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Abstract 
Thermal expansion coefficients play an important role in the design and analysis of composite 
structures. A detailed analysis of thermo-mechanical distortion can be performed on microscopic 
level of a structure. However, for a design and analysis of large structures, the knowledge of effec- 
tive material properties is essential. Thus, either a theoretical prediction or a numerical estima- 
tion of the effective properties is indispensable. In some simple cases, exact analytical solutions 
for the effective properties can be derived. Moreover, bounds on the effective values exist. How- 
ever, in dealing with complex heterogeneous composites, numerical methods are becoming in- 
creasingly important and more widely used, because of the limiting applicability of the existing 
(semi-)analytical approaches. In this study, finite-element methods for the calculation of effective 
thermal expansion coefficients of composites with arbitrary geometrical inclusion configurations 
are discussed and applied to a heterogeneous lightning protection coating made from Dexmet® 
copper foil 3CU7-100FA and HexPly® epoxy resin M21. A short overview of some often used (semi-)- 
analytical formulas for effective thermal expansion coefficients of heterogeneous composites is 
given in addition. 
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1. Introduction 
In continuum mechanics, the materials are considered as ideal, continuous, and homogenous media. Within the 
framework of continuum mechanics, the response of homogenous material to an external load is described by 
appropriate constitutive relations without recourse to any microstructural considerations. In fact, all materials are 
inhomogeneous on sufficient small, microscopic scale. The continuum is only a model of materials in the mac- 
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roscopic scale. Therefore, the homogeneity of materials depends on the scale of examination. 
Heterogeneous materials exist in both synthetic products and nature. An important class of synthetic hetero- 

geneous materials is the class of composites manufactured as mixture of two or more constituents. The hetero- 
geneous composites can have anisotropic properties for different domains and/or directions due to the difference 
of the material properties of their constituents. This is an important feature of heterogeneous composites which 
is generally used to design new materials to meet various desired properties and functions which are absent in 
their constituents. Composite heterogeneous materials often exhibit complex properties presenting new challenges 
and opportunities not only for excellent mechanical but also for thermal, electric, and chemical applications. 

The present study focuses on determining the effective linear thermal expansion coefficient (CTE) of hetero- 
geneous composite materials. In modern technique, it is necessary to consider the influence of temperature on 
toughness and stability of structures. The thermal expansion behaviour is particularly important when composite 
materials are used in conjunction with other materials and when it is necessary to match the CTE of one struc- 
tural component with another. The effective property is actually the property of a hypothetical homogeneous 
material which yields the same global response as that of the complex heterogeneous one at the same given con- 
ditions and loads. Ideally, the averaging process for deriving the effective properties takes into account the 
properties of all constituents of the complex heterogeneous system and their interactions. The actual averaging 
process to obtain effective properties has to be specified carefully. In some simple cases, it is possible to obtain 
exact analytical solutions for the effective properties. When this is not feasible, it is at least possible to obtain 
analytical bounds on the effective values. Because of the limiting applicability of the existing analytical ap- 
proaches the numerical methods are becoming increasingly important and more widely used. The FEM has be- 
come very popular, especially when the exact (known) geometry of the constituents (and the thermo-mechanical 
history-preloads-of the composite) can be incorporated into the simulation of the effective properties. One 
common approach is to use a unit-cell model (RVE), where one or more types of reinforcements, fibres or parti- 
cles, are embedded within a matrix material, to simulate a complex heterogeneous composite with a periodic ar- 
ray constituents. In such a way, it is possible to simulate the true microstructures taking into account the topol- 
ogy, morphology and clustering of reinforcement constituents. 

2. Averaging and Homogenization 
In continuum mechanics, the materials are considered as ideal, continuous, and homogenous media. Within the 
framework Homogenization from intuitive viewpoint is described in the review article of Hashin [1] and in the 
book of Nemat-Nasser [2]. Three length scales are introduced (see Figure 1): 
 The microscale is characterized by lengths less than l3, which is generally chosen greater than the maximum 

size of the inhomogeneity in the microstructure. 
 The intermediate mesoscopic length scale is characterized by length l2, at which the composite material ap- 

pears statistically homogeneous, and at which the macroscopic fields have a slow variation. 
 The macroscale is characterized by lengths greater then l1, which is less than the relevant dimension of the 

considered body and less than the scale of variations in the macroscopic structure of the composite. 
 

 
Figure 1. Homogenization procedure of a heterogeneous composite.    
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Most micromechanical models are explicitly based on the assumption that the length scales in a given com- 
posites differ substantially: 3 2 1l l l  . That means that, on the one hand, the fluctuating contributions to the 
considered fields (stress, strain, etc.) at the smaller length scale (fast variables) influence the behaviour at the 
larger length scale only via their volume averages. On the other hand, gradients of the fields as well as composi- 
tional gradients at the larger length scale (slow variables) are not significant at the smaller length scale, where 
these fields appear to be locally constant and can be described in terms of uniform applied fields. Formally, this 
splitting of the fields into slow and fast contributions can be written as 

( ) ( )f x f f x′= + ,                                  (1) 

where f  is the macroscopic slowly varying field, whereas ( )f x′  stands for the microscopic fluctuations. 
The smoothing operation of local averaging on the mesoscale is given by 

( )1 d
V

f f x V
V

= ∫ ,                                    (2) 

where V defines a mesosized volume element of the heterogeneous composite considered. The homogenization 
volume should be chosen to be a proper RVE of sufficient size on the mesoscale to contain all information nec- 
essary for describing the microscopic behaviour of the heterogeneous composite. RVE elements are sometimes 
defined by requiring them to be statistically representative of the microgeometry of the composites. Such geo- 
metrical RVEs are independent of the physical property of the composite to be studied. Sometimes the choice of 
the RVE is based on the requirement that the overall responses with respect to applied external excitations are 
independent of the actual position and orientation of the RVE (see Hill [3]). Thus, the RVE must be sufficiently 
large to allow a meaningful sampling of the microscopic fields and sufficiently small for the influence of mac- 
roscopic gradients to be negligible. However, the size of the RVE is restricted by the computational effort 
needed for the determination of the microscopic fields. It has been verified that the periodic boundary conditions 
provide a better estimation of the overall properties, than the uniform displacement or uniform traction boundary 
conditions (see e.g. Geers [4]). Increasing the size of the microstructural cell leads to a better estimation of the 
effective properties, and, finally, to a convergence of the results obtained with the different boundary conditions, 
as schematically shown in Figure 2. 

3. Coefficients of Thermal Expansion 
Most natural materials, with very few exceptions in narrow temperature range, expand when heated. This is 
caused by the atomic or molecular vibrations at all temperatures. The amplitude and the population of density of 
states of these vibrations (phonons) increase with increasing temperature. The linear coefficient of thermal ex- 
pansion α is defined as 

ij
ij T

ε
α

∂
=
∂

,                                         (3) 

where the strain ε and the linear CTE α are second-rank symmetric tensors. Over a small temperature range of 
∆T the strain ε can be assumed directly proportional to the linear coefficient of the thermal expansion α and the 
 

    
(a)                                            (b) 

Figure 2. (a) Several RVEs of different sizes of a random composite; (b) 
Schematic convergence.                                                 
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constitutive relationship between stress σ and strain ε and temperature change ∆T is given by the Duhamel- 
Neumann law  

ij ijkl kl ijkl kl Tσ ε α= − ∆C C .                                    (4) 

The constitutive equation contains the components of the fourth-order stiffness tensor Cijkl
1. In the following 

the investigation is restricted to materials with at least orthotropic symmetry. With the contracted Voigt notation 
the Duhamel-Neumann law can be written in matrix form with the stiffness C as a 6 × 6 symmetric second-order 
(matrix) tensor and the stress {σ} and strain fields {ε} as column vectors, see e.g. Hyer [5]. 

4. Analytical and Semi-Analytical Approaches 
The development of homogenization techniques for the purpose of predicting the effective material properties of 
heterogeneous composite materials is an on-going process. Many analytical and semi-empirical formulas have 
been derived to evaluate the effective coefficient of the linear thermal expansion of different types of heteroge- 
neous composites. Some formulas are briefly mentioned in following sections. Most of available formulas are 
restricted to heterogeneous composites made from isotropic phases. 

4.1. Mixture Rules: Voigt and Reuss Bounds 
The rule-of-mixture models are derived from the assumption of uniform strain or stress of the composite struc- 
ture. The Voigt [6] upper bound for the effective thermal expansion coefficient α* is given by 

* 1 1 1 2 2 2

1 1 2 2

E E E
E E E
α ξ α ξ α

α
ξ ξ

+
= =

+
,                                    (5) 

where ξi, Ei, and αi are the volume fractions, the elastic moduli, and the coefficients of thermal expansions of the 
single isotropic phases of the composites, respectively. 

Reuss [7] assumption of uniform stress in the composite materials simply gives 
*

1 1 2 2α α ξ α ξ α= = + .                                    (6) 

For unidirectional fibre reinforced composite Equation (5) gives a reasonable approximation for the effective 
thermal expansion coefficient in fibre direction (E1 and α1 are then replaced by the longitudinal modulus E1L and 
the longitudinal thermal expansion α1L of the fibre, respectively). Equation (6) may be used as an upper bound 
for prediction of the effective transverse thermal expansion coefficient (α1 is then replaced simple by the trans- 
verse thermal expansion coefficient of the fibre α1T). However, this is generally a poor approximation for the ef- 
fective transverse thermal expansion coefficient. 

4.2. Turner Approach 
Turner model [8] takes into account the mechanical interaction between the phases in the heterogeneous com- 
posite material. The expression given by Turner is somehow similar to that derived by Voigt. However, the 
Young modulus E is replaced by the bulk modulus K 

* 1 1 1 2 2 2

1 1 2 2

K K K
K K K
α ξ α ξ α

α
ξ ξ

+
= =

+
.                                    (7) 

Moreover, the Turner formula is used as a lower bound for the effective CTE and not as the upper bound like 
the Voigt formula. 

4.3. Levin Formula 
Levin model [9] gives an effective CTE for a composite made from isotropic constituents 

( )1 2* * 1 2
1 1 2 2

1 2 1 2

1
1 1

K
K K K K
α α ξ ξα ξ α ξ α

 −  
= + + − +  −   

.                         (8) 

 

 

1The fourth-rank stiffness tensor has 36 independent components in the most general case. In the linear elastic case only 21 components are 
independent. The number of independent components can be further reduced by internal material symmetries, i.e. for orthotropic symmetry 
to 9, for transverse-isotropic to 5, and finally for isotropic symmetry to 2. 
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However, in order to determine the value of the CTE the effective value of the bulk modulus of the heteroge- 
neous composite K* has to be known. The Levin formula is often used to determine the upper and lower bounds 
of the CTE by using an effective elastic models that give bounds for K* (see e.g. Hashin-Shtrikman [10]). The 
extension of Levin formula for two-phase composites made from anisotropic phases is given in Appendix. 

4.4. Rosen and Hashin Formula 
The Levin formula was extended to anisotropic heterogeneous composites made from anisotropic constituents 
by Rosen and Hashin [11] 

( ) ( )* 1 2 * 1 2 1 2
1 2 1 2ij ij ij klmn mnij mnij mnij kl klv vα ξ α ξ α α α = + + − + − P S S S ,                    (9) 

where 

( )1 2
klmn mnij mnij klij+ =P S S I .                                    (10) 

For isotropic constituents the above equation can be simplified to 

* *1 2 1 2
1 1 2 2

1 2 1 2

3
1 1ij kkijS

K K K K
α α ξ ξα ξ α ξ α

  −
= + + × − +  −   

.                           (11) 

The heterogeneous composite, made from the isotropic constituents, needs not to be isotropic. 

4.5. Schapery Model 
Schapery [12] used elastic energy principles to derive bounds for effective CTEs of anisotropic composites 
made from isotropic constituents. The lower and upper bounds for the effective coefficients are given by 

( )
( )
( )
( )

*
* *

*
* *

1 1

1 1

1 1

1 1

L jL
j j

L U

L jU
j j

L U

E EK
K E E

E EK
K E E

α α

α α

− 
= + − − ∆   − 

− 
= + − + ∆   − 

α
α α

α
α α

,                              (12) 

where j takes the values 1, 2, and 3. *
jE  is the value of the effective uniaxial elasticity modulus ( ) 1* *

j jjE
−

= S  

and *
jα∆  represents the largest possible error if the mean value between upper and lower bounds is used ( *

jα∆  
set to 0) 

( ) ( )
( )

( )

1/2 1/2* *
*

1 22
22

3 1 1 1 1

1 1

1 1 1 0
9

j U L j
j

L U

L U

E E E E

E E

K
K K

E E K

α
− −

∆ =
−

    × − − − − ≥         

α
α α α

.                             (13) 

The EU and EL are upper and lower bounds of the effective elasticity uniaxial moduli 

1 1 1 1 1 1,
3 3U LE G K E E
 

= + =  
 

.                              (14) 

Schapery [12] showed that the above results lead to simple, approximate formulas for unidirectional, fi- 
bre-reinforced composites. For composite made from isotropic phases the transverse thermal expansion coeffi- 
cients is approximately given by 

( ) ( )( )
( ) ( )

* *
2,3 1 1 1 1 2 2 2

*
1 1 1 2 2 2 1

1

1 1

α α α α ν α α ν ξ

ν α ξ ν α ξ α ν

≈ + − − − +

= + + + −
.                              (15) 
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This equation is very often cited as Schapery equations for transverse CTE. However, it is taken from the 
publication Van Fo Fly [13] and adapted to the particular case of fibre-reinforced transverse isotropic compos- 
ites. 

4.6. Budiansky Self-Consistent Formula 
Budiansky formula for random mixtures of N isotropic phases is based on self-consistent equivalent medium 
approach [14] 

( )

( )

1*

1

1*

1

1 1

1 1

N

i i
i
N

i i
i

a a K K

b b G G

ξ

ξ

−

=

−

=

 − + = 

 − + = 

∑

∑
,                                    (16) 

with 
* *

* *
1 1 2 4 5 3 2, , and
3 1 15 1 6 2

K Ga b
K G

γ γ γ
γ γ

+ − −
= = =

− − +
.                                  (17) 

The above equations are used to determine the effective thermal expansion coefficient 

( )
1

*
**

1
1

N
i i i

i
i

K Ka a KK
αα ξ

−

=

 = − +  
∑ .                                    (18) 

In order to determine the value of the CTE the effective values of the bulk K* and the shear modulus G* of the 
heterogeneous composite have to be determined too. 

4.7. Chamberlain’s Model 
A model for the transverse thermal expansion of unidirectional transverse-isotropic composites was derived by 
Chamberlain [15]. The equation for the longitudinal thermal expansion coefficient is identical to Voigt [6] upper 
bounds, see Equation (5). The expression for the CTE in the transverse direction takes the form 

( )

( ) ( ) ( )( )
1 2 2*

2 1
1

1 1 2 2 1
2

2

1 1 1EF F F
E

α α ξ
α α

ν ξ ξ ν ξ

−
= +

− + + + + − − +
,                           (19) 

where “1” refers to matrix and “2” refers to fibres. F is the geometrical packing factor and is equal to 0.9069 
(0.7854) for hexagonal (square) fibres arrays 

5. Finite Element Modelling 
Finite element methods (FEM) are applied to solve numerically differential equations that are difficult or impos- 
sible to solve analytically. The FEM takes a given geometry and breaks it down into smaller parts (elements) 
and uses a system of algebraic equation to describe the relationships at the nodes connecting the neighbouring 
elements. This procedure allows transforming the original differential equations into a system of algebraic equa- 
tions that can be numerically solved to come up with an approximate numerical solution to the original problem. 

The validity of the homogeneity assumption depends on the detailed microstructure at scale of the individual 
phases and thus the proper selection of the RVE. The local value of the volume fraction of constituents varies 
with the size and location of the sample region over which the volume fractions are computed. The values of 
volume fractions can scatter when the sample volume is too small; the scattering factor decreases as the sample 
volume increases. In the theory of homogenization (of random heterogeneous composites), the volume fractions 
are the key parameters on which other properties are based. Thus, in principle, the minimum sample volume 
over which the volume fractions are independent of the sample location should be considered as the minimal 
RVE. When the heterogeneous composite specimen is subjected for example to a uniform mechanical loading, 
each RVE will undergo identical deformation-a certain periodicity then exists in the displacement, stress and 
strain fields. In order to determine the effective properties the induced microscopic fields within the RVE need 
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to be determined (semi-)analytically or numerically. 
The RVE approach assumes that the analysed microstructure is periodic in one, two, or three dimensions. In 

this case, a single periodic RVE represents the composite material considered. The boundary conditions, how- 
ever, must assure the periodic deformation of the boundaries regardless of the applied load. Hence, for FEM 
simulation the term periodic BC means actually a periodic coupling of degrees of freedom on corresponding 
nodes of the opposite boundaries in addition to other loads or displacements. An example of a typical 2D RVE is 
depicted in Figure 3. 

For the 2D RVE shown in the figure above, the periodicity condition may be recast into the following con- 
straint relations 

2 1

4 1

R L

T B

x x x x
x x x x

= + −
= + −

.                                    (20) 

where xL, xR, xB and xT denote a position vector on the left, right, bottom and top boundary of the RVE, respec- 
tively; xi, i = 1, 2, 3, 4 are the position vectors of the corner nodes in the deformed state. That means that the 
nodes 1, 2 and 1, 4 (and so on) are coupled by constraint equations. Moreover, it is possible to couple the dis- 
placements of the boundary nodes to master nodes (di)  

21 1

41 2

R L d

T B d

x x x x
x x x x

= + −

= + −
.                                    (21) 

This is a smart way to tie the displacements of all boundary nodes to master nodes and to gain the reaction of 
the RVE to the applied loads form the reaction of these master nodes. For a determination of the CTEs a uniform 
temperature load is applied on the entire 3D RVE. The coefficients of thermal expansion are finally determined 
using equation below 

* 1 1 ; 1,2,3i
i ii

i

L i
T T L

α
∆

= = =
∆ ∆

ε ,                                    (22) 

where the displacements for the calculation of the strains are obtained from the FE solution for the master nodes. 
The advantage of this approach (AP1) is that it generally applicable even for non-symmetric RVEs. The reac- 
tions (i.e., strains) of the RVEs to the applied loads can simply be extracted from the reactions (i.e., strains) of 
the master nodes. However, this approach has some disadvantages: the complete RVE has to be meshed for the 
FE simulations; the periodic coupling of the outer surface nodes and the coupling between the surface nodes and 
master nodes increase the memory requirements and the computing time. 

For composites with at least orthotropic symmetry, the 3D RVE can be reduced to the 1/8 portion (see Figure 
4 for a scheme of a 2D RVE, for a 3D geometry a further reduction in the trough-thickness direction by a factor 
of 2 is possible). Due to symmetry of the problem following boundary conditions are applied 

at 0, 0; at 0, 0; and at 0, 0x y zx u y u z u= = = = = = .                        (23) 

In addition, multipoint constraints are imposed on the boundaries of the unit cell to couples the displacement 
of the surface nodes 
 

 
Figure 3. Schematic picture of distorted 
2D RVE with two master nodes d1 and d2.  
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Figure 4. Scheme of a complete 2D RVE for UD carbon fibre 
composite (left side). 1/4 portion of 2D RVE (right side).        

1 2 3at : ; at : ; and at :i j i j i j
x x y y z zx L u u y L u u z L u u= = = = = = = = =  

.            (24) 

A uniform temperature load is applied to this portion of the unit cell. The coefficients of CTE are finally de- 
termined using Equation (22), where the displacements for the calculation of the strains are obtained from the 
FE solution for the nodes at the boundaries of the unit cell. The advantage of this approach (AP2) is that the de- 
sired CTEs are determined by a one calculation of the macroscopic strains of uniform temperature loaded RVE. 

The last approach (AP3) for the determination of the effective CTEs is given by 
1* * *1 1

T T
α σ σ

−
 = − = −  ∆ ∆

S C ,                              (25) 

with S* (C*) as the effective compliance (stiffness) tensor. In order to calculate the CTEs, the 1/8 portion of the 
unit cell is subjected to following boundary conditions: the macroscopic strains are identically equal to zero; the 
unit cell is subjected to a uniform temperature load ∆T. The macroscopic stress σ  is derived from the calcu- 
lated microscopic stress σ(x) using Equation (2). Finally, the effective CTEs are calculated using Equation (25). 
However, in order to perform this calculation the effective stiffness (or compliance) tensor should be known. 
For materials with orthotropic symmetry at least, it is sufficient to determine the components of *

ijS  (or *
ijC ) 

with i, j = 1, 2, 3 only. This means that three different calculations for the determination of the effective elastic- 
ity and Poisson’s ratio moduli have to be performed additionally. The ith column of the effective stiffness tensor 
is given by 

* i
ij

j

ε
σ

=C ,                                     (26) 

where jσ  is the jth component of the macroscopic stress due to applied macroscopic strain iε  calculated 
at the reference temperature T0. These additional simulations are the main disadvantage of this approach. How- 
ever, this approach is very instructive because it indicates clearly that the effective CTEs are related to the effec- 
tive elastic moduli of the composite. This is the main reason why (semi-)analytical estimates for the effective 
CTEs use and require the knowledge of reliable (effective) elastic constants of the heterogeneous composite. 

6. Results 
Expanded copper foils are often the materials of choice for lightning strike protection of outer CFRP aircraft 
structures. For lightning strike protection purposes the extended copper foils is placed on the top of the compos- 
ite structure but underneath the protective paint layer. The copper foil is glued to the composite by an epoxy 
resin. Up to now, the influence of the epoxy resin has been generally neglected in numerical thermal load simu- 
lations (the anisotropic heterogeneous copper-epoxy resin composite has been generally replaced by an isotropic 
copper layer). However, the influence of the resin for thermo-mechanical loads cannot be neglected as shown in 
Reference [16]. Although the expanded copper foils are very thin (generally less than 70 μm), they improve the 
electromagnetic shielding effectiveness of the CFRP structures considerably. Moreover, the thin anisotropic 
copper layers can carry the lightning current slightly far away from the lightning attachment area. The situation 
at the lightning attachment area is from physical point of view rather complicated, since on the one hand the thin 
copper layer cannot withstand the lightning load there, but on the other hand it can prevent the lightning current 
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flow into the CFRP structure (see e.g. References [17] and [18]). In the following, the effective coefficients of 
the thermal expansion of the Dexmet® expanded copper foil 3CU7-100FA with HexPly® epoxy matrix M21 are 
derived using the mentioned FEM approaches. 

6.1. FEM approach AP1 
All finite element calculations were done with the commercial finite element program ANSYS. The small dis- 
placement approach is used, and the materials are assuming to behave as linear elastic solids. The finite element 
mesh is created using 3D elements SOLID186, which are higher order 20-nodes elements having three degrees 
of freedom at each node: translation in x, y, and z-direction. In order to ensure equally mapped mesh on opposite 
surfaces for the application of periodic boundary conditions the surface in the x-y-plane is first meshed with 
MESH200 plane elements. The volume elements SOLID186 are generated by extruding the plane elements in 
z-direction. This nodal configuration identical on opposite surfaces allows generating periodic boundary condi- 
tions by applying constraint equations between the appropriate nodal pairs. Finally, all nodal pairs are coupled to 
MASS21 master nodes elements. The reactions of the entire RVE to the applied thermal loads are projected to 
these master nodes. The coefficients of the thermal expansion of the composite, the expanded copper foil 
3CU7-100FA filled with epoxy resin, are derived from the reactions of these master nodes.  

The meshed RVE of the expanded Cu foil 3CU7-100FA filled with epoxy resin M21 is shown in Figure 5(a). 
Although there are only 4 FE in through-thickness direction the total number of FE amounts to 62528 (because 
of the required geometrical resolution of the intersections of the copper paths). 

As shown in Figure 5(a), this approach allows employing even an unsymmetrical unit cells using periodic 
boundary conditions. The elastic and thermal properties of the constituent materials of the expanded copper foil 
3CU7-100FA are given in Table 1. 

The displacement fields, in x- and y-directions, caused by a uniform temperature load are shown in Figure 6. 
For numerical reasons the temperature load ∆T was taken to be 10 K. In fact any value of ∆T is allowed to be 
used, because of the assumption of the linearity of the problem considered. Nevertheless, in order to emphasize 
the geometrical deformation of the unit cell it was necessary to scale its magnitude by factor 50. The red (blue) 
colour indicates positive (negative) displacement values. The absolute values of the displacements are of no 
physical importance, because of the arbitrary value of the temperature load ∆T. It is, however, interesting to note 
that the geometrical symmetry of the copper/epoxy resin structure can be revealed even using an unsymmetrical 
RVE (because of the applied periodic boundary conditions). 

Finally, the calculated effective thermal expansion coefficients of the expanded copper foil 3CU7-100FA 
filled with M21 epoxy resin are given in Table 2. These calculations are performed using the right side of the 
 

            
(a)                                            (b) 

Figure 5. (a) Finite elements mesh of 3CU7-100FA copper foil (green elements) filled with 
epoxy resin M21 (purple elements); (b) 1/8 symmetric model of the RVE.                 

 
Table 1. Properties of the constituent materials of lightning protection layer 3CU7-100FA/M21 at the reference temperature 
20˚C.                                                                                                  

 E [GPa] ν [1] α [1/K × 10−6] ξ [%] 

Copper 129.74 0.34 15.3 30.2 

Epoxy resin M21 3.31 0.36 37.0 69.8 
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Table 2. Effective thermal expansion coefficients of lightning protection layer 3CU7-100FA/M21 at the reference tempera- 
ture 20˚C.                                                                                              

 α1 [1/K × 10−4] α2 [1/K × 10−4] α3 [1/K × 10−4] 

AP1 0.1252 0.4236 0.1656 

AP2 0.1253 0.4237 0.1656 

AP3 0.1253 0.4237 0.1656 

Rosen & Hashin 0.1254 0.4237 0.1657 

Schapery (LB) 0.0530 0.0625 0.1617 

Schapery (UB) 0.3059 0.4619 0.1712 

 
Equation (22), where the displacements ∆Li are obtained from the single FE solution for the master nodes in the 
corresponding i-direction only. 

6.2. FEM approach AP2 
The meshed symmetric 1/8 RVE of the 3CU7-100FA/M21 composite is shown in Figure 5(b). The FEM ap- 
proach AP2 allows calculating the effective CTEs by one simulation only applying a uniform thermal load to 1/8 
RVE of the 3CU7-100FA/M21 composite. The finite element mesh consists of 3D elements SOLID186 and is 
created using the same numerical procedure as in the AP1 approach. In general, the number of the finite ele- 
ments can be reduced roughly by factor 4 compared to the FEM approach AP1. In fact, the number of the finite 
elements was reduced only to 30,888 (meaning a higher geometrical resolution and higher solution accuracy 
than in AP1 approach). Moreover, the number of the constraint equations (for the nodal pair on opposite sur- 
faces and for the coupling between these nodes and the master nodes) was significantly decreased. Therefore, 
the time required for computing was reduced as compared to the FEM approach AP1. The displacement fields 
(in x- and y-directions) of the 1/8 symmetric model of the 3CU7-100FA/M21 composite caused by uniform 
temperature load are shown in Figure 7. The red (blue) colour indicates positive (negative) displacement values. 
The derivation of the effective CTE is performed using the right side of the Equation (22), where the displace- 
ments ∆Li are obtained from the FE solutions for all nodes at the boundary of the unit cell in the corresponding 
i-direction (in fact for numerical reasons from the average displacement of all nodes at the boundary of the unit 
cell in the i-direction): The temperature load ∆T of the composite structure was taken to be 10 K (exactly the 
same value as for the AP1 approach). The effective thermal expansion coefficients, calculated for the Dexmet 
expanded copper foil 3CU7-100FA filled with epoxy resin, are presented in Table 2. 

6.3. FEM approach AP3 
This approach requires determining the effective stiffness tensor of the 3CU7-100FA /M21 composite. In the 
following, the standard procedure is exemplified by the calculation of the 1th column of the effective stiffness 
tensor C* (see Equation (26)). The boundary conditions are applied in such a way that except the macroscopic 
strains in x-direction all other macroscopic strains are zero. For these calculations, the meshed RVE from the 
AP2 approach is used (see Figure 5(b)). The unidirectional displacement of the RVE in 1-direction is shown in 
Figure 8(a). The macroscopic strain in x-direction was chosen to be 0.1. In fact, any value of the magnitude of 
the macroscopic strain can be utilized, because of the assumption of the elastic linearity. The calculated microscopic 
stress σx in x-y-plane at the reference temperature T0 is shown in Figure 8(b). The absolute values of the microscopic 
stress σx are of no physical importance, because of the arbitrary value of the applied macroscopic strain. 

In order to determine the 1th column of the effective stiffness tensor C* the induced macroscopic stressesin x-, 
y-, and z-direction are calculated by averaging over the derived microscopic stresses within the complete RVE 
(see Equation (2)). It should be noted that the numerical accuracy, strictly speaking the convergence of the av- 
eraged values and that means of the components of the stiffness tensor C*, depends on the geometrical resolution 
(the number of the finite elements of the RVE). The numerically determined values of the upper part of the ef- 
fective stiffness tensor C* (for the unidirectional loads in x-, y-, and z-directions) are given in Table 3. Finally, 
the complete RVE of the 3CU7-100FA/M21 composite is subjected to a uniform temperature load ∆T with the 
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(a)                                            (b) 

Figure 6. (a) Displacement field in x-direction; (b) Displacement field in y-direction.     
 

          
(a)                                            (b) 

Figure 7. Displacement fields for the 1/8 symmetric model of the 3CU7-100FA/M21 composite. 
(a) x-direction; (b) y-direction.                                                    

 

           
(a)                                            (b) 

Figure 8. (a) Deformation of the RVE caused by macroscopic strain in x-direction; (b) Mi- 
croscopic stress σx of the deformed RVE due to applied macroscopic strain in x-direction.  

 
Table 3. Values of the effective stiffness C* tensor [GPa] of the 3CU7-100FA/M21 composite at the reference temperature 
20˚C.2                                                                                                   

* 2
11 0.384957 10= ×C  * 2

12 0.112941 10= ×C  * 2
13 0.172054 10= ×C  

* 2
21 0.112942 10= ×C  * 2

22 0.988506 10= ×C  * 1
23 0.740608 10= ×C  

* 2
31 0.172054 10= ×C  * 1

32 0.740606 10= ×C  * 2
33 0.500695 10= ×C  

 
magnitude of 10 K. The boundary conditions are chosen in such a way that the macroscopic strains are identi- 
cally equal to zero: That means that the nodes of the finite elements at the boundary of the RVE are fixed. The 
calculated microscopic stresses σx und σy caused by a uniform temperature load ∆T are shown in Figure 9. Be- 
cause of the arbitrary value of the temperature load ∆T the absolute values of the microscopic stresses σx and σy 

 

 

2The corresponding effective elasticity moduli and Poisson’s ratios of the 3CU7-100FA/M21 composite are: *
1 23.87E = , *

2 6.440E = , 
*
3 41.53E =  [GPa] and *

12 0.995ν = , *
23 0.055ν = , *

13 0.196ν =  [−]. In order to derive the effective shear moduli macroscopic shearing 
strains rather than normal uniaxial strains have to be applied. For these calculations the complete symmetrical unit cell of the composite has 
to be used, see e.g. Reference [19]. The effective shear moduli are: *

12 8.84G = , *
22 5.29G = , *

13 13.10G =  [GPa], see Reference [16]. 
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(a)                                            (b) 

Figure 9. Microscopic stress σx (a) and σy (b) of the RVE due to applied uniform thermal load 
∆T.                                                                             

 
are of no physical importance. It is interesting to see that the induced microscopic stresses are almost constant 
within the epoxy matrix. Within the copper paths the values of the induced microscopic stresses very signifi- 
cantly, particularly at the intersections of the copper paths. 

The corresponding macroscopic stresses are derived from the calculated microscopic stresses by averaging 
over the volume of the RVE (see Equation (2)). Finally the effective thermal expansion coefficients are calcu- 
lated with the help of the right side of the Equation (25) using the calculated components of the effective stiff- 
ness tensor C* and the calculated averaged macroscopic stresses <σ>. The derived effective CTEs using Equa- 
tion (31) are given in Table 2. 

The numerically derived values of the effective CTEs are compared with results obtained by the application 
of the Rosen-Hashin formula (see Equation (12)). There is a surprisingly good agreement between the Rosen- 
Hashin estimation and the numerical results. Schapery lower and upper bounds (see Equation (13)) are given in 
addition. The numerical values are within these bounds, but the Schapery mean values differ significantly from 
the numerical results. It should be noted, however, that the numerically derived values of the components of the 
effective compliance tensor S* were used for the application of the Rosen-Hashin and Schapery formulas. 

The temperature dependence of the effective CTEs heterogeneous composites can be numerically derived us- 
ing the above developed FEM approaches. The main reason for the temperature dependence of the effective 
CTEs is the temperature tracking of thermal expansion of single constituents. Additionally, the effects of the 
variation of temperature of the elastic moduli of the single constituents are in many cases not negligible. The 
temperature dependence of the effective CTEs of the 3C7-100FA/M21 composite were numerically computed 
taking into account the temperature dependence of the thermo-mechanical properties of copper foil, see Refer- 
ence [16]. Because of missing temperature dependent data for the epoxy matrix M21 these results are first order 
approximation only, particularly for temperatures above the glass temperature of the epoxy resin M21. 

7. Conclusions 
Three different numerical approaches are employed to compute the effective thermal expansion coefficients of 
the Dexmet® expanded copper foil 3C7-100FA filled with HexPly® epoxy matrix M21. For the numerical com- 
putations, the FEM commercial software ANSYS® is used. The numerical results demonstrate that all developed 
numerical FEM approaches are accurate and efficient for the analysis of thermo-mechanical properties of het- 
erogeneous composites. The numerically computed longitudinal and transversal effective thermal expansion co- 
efficients of the 3C7-100FA/M21 composite are compared with analytical solutions proposed by Rosen and 
Hashin and Schapery. The agreement between the numerical and the analytical Rosen and Hashin results is ex- 
tremely good. The numerical values are within the Schapery analytical bounds as well. However, it should be 
noted that the numerically (exact) derived values of the effective elastic constants are used for the evaluation of 
the analytical formulas. 

The calculated effective transverse thermal expansion coefficient α2 of the 3C7-100FA/M21 composite is 
larger than that of the thermal expansion coefficient of the epoxy matrix M21. This result seems to be surprising 
at first glance, but is has already been mentioned before (see e.g. Kelly [20] and Khare et al. [21]). The longitu- 
dinal thermal expansion coefficient of heterogeneous composite materials is generally small because the inclu- 
sions (reinforcements), which usually have a smaller coefficient than that of the polymer matrices, impose a 
mechanical restrain on the matrix material. The transverse coefficient is generally larger that the longitudinal 
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one. At low inclusion volume fractions it can even be greater than that of the unreinforced polymer matrix, be- 
cause the matrix, which is prevented from strong expansion in the longitudinal direction, is forced to expand 
more than usual in the transverse directions. This effect is particularly noticeable at low filler volume fractions 
for inclusions with high elastic moduli and low expansion coefficients in low-elastic modulus matrices. 

An overview of some frequently used analytical and semi-empirical formulas for the effective thermal expan- 
sion coefficients of heterogeneous composites is given in addition. 
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Appendix 
Typically the properties of a composite sensitively depend on the topology and microstructure. However, it is 
sometimes possible to come across exact formulas for effective properties that are universally valid no matter 
how complicated the microstructure is. In the following, an expression for the effective thermal expansion tensor 
of a heterogeneous composite consisting of two isotropic constituents is derived and in a second step extended to 
composites consisting of two anisotropic constituents.  

In the linear approximation the thermal expansion is given by the equation 

( ) ( ) ( ) ( )x x x x Tε σ α= + ∆S ,                                  (A.1) 

where ∆T = T ‒ T0 is the change in temperature measured from some constant reference temperature T0, while 
ε(x) and σ(x) are the microscopic strain and stress fields, and S(x) is the compliance tensor. The average macro- 
scopic strain ε  and stress σ  fields satisfy a constitutive equation of the same form 

* * Tε σ α= + ∆S ,                                  (A.2) 

where S* is the effective compliance tensor and α* is the effective thermal expansion tensor. The stress can be 
assumed to be a uniform hydrostatic compression (no shear stresses are available) 

( )x pσ σ= = − I ,                                  (A.3) 

where p is the hydrostatic pressure and I is the identity matrix. For a locally isotropic material the local thermal ex- 
pansion is given by ( )xα α= I , and the constitutive equation Equation (A.1) implies that the strain field is given by 

( ) ( ) ( )px T x
K x

ε α
 

= − + ∆ 
  

I ,                                  (A.4) 

where K(x) is the local (microscopic) bulk modulus. In the two-phase composite considered the strain field is 
piecewise constant taking the values 

( )
3i i

i

px T
K

ε α
 

= − + ∆ 
 

                                  (A.5) 

for each phase i. The requirement that the strain field is uniform 1 2ε ε ε= =  is, according to above equation, 
satisfied for any given temperature T when following relation holds 

( )1 2

1 2

3
1 1

p
T K K

α α−
=

∆ −
.                                  (A.6) 

Substituting the expression for the average strain and stress fields into Equation (A.2) gives the formula de- 
rived by Rosen and Hashin [11] for a composite made from isotropic phases 

( ) ( )*
1 2 2 1 1 2*

1 2

3
1 1

K K
K K

α α α α
α

− + −
=

−
S I I

.                                  (A.7) 

For isotropic composites with α* and K* as the effective bulk modulus the above equation reduces to the for- 
mula of Levin [9] 

( ) ( )* *
1 2 2 1*

1 2

1 1 1 1

1 1

K K K K

K K

α α
α

− − −
=

−
.                                  (A.8) 
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In case of anisotropic constituents, the Equation (A.7) can be generalized as follow [22]. The microscopic 
compliance S(x) and thermal expansion tensor α(x) take constant values in the space of each constituent 

( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

1 1 2 2

x x x

x x x

χ χ

α α χ α χ

= +

= +

S S S
,                                  (A.9) 

where χ1 and χ2 are the characteristic functions 

( ) ( )1 2

1 in phase 1,
1

0 in phase 2.
x xχ χ


= − = 


.                                  (A.10) 

Now a solution for a constant stress σ σ=  and constant strain field ε ε=  (not necessarily proportional 
to the unit vector I) is sought. The constitutive equations in each phase are given by 

1 1

2 2

T

T

ε σ α

ε σ α

= + ∆

= + ∆

S

S
.                                  (A.11) 

Finally, the effective anisotropic thermal expansion tensor α* of two-phase composites consisting of anisot- 
ropic phases is given by 

( )( ) ( )

( )( ) ( )

1* *
1 1 2 1

1*
2 2 2 1

α α α α

α α α

−

−

= + − − −

= + − − −

1 2

1 2

S S S S

S S S S
.                                  (A.12) 
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