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Abstract 
Previously we derived equations determining line broadening in ax-ray diffraction profile due to 
stacking faults. Here, we will consider line broadening due to particle size and strain which are the 
other factors affecting line broadening in a diffraction profile. When line broadening in a diffrac-
tion profile is due to particle size and strain, the theoretical model of the sample under study is 
either a Gaussian or a Cauchy function or a combination of these functions, e.g. Voigt and Pseudo-
voigt functions. Although the overall nature of these functions can be determined by Mitra’s R(x) test 
and the Pearson and Hartley χ test, details of a predicted model will be lacking. Development of a 
mathematical model to predict various parameters before embarking upon the actual experiment 
would enable correction of significant sources of error prior to calculations. Therefore, in this 
study, predictors of integral width, Fourier Transform, Second and Fourth Moment and Fourth 
Cumulant of samples represented by Gauss, Cauchy, Voigt and Pseudovoigt functions have been 
worked out. An additional parameter, the coefficient of excess, which is the ratio of the Fourth 
Moment to three times the square of the Second Moment, has been proposed. For a Gaussian pro-
file the coefficient of excess is one, whereas for Cauchy distributions, it is a function of the lattice 
variable. This parameter can also be used for determining the type of distribution present in ag-
gregates of distorted crystallites. Programs used to define the crystal structure of materials need 
to take this parameter into consideration. 
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1. Introduction 
Diffraction line profiles due to polycrystalline materials have long been recognized to be caused by physical pa-
rameters like sizes of and defects in constituent powder particles. For this purpose, parameters like full width at 
half maximum (FWHM) intensity, integral width of line profile, Fourier transforms of intensity profile etc. have 
been utilized. Additionally, the moments [1] [2] and cumulants [3] of the line profile have also been used. These 
methods include recording of the line profile and correcting them for various sources of errors prior to calcula-
tions. Therefore, it may be beneficial to develop a reasonable mathematical model for the sample, the profile and 
the process. Such models are also required for structure refining methods as in Reitveld refinement. 

The author previously showed that line broadening in a diffraction intensity profile of powdered crystalline 
materials due to stacking fault can be characterized in terms of the Zeroth, the First, the Second, the Third, and 
the Fourth Moment and the Fourth Cumulant [4]. In the present article, the scope of the characterization has 
been expanded to include line broadening due to particle size and strain as well. An example of a model that in-
cludes these factors may be found using Cauchy and Gauss functions. When the size effect is more predominant, 
the function is found to be more Cauchy-like and when the effect of strain is predominant, the Gauss model 
preponderates. So, the ideal model would be a suitable combination of both. 

The author has in the past described a method of differentiating between Cauchy and Gauss distributions in 
diffraction line profiles [5]. These distributions are now standard and are used by investigators all over the world 
to identify the characteristics of crystalline materials. The two distributions are given as follows: 

1) Gauss distribution:  

( )
2

2e
x

gf x
−

=                                       (1) 

2) Cauchy distribution: 

( ) 2

1
1c xf

x
=

+
                                     (2) 

where f(x) is the distribution for the variable x. The author also showed that the cumulative distribution  

( ) ( )1 d
2

x

x
R x f x x

−
= ∫  for these two distributions was provided in the past [5] as follows: 

For Gauss distribution: 

( ) 1 erf
2 2

xR x =                                      (3) 

For Cauchy distribution: 

( ) 11 tan
π

R x x−=                                      (4) 

Therefore, comparison of a graph of 

( ) ( )dx

x
R x f x x

−
= ∫  vs x 

with the calculated values of 
1
2 2

xerf  and 11 tan
π

x− ,  

would determine the nature of the distribution, i.e., whether it is of a Cauchy or Gauss type. Using these criteria, 
a plot of  

( )
1

I x
 vs 2x  

for a sample of Kaolinite, to test the formula  
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( ) 2 2

1
1

I x
xµ

=
+

 

yielded the value of μ, the physical parameter describing the diffraction pattern, and revealed that the distribu-
tion in this case was of a Cauchy type [6]. On the other hand, if the material had a Gauss distribution, a plot of 

( )ln I x  vs 2 2xµ  would yield the value of μ. Hence the R(x) test can be used to distinguish between crystal-
lites that are purely Gauss vs purely Cauchy. 

2. Distributions for Convolution(s) of Gauss and Cauchy Functions 
In actual practice, the distribution may be neither pure Gaussian nor pure Cauchy—but a combination of both. 
Several options are possible—1) a sum of partly Gaussian or partly Cauchy, 2) the convolution of partly Gaus-
sian or partly Cauchy functions, 3) or even the same proportion of Gauss and Cauchy functions. These combina-
tions may be purely additive or purely convolutional. The convolution may be of purely Gaussian and purely 
Cauchy (Voigt profile) [7] or partly Gaussian and partly Cauchy distributions (Pseudovoigt profiles) [8]. There-
fore, the goal of the present effort was to identify criteria to distinguish between these various combinations. 
Since the convolutional combinations are likely to be the most abundant, here we shall concentrate on these cri-
teria. 

2.1. Voigt Functions 
Convolution of two functions is by definition the inverse Fourier Transform of the product of the Fourier Trans-
forms of the two functions i.e. 

( ) ( ){ }1
g cF F F− ∗                                        (5) 

where Fg is of the Fourier Transform of the function g and Fc is the Fourier Transform of the function c (F−1 is 
the inverse Fourier Transform of the product). 

The Fourier Transform of 
2

2e
x−

 is 
2

21 e
2

t−

 
and Fourier Transform of 2

1 πe
21

t

x
−=

+
, so the product of the 

Fourier Transform of the function 
2

2e
x−

 and 2

1
1 x+

 is  

22
2

11
22 41 π π πe e e e e

2 2 22

t t
t t t

 − − +−  − − −  ⋅ ⋅ ⋅= = ⋅ ⋅                           (6) 

Since Fourier Transform carries a function in x space into t space while inverse Fourier Transform takes it 
back into x space, 

2

2
11 1

1 24 4π πe e e e
2 2

t
xF

 − +− − − − 
 
  =
 
 

, using 1
2

x t= +  

Thus for convolutions representing the Voigt function: 

( ) 2
1 1
4 4π πe e d e erf

2 2
xf x x x

− −−= =∫                              (7) 

2.2. Pseudovoigt Functions 
Pseudovoigt functions may be additive like η Cauchy + (1 − η) Gauss or of convolution type like 

2

2

20

1 e d
1

x

x
x

x
η

η

−
−

+∫  

where η is called the mixing fraction, and can be used to denote the proportion of intensity of the Cauchy type.  
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3. Fourier Transform of Integral Width Explaining Why Particle Size and Strain  
Affect Diffraction Line Profile 

3.1. Integral Width to Express Intensity Distribution in a Diffraction Profile 
Although peak position, peak height, half intensity width etc. have been used to describe an intensity distribution 
in a diffraction profile, the first satisfactory parameter has been the integral width ( )dI θ θ∫  where I(θ) is the 
intensity diffracted in the direction θ. For Voigt function the integral width will be  

( ) ( )
1
4πd e erf d

2
I x x x xβ

−
= =∫ ∫                                 (7a) 

and for the Pseudovoigt function of the additive type, this can be described in terms of 

( )1tan 1 erf
2

xxη η− + −                                     (7b) 

Whereas for the Pseudovoigt function of the convolution type, 

( )
1
41 π e erf d

2
x xηβ

η
−−

= ∫                                    (7c) 

Langford introduced the Voigt function through the integral width [7]. Instead of considering the convolution 
of the Gauss and Cauchy functions he used the convolution of the expressions of integral width as functions of 
Gauss and Cauchy types— 

( ) ( ) ( )dc gI x I u I x u u
∞

−∞
= −∫  

Fourier Transform of ( )cI u  and ( )gI u  are given by 
( ) ( ) ( )0 exp 2c c c cF t I tβ β= −  

( ) ( )2 20 exp πg g g gF t I tβ β= −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 0 exp 2 πc g c g c g c gF t F t F t t t I I t tβ β β β= ∗ = − +  

Thus  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ){ }

2 2
0

22

Re 2 0 0 exp 2 2π π d

Re 0 0 exp 1 erfc 1

c g g c c g

c c g

I x I I i x t t t

I I k iy k iy

β β β β

β

∞
 = − + 

 = − −   

∫
 

( )erfc a ib−  is a complex error function defined by ( ) ( ) ( )2
1 0
2

2exp 1 exp d
π

ziz t t tω
 
 = − +
 
 

∫  

then ( ) ( ) ( )
1
2Re 0 0 π .c c g

g

xI x I I ikβ ω
β

   = +  
    

 

Integral width 
( )2exp

.
1 erfc

g k

k

β
β

−
=

−
 

Ida [9] expressed the convolution in the form 

( )
( )

( ) ( ) ( )
2

2
2 2

e d Re Reexp erfc
π

tyV xy t worfz x iy z iz
x t y

−
∞

−∞

 = = + = − −      − +
∫  

where ( )worf z  is a scaled complex error function called the Faddeva Function. 

3.2. Fourier Transform of Diffraction Profile Based on Integral Width 

As mentioned in Section 2 above, Fourier Transform of 
2

2e
x−

 and 2

1
1 x+

 are 
2

2e
t

−
 and π e

2
t−  respectively.  
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For Voigt function the Fourier Transform is 
2

2π e
2

t t− −
. 

While the Fourier Transform for Pseudovoigt function of additive type is 

( )
2

21 e e
t

tη η
− −− +                                     (7d) 

3.3. Moments of Diffraction Profiles Broadened by Particle Size and Strain 
Intensity of X-ray diffracted in the direction 

2sinS θ
λ

= , where θ is the angle of scattering and λ is the wave 
length of the radiation scattered, is given by  

( ) ( ) ( )
0

exp 2π dI s A t ist t
τ

= ∫                                     (8) 

where τ is the limit where A(t) vanishes. By inverse Fourier Transform 

( ) ( ) ( )exp 2π dA t I s ist s
∞

−∞
= ∫                                     (9) 

And so, ( ) ( ) ( )2π exp 2π dA t s I s ist s′ = ∫ , and 

( ) ( )0 2π dA s I s s′ = ∫                                    (10) 

By differentiating Equation (8) with respect to t over and over again and then assuming t = 0, we obtain the 
values of ( )0A′′ , ( )0A′  etc.  

Wilson has shown that [1], the variance or the Second Moment of the diffraction profile can be given by 

( ) ( )
( )

( )
( )1 22

0 01 2
0 04π

A A
W

A A
σ σ

′ ′′ 
= − + + 

  
                              (11) 

where σ1 and σ2 are limits of the integral (8) instead of 0 to τ where A(t) vanishes. Very often σ1 = σ2.  
The author [2] previously showed that the Fourth Moment of the intensity expression is given by 

( )
( )

( )
( )

3 2
2 1 1 2

2 4

0 0
0 06π 8π

IVA A
A A

σ σ σ σ
µ

′+ +
= − +                              (12) 

In Equations (11) and (12), there are other terms involving ( )
( )

0
0

IVA
A

 in Equation (11) and 
( )
( )

0
0

IVA
A

′
 in Equ- 

ation (12). But these terms are negligible compared to the remaining terms. The size of the particle comprising 
the powder is given by the 0th Moment of I(s) i.e. 

( ) ( )1 d
0

A t t
A

τ

τ
ε

−
= ∫                                      (13) 

The Second and the Fourth Moment of the line profile yield the shape of the particles comprising the pow-
dered sample. Of course, they and other moments yield information regarding crystal deformations due to strain, 
stacking faults, nature and the extent of dislocations etc. In Equations (11)-(13) we have used equations for par-
ticle size only, disregarding other factors like strain, dislocation density etc. 

The author previously also showed that for a powder particle of size 1 2,p p  and 3p  with interfacial angles 
α, β and γ and Lattice constants a, b, c, the volume common to the crystal and its ghost removed by t in the hkl 
direction, is given by [6] 

( ) ( )( )( )1 2 3A t p h t p k t p l t φ′ ′ ′= − − −  

where ,hd kdh k
a b

′ ′= =  and 
ldl
c

′ = , d is the interplanar spacing in the direction of diffraction and  

2 2 21 cos cos cos 2cos cos cosφ α β γ α β γ= − − − +   
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where α, β and γ are angles between the axes 
Thus ( ) ( ) ( ) 2 3

1 2 3 1 2 2 3 2 3 3 1 2A t p p p p p k p p l p p h t p h k p k l p h l t h k l t φ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + + + + + −   
Therefore,  

( ) 1 2 30A p p p φ=  

( ) ( )1 3 2 1 3 10A p p k p p l p p h φ′ ′ ′ ′= − + +  

( ) ( )3 1 20 2A p h k p k l p h l φ′′ ′ ′ ′ ′ ′ ′= + +  

( )0 3A h k l φ′′′ ′ ′ ′=  

Hence  

( )
( ) 2 3 2

0
0

A k l h
A p p p
′  ′ ′ ′

= − + + 
 

 

( )
( ) 1 2 2 3 1 3

0
2

0
A h k k l h l
A p p p p p p
′′  ′ ′ ′ ′ ′ ′

= + + 
 

 

( )
( ) 1 2 3

0
3

0
A h k l
A p p p
′′′ ′ ′ ′

=  

For h00, 0k0 and 00l reflection, only one dimension of the particle will be obtained, with hk0, 0kl and h0l ref-
lections only two dimensions will be obtained. For a cylindrical crystal, the above equations will be modified in 
terms of equations derived by Langford and Louër [10]. 

4. Moments of Different Distributions 
4.1. The Gaussian Profile 
It is known from Equation 509 [11] that 

( )22
10

1 3 5 2 1 πe d
2

n ax
n n

n
x x

aa
∞ −

+

⋅ ⋅ −
⋅

⋅
=∫



                              (14) 

Putting n = 1 and a = 1/2, we have the expression for the Second Moment of a Gaussian function, 
2

2 2 1e d 2π
2

x

x x
−

=⋅∫                                      (15) 

And putting n = 2 and a = 1/2, we have the expression for the Fourth Moment of a Gaussian function 
2

4 2 3e d 2π
2

x

x x
−

=⋅∫                                     (16) 

Equations (15) and (16) represent the Second and the Fourth Moment of a Gaussian profile. Cernansky has 
derived the equations [3] 

( )2 2 πexp dr
g r s s

r
µ

∞

−∞
= − =∫  and ( )2 2 2

2 2
0

1 1exp d
2

r
g s r s s

r
µ

µ
∞

−∞
= − =∫             (16a) 

and 

( )4 2 2
4 4

0

1 3exp d
4

r
g s r s s

r
µ

µ
∞

−∞
= − =∫  

4.2. The Cauchy Profile 

For a Cauchy profile ( ) 2

1
1

f x
x

=
+

, the Second Moment, using Equation 67 [11], is 
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2
1

2

d tan
1

n

n

x x x x
x

+ −

−
= −

+∫                               (17)  

and the Fourth Moment, from Equation 2.147.3 [10], is 
34

1
2

d tan
31

n

n

x x x x x
x

+
−

−

= − +
+∫                               (18) 

4.3. The Voigt Profile 
The Second Moment of the Voigt profile is given by 

( ) ( )2 2 dx I x x I x x− ∫                                (19) 

where ( )
1
4π e erf

2
I x x

−
=  from Equation (7a)  

1 3 5
4π 2e

2 3 10π
x xx

−  
= − + 

 
⋅  from Equation 811 [11] 

1 3 5
4e

3 10
x xx

−  
= − + 

 
. 

For large positive value of x 
( )2

2 3

exp 1 3erf 1 1
2 4π

x
x

x xx

−  = − − +  
 from Equation 812 [11]. 

Similarly the Fourth Moment of the Voigt profile is given by  

( ) ( ) ( )

2

2
4 4 3 2

2

e d 4 d 12 d d
1

x

x x x I x x I x x x I x x x
x

−

= − +
+∫ ∫ ∫∫                   (20) 

4.4. The Pseudovoigt Profile 
For the Pseudovoigt profile of the convolution type the Second and Fourth Moment will be given by Equations  

(19) and (20) multiplied by 1 η
η
−  and for Pseudovoigt profiles of additive type 

1) Second Moment  

( ) ( )111 2π tan
2

x xη η −− + −                               (21) 

2) Fourth Moment  

( )
3

131 2π tan
2 3

x x xη η − 
− + − + 

 
                              (22) 

5. The Fourth Cumulant for the Different Distributions 
Since the Second Moment and Second Cumulant are equal and we have already studied the Second Moment, we 
shall be examining only the Fourth Cumulant. All cumulants along with the Fourth Cumulant have the additive 
property namely 

( ) ( ) ( ) ( )4 1 2 3 4 1 4 2 4 3C x x x C x C x C x+ + + = + + +   

x1, x2, x3 being specific properties like size, strain, stacking fault, probability etc. The Fourth Cumulant C4 is 
given by 

2
4 4 23C µ µ= −  
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where μ4 and μ2 are the Fourth and Second Moment respectively which have been described in this paper. The 
Fourth Cumulant is given as shown below. 

5.1. For Gaussian Distribution 

Fourth Cumulant 2
4 4 23g g gC µ µ= −  

4
3 2π
2gµ =  by Equation (16) 

2
1 2π
2gµ =  by Equation (15) 

( )4
3 3 32π π 2π π
2 2 2gC = − = −                               (23) 

according to Cernansky 4 0gC =  [3]. Indeed, Equations (22) and (23) indicate that it is a very small quantity. 

5.2. For Cauchy Distribution 

By Equation (18) 
3

1
4 tan

3c
x x xµ −= − +  

By Equation (17) 1
2 tanc x xµ −= −  

Thus  

( )
3

2 1 1
4 4 23 4 tan 7 3tan

3c c c
xC x x xµ µ − −= − = − + −                    (24) 

5.3. For Voigt Distribution 
2

4 4 23v v vC µ µ= −  from Equations (19) and (20). 

5.4. For Pseudovoigt Distributions 
The Fourth Cumulant can be found similarly from Equations (21) and (22). Now, to distinguish between Voigt 
and Pseudovoigt functions, an additional parameter, the coefficient of excess, is introduced here. It is the ratio of 
the Fourth Moment and three times the square of the Second Moment [12]. According to Cernansky for a Gaus-
sian system the ratio is 1 [3]. The above calculations show that for the Cauchy system, the ratio is  

( )
3 1

4
2 2 1 1
2

3 3 tan
3 9 2 tan 1 tan

c

c

x x x
x x x x

µ
µ

−

− −

− +
=

 − − 
 from Equations (18) and (17) respectively. 

Hence this study proposes that Equations (19) and (21) may be used for identifying Voigt and Pseudovoigt 
distributions, respectively. 

5.5. The χ Test 
Pearson and Hartley [13] have described the χ test for determining the nature of the lineprofile. Here  

24

2

3
2

rµ
χ

µ
= =  for Gaussian function and 

3 1

1

tan
tan

x x x
x x

−

−

− +
−

 for Cauchy distribution.  

For Voigt and Pseudovoigt distribution Equations (20) and (19), (22) and (21) should be used. 

6. Parameters from Either a Single or a Few Lines 
6.1. The Method of Line Breadth 
That more than one parameter can be studied from one line in a Debye Scherrer pattern was noticed by Wil-
liamson & Hall who assumed that particle size and strain broadenings had Cauchy like distribution [14]. This 
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means that the observed breadth of a line β is the sum of breadths due to particle size and strain i.e. 

obs particlesize strainβ β β= +  

or  

2 tan
cos

e
t
λβ θ
θ

= +  

where t is the apparent particle size and e is apparent strain, θ is the angle of scattering and λ is the wave length 
scattered. 

Thus  

cos 1 2 sine
t

β θ θ
λ

= +                                      (25) 

Plotting 
cosβ θ
λ

 vs sinθ , one can obtain the particle size t from the intercept one from the slope of the  

curve. Equation (25) is the well-known Williamson-Hall relation much used by many investigators [14]. Particle 
size and strain also can be determined by the famous Warren-Averbach method [15]. 

6.2. The Method of Line Profile 
Warren and Averbach showed that the Fourier Transform of a line profile yield significant information regard-
ing particle size, particle strain, probability of faulting and many other crystal defects [15]. They also showed 
that an intensity profile can be expressed as a Fourier series 

( ) ( )exp 2π dI s v t ist t= ∫                                 (26) 

where v(t) is the Fourier Transform of the particle size, (st) stands for strain. For determining particle size and 
strain only, Warren and Averbach has developed a simple method [15]. Convert hkl reflection into h1k1l1, 
2h12k12l1 etc. reflections by suitably changing axes as far as possible. Then let them be considered as 00l, 002l, 
003l etc. by necessarily changing axes. Then write 

( ) ( ) ( ) ( ) ( )cos 2π cos 2πn n n n nn nI s A l A d st A l A d lZ= =∑ ∑  

Now  

( )2 22 2 2 2cos 2π 1 2π 2πn n n nlZ l l Z l Z= − = −  

For small value of l and n, the logarithm of the measured Fourier coefficient is given by  

( ) 2 2 22πs
n n n n nl A l l A l Z= −  

By plotting lnA(n) against l2 we obtain at l = 0, the value of s
nA  and from the slope, 2 22π nZ− . The distance 

l = na3 is the undistorted distance a3Zn. 
In general, Equation (26) can be written in a summation form 

( ) [ ]cos 2π sin 2πn nnI s A nst B nst= +∑  

where d s
n n nA A A⋅= , d

nA  is the coefficient for particle size broadening, s
nA  for strain. Warren and Warekois 

[16] showed that this causes a shift in peak position in 70.50 α brass and CoKα  radiation. 

( )°
200 111Δ 2 2 6.2 pθ θ− = −  

where p is the stalking fault probability. Also  

111

d 1 1.5 3
d 4

s
nA

n D a
α γ  +

− = + 
 

 

And  
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200

d 1 1.5
d

s
nA

n D a
α γ  +

− = + 
 

 

where γ is the twin fault probability, and a is the lattice constant. 

7. Conclusion 
The application of the above formulae depends on the recognition of the proper mathematical model. To achieve 
this, the best way is the ( )R x  test devised by Mitra [5] to distinguish between Gauss and Cauchy profiles (de-
scribed in [13]). Plot of intensity vs the angle of curve will yield considerable information. For each peak—non- 
overlapped by neighboring peaks, the corresponding intensity vs angle of scattering curve should be examined 
to determine if it belongs to Gaussian, Cauchy, Voigt and Pseudovoigt type and if so, the mixing parameter can  

be obtained by comparing with erf
2

x , 1tan x− , erf x , 1 erf xη
η
− , ( )1 erf

2
xη−  and  

( ) 11 erf tan
2

x xη η −− +  respectively. There is a likelihood of confusion between Gaussian, Voigt and Pseudo- 

voigt of convolution type. This can probably be resolved by examining additional peaks. Similarly, determining 
particle sizes by trying the relevant formulae may be helpful. The advantage of this procedure is that overlap-
ping of lines will not interfere with the determination of the parameters. It is important to note that the Fourth 
Cumulant is an important parameter—since it is the only parameter which can decompose the observed line pro-
file into profiles for different reasons of line shape. By a reverse analysis of the shape of the diffraction profile, 
it should be possible to identify the nature of the line profile—Gauss, Cauchy, Voigt, Pseudovoigt and hence, of 
the mixing parameter. From these—it should be possible to determine the parameters of line broadening. It is 
expected to be a good test for pattern decomposition. In this connection, another test—the χ test due to Pearson and  

Hartley may be mentioned [13]. 4

2

µ
χ

µ
= , and this can be calculated for the Gauss, Cauchy, Voigt and Pseudo-  

voigt functions using Formulae (15), (17) and (18). Pearson and Hartley have given numerical values to identify 
Pearson type IV and Pearson type VII curves as well [13]. 
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