. 
 
for a fixed temperature to 140˚. 

4. Conclusions 

It is well known that the composite mechanical behavior  

 

Figure 3. Shear interface of T300/914. 
 
strongly depends on the fiber-matrix interface. This in-
terface is accessible only indirectly through the behave- 
ior it engenders in the composite or those attributed to it. 

The mechanical behavior of the interface depends on  



Thermomechanical Stress in the Evolution of Shear of Fiber-Matrix Interface Composite Material 

Copyright © 2011 SciRes.                                                                                 MSA 

403

 

Figure 4. Influence of temperature on the stress. 
 

 

Figure 5. Influence of volume fraction on the stress. 
 

several parameters of their components, fiber and matrix. 
We found that there is a greater influence of the 

tem-perature on the fiber-matrix interface behavior. We 
be- lieve that the volumic fraction of reinforcement has a 
greater contribution. This work shows that the percentage 
and the fiber type must be defined as they play a major 
role in the interface behavior of composite structures. 
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