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Abstract

Missing values are prevalent in real-world datasets and they may reduce predictive performance
of a learning algorithm. Dissolved Gas Analysis (DGA), one of the most deployable methods for de-
tecting and predicting incipient faults in power transformers is one of the casualties. Thus, this
paper proposes filling-in the missing values found in a DGA dataset using the k-nearest neighbor
imputation method with two different distance metrics: Euclidean and Cityblock. Thereafter, using
these imputed datasets as inputs, this study applies Support Vector Machine (SVM) to built models
which are used to classify transformer faults. Experimental results are provided to show the effec-
tiveness of the proposed approach.
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1. Introduction

Power transformers are used for transmitting and distributing electricity from plant to customer in utility com-
panies worldwide. Therefore, it is important to always ensure good operating condition of power transformers to
provide reliable and continuous supply of electrical power, a necessity in this modern world. Acting on this fact,
utility companies have implemented various condition assessment and maintenance measures, and Dissolved
Gas Analysis (DGA) is one of them. DGA is a method that detects and predict faults found in oil-filled trans-
formers by: a) analyzing the concentration of certain gases dissolved in the insulating oil, and their gassing rates,
and gas ratios, b) identification of fault using diagnostic tools such as Key Gas [1], IEC ratios, Rogers ratios [1],
Dornenburg ratios [1] and Duval Triangle [2]. However, these tools face some shortcomings. In some cases, the
calculated gas ratios fall outside the established ratios codes of the aforementioned tools. As a result, faults that
occur inside transformers may not be identifiable [3]. In addition, these tools can give different analysis results
for the same dissolved gas record, and it is difficult for engineers to conclude a final assessment when faced
with so much diverse information [4].
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Those drawbacks have motivated many researchers to develop faults diagnostics tools embedded with ma-
chine learning techniques that learn from historic DGA data to predict new or unknown faults. In recent years,
Support Vector Machine (SVM) has been widely applied for classification of power transformer faults. Such in-
terest is justified by: 1) SVM excellent generalization ability to new knowledge; 2) SVM requires limited effort
for architecture design (i.e., it involves few control parameters); and 3) SVM ability to classify non-linear prob-
lems. Capitalizing on these strengths, this paper adopts SVM to learn from historic DGA data to predict faults of
power transformer.

Alas, those strengths of SVM are not the only deciding factor for achieving higher predictive accuracy of its
learning task. The representation and quality of the training data is first and foremost [5]. One factor that affects
data quality is the presence of missing values in a dataset. Unfortunately, it is a common fact that missing values
persistently appear in most real-world data sources and DGA datasets are no exception as documented by [6]. It
has been proven [7] [8] that as missing values increase in a dataset, the predictive accuracy of an algorithm that
learns from this dataset decreases in tandem. As many statistical and learning methods cannot deal with missing
values directly, examples with missing values are often deleted. However, deleting cases can result in the loss of
a large amount of valuable data. Thus, much previous research has focused on filling-in the missing values with
estimated values (“imputing”) before learning and testing is applied to.

In this paper, we propose imputing the missing values in a DGA dataset before the learning process of SVM
takes place with the main objective of increasing SVM performance in classifying power transformers' faults. At
present, there are many established imputations methods such as mean/mode, regression, expectation maximiza-
tion and multiple imputation to choose from. These techniques, however, require a priori knowledge of data dis-
tribution in order to produce as accurate estimation values as possible. In view of this hard-to-realize prerequi-
site, this paper adopts a simpler well-known method that is the k-nearest neighbour (kNN) to estimate plausible
values to fill-in the missing values in DGA dataset. The successful attempts by [9] [10] in using kNN for imput-
ing missing values have also motivated us to do the same.

In Section 2 we briefly described imputation methods and application of SVM. The proposed combination of
KNN imputation method and SVM is elaborated in Section 3. Section 4 presents and analysed experimental re-
sults. Section 5 concludes our findings and future work.

2. Related Work
2.1. Imputation Methods

Various methods have emerged over the years to determine and assign replacement values for missing data
items. These methods can be categorised into statistical [11] [12] and machine learning methods [13]. Linear re-
gression, multiple imputation, parametric imputation, and non-parametric imputation fall into the first category;
whilst neural networks, decision tree imputation, and kNN fall into the latter.

The kNN algorithm fills in missing data by taking values from other observations in the same data set. This
method searches the k-nearest neighbours of the case with missing value(s) and replaces the missing value(s) by
the mean or mode value of the corresponding feature values of the k-nearest neighbours. The advantages of the
kNN imputation are:

1) It does not require creating a predictive model for each feature with missing data.

2) It can treat both continuous and categorical values.

3) It can easily deal with cases with multiple missing values.

4) It takes into account the correlation structure of the data.

Most notably, kNN is also a non-parametric imputation which makes it practically

2.2. Application of Support Vector Machine

In the area of pattern recognition, SVM has been applied to recognize offline and online handwritten characters.
After extracting important features such as chain code, density, and number of lines, SVM was trained on these
features to build a model to recognize offline handwritten numbers in [14]. The authors reported 98.99% recog-
nition rate. Meanwhile, researchers in [15] combined two classifiers which were Convolutional Neural Network
(CNN) and SVM to solve the handwritten digit recognition problem. Their hybrid model was evaluated in two
aspects: the recognition accuracy and the reliability performance. Experimental results on the MNIST digit da-
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tabase showed the proposed hybrid model surpassed CNN and human subjects.

SVM has also gained attention in the image recognition field. The authors in [16] automated the process of
bacterial recognition and counting during the process of detection of food contamination. Compared with the
results recognized by human eye, SVM can effectively distinguish the bacteria from non-bacteria in the image,
and greatly reduce the detection time of each sample. SVM was applied in [17] to recognize facial expression by
Gabor features which separate facial region from images and reported satisfied results.

In the context of faults prediction of power transformers, some experimental investigations pointed out the
effectiveness of SVM in classification of fault despite the small size of DGA training and testing samples. Re-
searchers in [18]-[20] trained and tested their SVM using less than 100 samples for each investigated fault and
reported accuracy between 80%-100%. Their SVM classifier also performed better when compared to ratio-
based DGA diagnostic tools and NN and fuzzy logic

3. The Proposed Method

Figure 1 depicts the system architecture for classifying transformer faults. As an input is the incomplete (dataset
that contains missing values) DGA dataset, then, all missing values are filled-in with estimated values obtained
from the kNN algorithm which results in a complete DGA dataset (dataset with no missing values). Using this
complete dataset, SVM learns and predicts the transformer faults.

3.1. Impute Missing Values Using kNN

As an imputation method, the kNN algorithm is very efficient and simple to execute. In this method, the missing
values of a sample are imputed considering k samples that are most similar to the sample of interest. The simi-
larity of two samples is determined using a distance metric. This study uses three well-known distance metrics
to gauge similarities among samples.

1) City Block Distance (CB): It is based on Taxicab geometry, first considered by Hermann Minkowski in the
19th century, is a form of geometry in which in which the distance between two points is the sum the absolute
differences of their coordinates defined using the following equation:

dst = Z
=1

2) Euclidan Distance (EU): This is the most usual way of computing a distance between two objects. It ex-
amines the root of square differences between coordinates of a pair of objects and is defined using the following
equation:

X5~ Yy | ()

dst = i(xsj - ytj )2 (2)

Generally, the steps of k-NN are as follows:

a) choose k, the number of nearest neighbours to be selected.

b) calculate the distance between the sample with the to-be-imputed missing value with an another sample
using a distance metric. Let X; ={X,,X,,---,%,} denotes the instance that contains the to-be-imputed missing
values and X, = {qu, Xgor 0 X be the other sample. If the metric is CB then the distance between X, and

Xq IS:

qm
m

d (X Xg) =[x =%y )

where m is the number of features in X; and X,,and x; isthe j™ feature of sample X, and X, isthe jin
feature of sample X, .

Incomplete Impute missing Complete Classify faults
DGA . DGA .
values using KNN using SVM
dataset dataset

Figure 1. The proposed method for classifying transformer faults.




Z. B. Sahri, R. B. Yusof

€)  Repeat step 2 to compute the distance between X, with each remaining sample in the dataset.
d) sortinascending order (based on the calculated distance values) all X, excluding X;.
e)  select the top k samples from the sorted list as the k-nearest neighbours to X, . These k-nearest neigh-
boursare X ={Xy, X, X, } .
f)  Let x; be the to-be-imputed missing value in X, . Then the estimated value is obtained from
k
2%
_ 1=
5= (4)
where k is the number of nearest neighbours, x; is the j™ feature of sample X and X, e Xy -

3.2. Classify Using SM

Figure 2 depicts the implementation of SVM for classifying transformer faults using DGA datasets. In this
phase, the dataset used as input is the imputed and complete dataset from the imputation phase executed earlier.

a) Normalization: A common characteristics of DGA datasets is the wide range of values contained in
some of the attributes. To avoid the possible domination of attributes with greater numeric ranges, this study
adopts a preprocessing technique called normalization, specifically the min-max normalization. All attributes are
normalized to [0,1] as follows:

v=yZmin, (5)
max—min
where v is the actual value, min is the minimum value of an attribute A, max is the maximum value of attribute
A, V' isthe normalized value.

b)  Training and Testing Data: Since SVM is a supervised learning algorithm, the original DGA dataset is
randomly split into two parts: a training dataset for deciding the hyperplane that can separate the samples into
different classes (i.e. different fault types) and a testing dataset for verifying the classification accuracy of the
algorithms. Note that the samples distribution among different classes in both training and testing dataset are
kept as the same as that in the original dataset.

c)  Model Selection: In view of the possibility that classifying fault using DGA dataset is a non-linear
problem, the study chooses three different kernels that helps SVM to solve non-linear classification. They are
Radial Basis Function (RBF), Polynomial and Sigmoid kernels which equations are as follow:

« Polynomial: K (x,x;)=(ax"x; +r
¢ Radial Basis Function: K (xi,xj ) =
* Sigmoid: K(x,x,)=tanh{ax"x, + ?

d) 1-vs-1 SVM: SVM is originally designed for binary classification. However, some datasets contain mul-
ti-class labels to learn from and DGA is an example of such datasets. Fortunately, a few extensions to SVM have
been developed such as multi-level, one-against-all, one-against-one, and DAGSVM to solve this multi-category

Imputed . data
peA "o inerval
dataset ' Testing
Data
Classifiers
Testing
Data

Fault Types

& 7hixile

‘ ¢ = number of faults ‘

Training ‘ model selection ‘
data

Train the c(c-1)/2
SVMs (1-vs-1)

Figure 2. Flowchart of SVM.
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issue. Following the recommendations made by a few researchers [21] [22] on the benefits of one-against-one
method, this study adopts it to diagnose different fault types in DGA datasets. Based on the idea of “divide and
conquer”, one-against-one method decomposes the multi-class problem into c(c-1)/2 binary SVMs where ¢ is
the number of classes in the experimented dataset. Upon learning from the training set, a classifier is built which
is used to classify faults in the testing set.

4. Experimental Designs and Results
4.1. Dataset

DGA datasets, with different percentages of actual missing values, are imputed and classified in this study. The
first DGA dataset (named MAL) is obtained from a local Malaysian utility company which manage various
transformers located throughout Malaysia, whilst IECDB10 [6] is the second. The characteristics of the datasets
are shown in Table 1. A sample of DGA data consists of a number of dissolved gases in oil and the correspond-
ing fault type as shown in Table 2. Dashes in Table 2 represents missing values (missing gases).

4.2. Experimental Setup

One of the advantages of the kNN method in imputing missing values is that it requires only few parameters to
tune: k and the distance metric, for achieving high estimation accuracy. Because both datasets in Table 1 are
quite small in size, this study chooses k = {1, 3, 5, 7, 9}. Two different distance metrics mentioned in Section
3.1 are compared. Therefore, each incomplete dataset will be filled-in using kNN for different values of k and
for three different distance metrics.

After filling in the missing values in DGA datasets, using the imputed datasets as input, SVM was trained and
its model predicted the fault types. The effectiveness of SVM is measured using accuracy defined as follows:

Accuracy = Do 100% @)
n

where n_ is the number of instances whose class labels are predicted correctly and n is the total number of in-
stances in a test set. SVM with three different kernels were used as mentioned in Section 3.2.

As we want to estimate how accurately a predictive model will perform in practice, this study performed a
5-fold cross-validation where a dataset is divided into 5 disjoint sets (folds), 4 folds are used for training and the
last fold is used for evaluation. This process is repeated 5 times, leaving one different fold for evaluation each
time. Further, to reduce variability, 100 runs of this 5-fold cross-validation were carried out and the accuracy of

Table 1. The characteristics DGA datasets used in this study.

IEC10DB MAL
Number of samples 167 1228
Number of dissolved gases 7 9
Number of fault type 6 6
Instances with missing values (%) 27.54 76.07
Missing values (%) 7.96 14.21
Table 2. A DGA dataset with missing values.
H, CH, (e{6] CO, CoHy CyHe CH Fault
9 5 403 1316 12 1 - PD
61 - 217 2039 1 - 6712 PD
- 2504 1251 566 640 18 3251 Arcing
11 3 624 2043 56 3 5129 Arcing
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(1) equals to the mean of the accuracies of all run.

This paper used a commercial software package MATLAB [23] to impute the missing values as well as clas-
sify the faults. The three kernels of SVM require different parameters which values affect the performance of
SVM. However, optimizing of these parameters is not the purpose of this study, therefore the default parameter
values provided by MATLAB were adopted. The effectiveness of our proposed method to diagnose power trans-
former faults was validated using the “before-and-after” experiment where the accuracies of each kernel learned
on the original incomplete datasets and that learned on the imputed datasets were compared. Because MATLAB
is one of the software that cannot deal with datasets with missing values unless they are deleted, we filled-in the
missing values with zero instead, to enable MATLAB to perform classification task. However, we would like to
remind that zero is not a missing value. As such, the before-and-after experiment is reduced to comparison be-
tween zero-filled datasets with imputed dataset using KNN imputation method.

4.3. Case Study 1: IEC10DB Dataset

Figure 3 and 4 shows the comparative performances of SYM_RBF, SVM_POLY, and SVM_SIG that predict
fault using imputed IEC10DB dataset that was imputed using different values of k for two distance metrics. Us-
ing CB as the distance metric, the individual performance of the three kernels over different values of k were
pretty much the same as evident in Figure 3. Among the three kernels, SVM_RBF registered the highest accu-
racy at k = 5. whilst SVM_SIG performed the worst. In the case of EU (Figure 4), similar observations as CB
were recorded in terms of the influence of the different values of k to the individual performance of each kernel.
Again, SVM_RBF outperformed the other methods and SVM_SIG performed the worst.

Table 3 shows the values of k that helped achieved highest accuracy for each SVM kernel using two distant
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metrics. When k = 1, SVM_POLY performed the best, whilst the other two kernels predicted better over higher
k. It can be said, the choice of distance metric and the kernel determine the best k. The results of the before-
and-after experiment for this dataset are shown in Figure 5. For this comparison, only the highest accuracy for
each kernel over each distance metric was taken for comparison. It is noted that two kernels, namely SVM_RBF
and SVM_SIG had better performance using imputed datasets than learning from zero-filled dataset. All im-
puted datasets obtained using all of the three kernels improved, albeit slightly, these two kernels. The opposite
was reported by SVM_POLY.

4.4. Case Study 2: MAL

Figure 6 and 7 show the comparative performances of SVM_RBF, SVM_POLY, and SVM_SIG on each im-
puted dataset using the two distant metrics. It can be seen that, in the case of CB (see Figure 6), higher values of
k increased the performances of all of the kernels. However, the performance of each kernel varies greatly
among each other. SVM_RBF outperformed the other two kernels with big differences, and reached the highest
accuracy at k = 9. SVM_SIG performed second after SVM_RBF, and the highest accuracy was obtained when k
= 9. The worst performer was SVM_POLY which was at its most accurate when k = 7.

Similar observations as CB were seen when EU was the distance metric as shown in Figure 7. However, the
effect of higher k to the individual performance of each kernel was more pronounced and better using EU as the
distance metric. Again, SVM_RBF was the most effective of all and achieved the highest accuracy when k = 9.
Next was SVM_SIG, which recorded the highest accuracy when k = 5. SVM_POLY was the least effective and
it performed the best when k = 5. It can be seen that, EU improved the performance of each kernel better than
CB for the MAL dataset.

Table 4 shows the values of k that help achieved highest prediction rate by the kernels. For this dataset, it is
clear that all kernels predicted better over higher values of k. In fact SVM_RBF worked best when k = 9 for the
two distance metrics. The results of the before-and-after experiment are shown in Figure 8. For this comparison,
only the highest accuracy for each kernel over each distance metric was taken for comparison. For this dataset,
all of the kernels had better performance using imputed datasets than learning from zero-filled dataset. Although
SVM_POLY was the least effective, it benefited the most when missing values were imputed before learning
took place.

4.5. Analysis

a) The value of the best k, the number of nearest neighbor is determined by the individual dataset and the
choice of distance metric. However, larger values of k increase the kernels performance when high amount of
missing values are found in a dataset as in the case of the MAL dataset.

b) For both of the datasets, imputed datasets using EU provide better performance for two kernels (SVM _
RBF and SVM_SIG) than CB. For SVM_POLY, it works better with CB than EU on the small dataset IEC10DB.
The opposite is true for the large dataset MAL.

Table 3. The best value of k for each kernel for IEC10DB dataset.

Cityblock Euclidean
SVM_RBF k=5 k=3
SVM_POLY k=1 k=1
SVM_SIG k=3 k=5

Table 4. The best value of k for each kernel for the MAL dataset.

Cityblock Euclidean
SVM_RBF k=9 k=9
SVM_POLY k=7 k=5
SVM_SIG k=9 k=5
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Zero-Filled vs. Imputed Datasets
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c) For both of the datasets, SVM_RBF is the most effective among the three SVM kernels. However,
SVM_POLY and SVM_SIG are dataset-dependent. SVM_POLY performs better on the IEC10DB dataset than
SVM_SIG. The opposite is true for the MAL dataset.

d) For most of the experimental settings, imputing missing values in a DGA dataset improve the performance
of SVM Kkernels compared to learning from a zero-filled datasets. SVM_RBF and SVM_SIG performed better
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Zero-Filled vs. Imputed Datasets
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on both of imputed datasets than on zero-filled dataset. Only SVM_POLY has opposite results in one of the da-
taset.

e) For DGA dataset having a large number of missing values like the MAL dataset, imputing missing values
with kNN does improve the performance of all the kernels.

f) The best kernel is SVM_RBF which consistently outperforms the other two kernels and the best distant
metric is EU. The combination of these two also produces the highest accuracy for both DGA dataset of differ-
ent sizes and different percentages of missing values.

5. Conclusions

This paper proposes imputing the missing values found in a DGA dataset using the well-known kNN imputation
method before letting SVM—a widely applied classification algorithm—Iearns and builds classifier to predict
transformer faults. The experiments conducted using this proposed combination show the significant improve-
ments in classifying the faults of power transformer especially when the percentage of missing values in DGA
dataset is high. Moreover, by imputing missing values in a dataset enable some software to perform statistical
analysis or machine learning task to be carried out without having to omit the samples that contain the missing
values.

For future research, this study intents to conduct experiments using other combination of classification algo-
rithms and/or imputation methods.
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