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ABSTRACT 

A simple model shows how it is possible to create a gap in the vibrational spectrum of a one-dimensional lattice. The 
proposed model is a host-guest chain having, instead of point-like masses connected by spring, massive cages hosting 
particles inside. We imagine the cage as a rigid box containing a mass linked by a spring to the box inner wall. The 
presence of guests creates an energy gap in the dispersion of vibrational frequencies. The gap is about the internal 
resonance of the mass hidden in the cage. The model is proposed to help understanding the macroscopic behaviour of 
some phononic materials and the properties of materials with microscopic rattling modes. 
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1. Introduction 

In spite of their simplicity, the study of models with 
masses or rods connected by springs can be quite helpful 
in understanding the properties of metamaterials as of 
other nano-engineered structures. The term “metamate- 
rial”, credited to Rodger Walser, indicates a material, 
which gains its properties from its structure, rather than 
from the properties of components [1,2]. In fact, the term 
“metamaterial” is commonly used for composites, which 
are distinguishing themselves for unusual properties. 
There are several examples regarding electromagnetism 
and elastic properties. We have, for instance, the left- 
handed materials possessing negative refractive index, 
able to affect in an uncommon way the passage of elec- 
tromagnetic waves near them [3-6]. In the case of elastic 
materials, a property considered as unusual is a negative 
Poisson’s ratio. Materials with negative Poisson coeffi- 
cient are named auxetics [7-12]. Among them, natural 
auxetics occur in biological systems too. 

Metamaterials usually share similar behaviours with 
photonic and phononic crystals [13,14]. For instance, 
some metamaterials have been prepared, which are able 
to act as total wave reflector within certain sonic fre- 
quency ranges. These sonic materials, which are then 
behaving as phononic crystals, are mainly fabricated in- 
cluding in a hosting component some localized resonant 
structures [15]. 

As in the case of electromagnetic metamaterials, we 
can prepare some composites displaying an effective “ne- 
gative” elastic constant, analogous to the negative refrac- 
tive index [16,17]. In [16], the author is discussing the 
case of metamaterials, which are guest-host systems, 
having units possessing hidden resonant masses inside. 
Figures in Reference [16] are quite stimulating to study 
and discuss the vibrational properties of such structures. 
Among the many models composed of rigid cages with 
moving particles inside, let us use the simplest one we 
can imagine, that is a one-dimensional chain composed 
of rigid host-guest units. 

2. A Host-Guest Model 

Figure 1 shows the model. It is a simple spring model 
describing an interacting system of host cages of mass 
M  interconnected by springs having constant K  and 
guest atoms of mass m  attached to the cage inner walls 
by means of springs with constant K  . The one-dimen- 
sional model we consider has then rigid units and spring 
connections, with distance L  between cages. The unit 
cell of the lattice has a position given by the lattice indi- 
ces 1,  ,  1,  2,i i i i    . If the cage is imagined as a 
closed box, a mass can be hidden in it. Its presence is 
revealed by the frequencies of the system. 

Let us define o K M  , K m   which are the 
natural angular frequencies of cage and hidden masses. 
In the following we will use the dimensionless ratios:  
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Figure 1. The unit of the chain is composed by a cage with a 
hidden mass inside. 
 
k K K  , m m M  , o    and o    . 
Let us investigate the harmonic vibrations of the chain 
supposed to be infinite with displacements of masses in 
longitudinal direction. ,b ix  is the displacement from 
equilibrium of one of two masses, that are the cage and 
the hidden mass: b  can have two possible determina- 
tions M  and m  for the reticular position i  of equi- 
librium. 

In the case of small displacements, equations are: 
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that is, using . , ,,  i M i i M i m ix x x    , we have:  
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If we are looking for Bloch waves with wavevector q, 
it is possible to write for each lattice site: 

   exp ;  expi i i iA i t iqx B i t iqx          (3) 

and then the dispersion relations for frequency ω can be 
easily obtained from the dynamical Equations (2); in the 
following way. We defined L the distance between cages; 
then 1i iL x x  , is the distance between the sites of the 
chain. Inserting (3) in (1) we have:  
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(4) 
and then:  
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These equations have a non-trivial solution when: 
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In Equation (6),   2 1 cosC K qL  . This equation 
gives the dispersion relation  q   of the angular 
frequency as a function of a given wavenumber q . 

Let us consider for plotting, the reduced frequencies 

o    , o   . Dispersion relations of the chain 
as a function of the wavenumber q are shown in Figure 2. 
Let us remember that the dispersion relation is showing 
the angular frequency   (in our case the reduced an- 
gular frequency  ), as a function of the wavenumber 
q . Note the existence of a phononic gap between the two 
branches. This gap is about the natural frequency of the 
mass inside the cage. The figure is obtained assuming 

1 4,  1 4m k   . The horizontal line represents Ω , 
the reduced natural frequency of the hidden oscillator. At 
the edge of the Brillouin Zone, we have a frequency of 
the system almost corresponding to that of the natural 
oscillation Ω . This is an important result for the engi- 
neering of phononic materials, because it means that the 
propagation of waves with a frequency equal to that of 
the internal resonance is not allowed. Using specific val- 
ues of ,  m k  , it is possible tailoring the phononic prop- 
erties of the metamaterial. 

Figure 3 shows the dispersion of vibrational frequent- 
cies in several conditions. In the upper part of the figure, 
 

 

Figure 2. Dispersion of vibrational frequencies for model in 
Figure 1 Ω' is the reduced natural frequency of the hidden 
oscillator. Note that at the edge of the Brillouin Zone (en- 
circled) we have a frequency almost corresponding to that 
of the natural oscillation of the hidden mass. This means 
that the propagation of waves with a frequency equal to 
that of the internal resonance is not allowed. 
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Figure 3. In the upper part of the figure, it is shown the behaviour of dispersion for three fixed values of k'. In each panel, m' 
is changing from 0.25 to 2.5. It is possible to see that the gap increases and that the acoustic branch has a long wavelength 
limit possessing a sound speed decreasing with the increase of the hidden mass. On the right, for k' = 1.5, the gap corre- 
sponding to m' = 2.5 is explicitly shown as a grey band, overlying the curves. In the lower part of the image, it is the value of 
m' to be fixed and each panel shows the dispersions as the constant of the spring k' is varying from 0.1 to 1. Note the different 
behaviour of the branches as the elastic constant changes. On the right, the panel is showing the gap for m' = 1, k' = 1. 
 
we see the behaviour of dispersion for three fixed values 
of k  . In each panel, m  is changing. It is possible to 
observe that the gap increases and that the acoustic 
branch has a long wavelength limit possessing a sound 

speed decreasing with the increase of the hidden mass. 
The right panel of the upper part of the figure is showing 
the gap for a specific choice of m  and k  . In the 
lower part of the image, it is the value of m  to be fixed 
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and each panel shows the dispersions as the constant of 
the spring k   is varying. Again, the right panel is 
showing the gap. As we can see from the figure, adjust- 
ing the ratios of masses or of spring constants or both it 
is possible to tailor the gap. We have then a band of fre- 
quencies where the propagation of the waves in the ma- 
terial is not allowed. It means that the material is not 
transmitting these frequencies: the waves are reflected by 
the composite material. 

3. Discussion 

The model shows, from a macroscopic point of view, that 
a structure with a cage hosting a mass displays a gap in 
the allowed frequencies. It is therefore illustrating how 
some phononic crystals could be created by means of 
host-guest systems. Moreover, we have seen that an in- 
crease of the hidden mass reduces the speed of the acous- 
tic long wavelengths, an interesting result for engineering 
materials with very low thermal conductivity and for the 
development of more efficient thermoelectric devices. 

In fact, a low thermal conductivity is required for the 
thermoelectric conversion in solid-state heat engines. In 
these devices, the electron gas serves as the working 
fluid, converting the heat flow in electric power [18]. For 
thermoelectric applications, materials must have a high 
figure-of-merit, which is a goodness factor including the 
Seebeck coefficient and the electrical and thermal con- 
ductivities. A decrease of thermal conductivity means an 
increase of the figure-of-merit. In the case of crystalline 
materials, it is enough to disturb the phonon paths by 
disorder or lattice defects [19-21] to have a low conduc- 
tivity. Unfortunately, defects decreased the charge trans- 
port too. 

Therefore, the figure-of-merit can only be moderately 
improved by reducing the lattice thermal conductivity: to 
have a significantly larger goodness parameter it is nec- 
essary to improve the electrical properties [22]. The aim 
of recent researches is to employ the Phonon Glasses - 
Electronic Crystals, PGECs, where the lattice is disor- 
dered and then phonons are strongly scattered, but the 
electrons remain free to move. To create such structures, 
a possibility is the use of materials containing weakly 
bound atoms, “rattling” within an atomic cage. These 
materials have a low thermal conductivity, as that dis- 
played by glasses, but have an electric conductivity as 
high as in crystals [23]. Typical of these materials are the 
filled skutterudites [24] and the clathrates [25], which are 
host-guest systems at the atomic, microscopic scale. 

In host-guest lattices, the guest entities are supposed to 
have oscillations, so-called rattler modes, which scatter 
the acoustic phonons and reduce the thermal conductivity. 
In a resonant scattering model [26], it was hypothesized 
an “avoided crossing” between acoustic phonons and 

localized guest modes, that coming from a mixing of 
guest and host modes with an energy exchange as a con- 
sequence. Avoided crossing was found in hydrates [27,28] 
and recently in a PGEC material. In Reference [29], the 
phonon dispersion relations of Ba8Ga16Ge30 are showing 
unambiguously the theoretically predicted avoided cross- 
ing of the rattler modes and the acoustic-phonon bran- 
ches. Ba8Ga16Ge30 is a clathrate type-I structure with a 
host cage framework of Ga and Ge atoms holding Ba 
guest atoms inside the cages. The phenomenon referred 
as the “avoided crossing”, is the same as that we show in 
Figures 2 and 3, that is, the presence of a gap separating 
the two branches of frequency dispersion. This gap is 
created about the natural frequency of the guest.  

As a conclusion, we can tell that the use of host-guest 
systems, from macroscopic to microscopic scales, can be 
an interesting method for engineering new materials. The 
host-guest model we proposed is showing that the struc- 
ture is able to create some phononic band-gaps. It is also 
changing the sound speed in the material. The proposed 
model can hopefully stimulate new engineering methods 
for metamaterials with improved vibrational properties or 
reduced thermal conductivity. Applied to microscopic 
materials, it helps understanding the microscopic proper- 
ties of those materials with rattling modes. 
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