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Abstract 
The analytic properties of the scattering amplitude are discussed, and a representation of the po-
tential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy prob-
lem solution for the Navier-Stokes equations is provided. The paper also describes the time blo-
wup of classical solutions for the Navier-Stokes equations by the smoothness assumption. 
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1. Introduction 
In this paper, we introduce important explanatory results presented in a previous study in [1]. We therefore res-
tate the basic to clarify out understanding of them. We begin by considering some ideas about the potential in 
the inverse scattering problem, and this is then used to estimate solutions of the Cauchy problem for the Navier- 
Stokes equations. A similar approach has been developed for one-dimensional nonlinear equations [2]-[5], but to 
date, there have been no results for the inverse scattering problem for three-dimensional nonlinear equations. 
This is primarily through difficulties in solving the three-dimensional inverse scattering problem. This paper is 
organized as follows: the study begin describing the inverse scattering problem, giving in a formula for the scat-
tering potential. Using this potential, we obtain uniform time estimates in time for solutions to the Navier-Stokes 
equations, which suggest the global solvability of the Cauchy problem for the Navier-Stokes equations. Essen-
tially, the present study expands the results for one-dimensional nonlinear equations with inverse scattering me-
thods to multi-dimensional cases. Our main achievement is a relatively unchanged projection onto the space of 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.513184
http://dx.doi.org/10.4236/am.2014.513184
http://www.scirp.org/
mailto:aset.durmagambet@gmail.com
http://creativecommons.org/licenses/by/4.0/


A. Durmagambetov, L. Fazilova 
 

 
1904 

solutions associated with the continuous spectrum for the nonlinear equations, which allows us to focus solely 
on the behavior associated with the decomposition of the solutions to the discrete spectrum. In the absence of a 
discrete spectrum, we obtain estimations for the maximum potential in the weaker norms, compared with the 
norms for the Sobolev spaces. 

Consider the operators ( )xH q x= −∆ +  and 0 xH = −∆  defined in the dense set ( )2 3
2W R  in the space 

( )3
2L R ; let q be a bounded fast-decreasing function. The operator H  is called the Schrödinger operator. We 

consider the three-dimensional inverse scattering problem for the Schrödinger operator, i.e, the scattering poten-
tial must be reconstructed from the scattering amplitude. This problem has been studied by many researchers 
([6]-[9], and references therein). 

2. Results 
Consider Schrödinger’s equation: 

( ) 2 ,    x q x k k C−∆ Ψ + Ψ = Ψ ∈ .                               (1) 

Let ( ), ,k xθ+Ψ  be a solution of (1) with the following asymptotic behavior: 

( ) ( )e 1, , e , , ,    ,
i k x

ik xk x A k o x
x x

θθ θ θ+

 
′Ψ = + + →∞  

 
                     (2) 

where ( ), ,A k θ θ′  is the scattering amplitude and 2,  x x Sθ θ′ = ∈  for { }Im  0k C k+∈ = ≥  

( ) ( ) ( )3

1, , , , e d .
4π

ik x
R

A k q x k x xθθ θ θ ′−
+′ = Ψ∫                         (3) 

Let us also define the solution ( ), ,k xθ−Ψ  for { }Im  0k C k−∈ = <  as 

( ) ( ), , , , .k x k xθ θ− +Ψ = Ψ − −  
As is well known [2]: 

( ) ( ) ( ) ( )2, , , , , , , , d ,   .
4π S

kk x k x A k k x k Rθ θ θ θ θ θ+ − −′ ′ ′Ψ −Ψ = − Ψ ∈∫            (4) 

This equation is the key to solving the inverse scattering problem, and was first used by Newton [7] [8] and 
Somersalo et al. [9]. 

Equation (4) is equivalent to the following: 
,S+ −Ψ = Ψ                                     (5) 

where S is a scattering operator with kernel ( ),S k l , 

( ) ( ) ( )3, , , d .
R

S k l k x l x x∗
+ −= Ψ Ψ∫  

The following theorem was stated in [6]: 
Theorem 1. (The energy and momentum conservation laws) Let q∈ℜ . Then, * ,   *SS I S S I= = , where 

I  is a unitary operator. 
Definition 1. The set of measurable functions ℜ  with norm defined by 

( ) ( )
6 2 d d

R

q x q y
q x y

x yℜ
=

−
∫  

is recognized as being of Rollnik class. 
As shown in [10], ( ),k x±Ψ  is an orthonormal system of H eigenfunctions for the continuous spectrum. In 

addition to the continuous spectrum, there is a nite number N  of H negative eigenvalues, designated as 2
jE−  

with corresponding normalized eigenfunctions 

( ) ( )2,    1, ,j jx E j Nψ − =  

where ( ) ( )2 3
2,j jx E L Rψ − ∈ . 

( ) ( )2 3
2,j jx E L Rψ − ∈  
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We present Povzner’s results [10] below: 
Theorem 2. (Completeness) For both an arbitrary ( )3

2f L R∈  and for H eigenfunctions, Parseval’s identity 
is valid. 

( ) ( )
( ) ( ) ( )

2

2

2

2
0

1

, , .

, ,    , , d d ,

C C

C

D D A AL

N

D j j j A S
j

f P f P f P f P f

P f f x E P f s f s s x sψ θ θ
∞

+
=

= +

= − = Ψ∑ ∫ ∫
              (6) 

where f  and jf  are Fourier coefficients for the continuous and discrete cases. 
Theorem 3. (Birman-Schwinger estimation). Let q∈ℜ . Then, the number of discrete eigenvalues can be es-

timated as: 

( )
( )

( ) ( )
3 32 2

1 d d .
4π R R

q x q y
N q x y

x y
≤

−
∫ ∫                              (7) 

This theorem was proved in [11]. 
Let us introduce the following notation: 

( )2 , , d .
S

NA A k θ θ θ′= ∫  

For ( ), , ,f k xθ ′  

( ) ( )2 , , , , d ,
S

Df A k f k xθ θ θ θ′ ′ ′= ∫                               (8) 

( ) ( ) ( )( )0 , , e , , , , , e ,i z x i z xz x z x z xθ θφ θ θ θ+′ ′= Φ = Ψ − ∆                  (9) 

where 

( ) ( )
1

.
N

j j
j

k iE k iE
=

 ∆ = + − ∏  

We define the operators ,T T±  for ( )1
2f W R∈  as follows: 

( )
Im 0

1 lim d , Im 0,
2π z

f s
T f s z

i s z
∞

+ −∞→
= >

−∫                             (10) 

( )
Im 0

1 lim d , Im 0,
2π z

f s
T f s z

i s z
∞

− −∞→
= <

−∫                             (11) 

( )1 .
2

Tf T T f+ −= +                                       (12) 

Consider the Riemann problem of finding a function Φ , that is analytic in the complex plane with a cut 
along the real axis. Values of Φ  on the upper and lower sides of the cut are denoted +Φ  and −Φ  respec-
tively. The following presents the results of [12]: 

Lemma 1. 

1 1 1 1 1, , , , .
4 2 2 2 2

TT I TT T TT T T T I T T I+ + − − + −= = = − = + = −                  (13) 

Theorem 4. Let q∈ℜ , g + −= Φ −Φ ; then 
.T g± ±Φ =                                         (14) 

The proof of the above follows from the classic results for the Riemann problem. 
Lemma 2. Let ( ) ( ), , , , , , .q g g z x g g z xθ θ+ −∈ℜ = = −

 
Then, 

( ) ( ) ( ) ( ), , e , , , e .i z x i z xz x T g z x T gθ θθ θ −
+ + + − − −Ψ ∆ = + Ψ ∆ = +             (15) 

The proof of the above follows from the definitions of , ,g + −Φ Φ  and ,+ −Ψ Ψ . 
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Definition 2. Denote by ΤΑ  the set of functions ( ), ,f k θ θ ′  with the norm 

( ), ,sup .kf Tf fθ θ ′ΤΑ
= + < ∞  

Definition 3. Denote by ( )I T D−−ℜ  the set of functions g  such that ( )g I T D f−= − , for any f ∈ΤΑ . 

Lemma 3. Suppose 1A α
ΤΑ

< < . Then, the operator ( )I T D−− , defined on the set TA  has an inverse de-
fined on ( )I T D−−ℜ . 

The proof of the above follows from the definitions of ,D T−  and the conditions of Lemma 3. 
Lemma 4. Let q∈ℜ , and assume that ( ) 1I T D −

±−  exists. Then, 
,g T g T g+ −= −                                       (16) 

( ) 1
0 ,T g I T D T Dφ−

− − − −= −                                 (17) 

( ) 1
0 0

1 .I T D T Dφ φ−
− − −Ψ = − +

∆
                              (18) 

The proof of the above follows from the definitions of , ,g ± ±Φ Ψ  and Equation (4). 
Lemma 5. Let q∈ℜ , and assume that ( ) 1I T D −

±−  exists. Then, 

1 1 1 1 1 ,T D T D T D T D T D Q− − − − −+ = + +
∆ ∆ ∆ ∆ ∆

 

where Q  represents the terms of higher order appearing in T D− . 
Proof: Using 

( ) ( ) ( )

( ) ( ) ( )
3

3 0 0

, , d ,

, , d
R

R

x k x l x k l

x k x l x k l

δ

φ φ δ

− −Ψ ∗Ψ = −

∗ = −

∫
∫

 

and 

0 0
1

1 .
i

i
T D φ φ

∞

− −
=

 Ψ = − + ∆ 
∑  

We establish the proof. 
Lemma 6. Let q∈ℜ . Then, 

[ ]0lim .
z

q H − −→∞
= Ψ Ψ                                     (19) 

Lemma 7. Let q∈ℜ , and assume that ( ) 1I T D −
±−  exists. Then, 

( ) ( )1 1
0 0 0 0 0

1 1lim .
z

q N I T D T DH N I T D T DH Nφ φ φ− −
− − − −→∞

    = − − +    ∆ ∆    
           (20) 

The proof of the above follows from the definitions of ,  N ±Ψ , and Lemma 4. 
Lemma 8. Let q∈ℜ . Then 2D ≤ . 
The proof of the above follows from the definition of D  and the unitary nature of S . 
Lemma 9. Let ( )3

2q L R∈ℜ∩ . Then, 

( )3

22 d ,j jR
E q x xψ≤ ∫                                  (21) 

( ) ( )3
2

max 2 .j j L Rx
x qψ ψ≤                                (22) 

The proof of the above follows from the definitions of 2 ,   j jE ψ , and (1). 
Lemma 10. Let ( )3

2q L R∈ℜ∩ . Then, 

( ) ( )3
2 ,

max 2 max .D jL Rx x j
P q q q xψ

ℜ
≤                           (23) 

The proof of the above follows from the definition of DP f . 



A. Durmagambetov, L. Fazilova 
 

 
1907 

Lemma 11. Let ( )3
2q L R∈ℜ∩ , and 1A α

ΤΑ
< < . Then, 

( )3
2

max .Ac L Rx
P q C q≤                               (24) 

To prove this result, one calculates 

( )3 3
2d d .xR R

q x k x− − −Ψ = ∆ Ψ + Ψ∫ ∫                          (25) 

Using Lemma 5, the first approximation can be obtained in terms of q : 

( )
( ) ( )

3 3 3 3

3 3

2

2
0 0 0

1 1

d d d d

       d d

Ac xR R R R

i i

R R
i i

P q q x k k x k

H T D k T D x kφ φ

− − − − −

∞ ∞

− − −
= =

= Ψ Ψ = ∆ Ψ + Ψ Ψ

 = − + − Ψ  

∫ ∫ ∫ ∫

∑ ∑∫ ∫
              (26) 

( ) ( )
3 3

3 3
2

0 0 0

d d

       d d .

Ac R R

R R

P q q x k

H T D k T D x kµ φ µ φ

− −

− − −

= Ψ Ψ

 = − + + − + Ψ 

∫ ∫
∫ ∫

             (27) 

where µ  represents terms of higher order for q  and T D− . The lemma can be proved using obvious estima-
tions for µ  and Lemmas 5, 6, and 8. 

3. Conclusions for the Three-Dimensional Inverse Scattering Problem 
This study has shown once again the outstanding properties of the scattering operator, which, in combination with 
the analytical properties of the wave function, enable an almost-explicit formula for the potential to be obtained 
from the scattering amplitude. Furthermore, this approach overcomes the problem of over-determination, result-
ing from the fact that the potential is a function of three variables, whereas the amplitude is a function of five va-
riables. We have shown that it is sufficient to average the scattering amplitude to eliminate the two extra variables. 

4. Cauchy Problem for the Navier-Stokes Equation 
Numerous studies of the Navier-Stokes equations have been devoted to the problem of the smoothness of its solu-
tions. A good overview of these studies is given in [13]-[17]. The spatial differentiability of the solutions is an 
important factor, this controls their evolution. Obviously, differentiable solutions do not provide an effective de-
scription of turbulence. Nevertheless, the global solvability and differentiability of the solutions has not been 
proven, and therefore the problem of describing turbulence remains open. It is interesting to study the properties 
of the Fourier transform of solutions of the Navier-Stokes equations. Of particular interest is how they can be 
used in the description of turbulence, and whether they are differentiable. The differentiability of such Fourier 
transforms appears to be related to the appearance or disappearance of resonance, as this implies the absence of 
large energy flows from small to large harmonics, which in turn precludes the appearance of turbulence. 

Thus, obtaining uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations 
means that the principle modeling of complex flows and related calculations will be based on the Fourier trans-
form method. The authors are continuing to research these issues in relation to a numerical weather prediction 
model; this paper provides a theoretical justification for this approach. Consider the Cauchy problem for the 
Navier-Stokes equations: 

( ) ( ), , , div 0tq v q q q p f x t q− ∆ + ∇ = −∇ + =                     (28) 

( )00tq q x
=
=                                 (29) 

in the domain ( )3 0,TQ R T= × , where: 

0div 0.q =                                   (30) 

The problem defined by (28), (29), (30) has at least one weak solution ( ),q p  in the so-called Leray-Hopf 
class [13]. 

The following results have been proved [14]: 
Theorem 5. If 
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( ) ( )1 3
0 2 2, ,Tq W R f L Q∈ ∈                             (31) 

there is a single generalized solution of (28), (29), (30) in the domain 
1TQ , [ ]1 0,T T∈ , satisfying the following 

conditions: 

( )2
2, , ,t Tq q p L Q∇ ∇ ∈                               (32) 

Note that 1T  depends on 0q  and f . 
Lemma 12. Let ( ) ( )1 3

0 2 2, Tq W R f L Q∈ ∈ . Then, 

( ) ( ) ( ) ( )3 3 3
2 2 22

22 2
000

sup d .
T

t

L R L R L QL R
t T

q q q fτ
≤ ≤

+ ∇ ≤ +∫                (33) 

Our goal is to provide global estimations for the Fourier transforms of the derivatives of the solutions to the 
Navier-Stokes Equations (28), (29), (30) without requiring the initial velocity and force to be small. We obtain the 
following uniform time estimation. Using the notation 

( ) ( ) ( ) ( ) ( ) ( )
3 3

, ,e d , e d ,i k x i k l x

R R
q k q x x q k l q x x−= − =∫ ∫               (34) 

( ) ( ) ( )3

2 2 d .avg R
q x q k l k l l kδ= − −∫                          (35) 

Assertion 1. The solution of (28) (30) according to Theorem 5 satisfies: 
( ) ( )( )2

30 e d ,v k t

R
q q q q fτ τ− −  = + ∇ + ∫ 



                          (36) 

where .F p f= −∇ +  
This follows from the definition of the Fourier transform and the theory of linear differential equations. 
Assertion 2.The solution of (28) (30) satisfies: 

2 2
,

i j i
i j i

i j i

k k k
p q q i F

k k
= +∑ ∑ 

                                (37) 

and the following estimations: 

( ) ( ) ( )3 3 3
2 2 2

3 2 1 23 ,L R L R L Rp q q≤ ∇                            (38) 

( )3
2

2
2

2

1 3 .L R

fq
p f q

k kk
∇ ≤ + + ∇ + ∇







                      (39) 

This expression for p  is obtained using div  and the Fourier transform. The estimations follow from this re-
presentation. 

Lemma 13. The solution of (28), (29), (30) in Theorem 5 satisfies the following inequalities: 

3 3

2 2 2 2

0
d d d const,

t

R R
x q x x q x τ+ ∇ ≤∫ ∫ ∫                         (40) 

3 3

4 2 4 2

0
d d d const,

t

R R
x q x x q x τ+ ∇ ≤∫ ∫ ∫                         (41) 

or 

( )3 32

22

0
d d const,

t

L R R
q k q k τ∇ + ∇ ≤∫ ∫ 

                           (42) 

( ) 33
2

222 2
0

d d const,
t

RL R
q k q k τ∇ + ∇ ≤∫ ∫ 

                          (43) 

This follows from the Navier-Stokes equations, our first a priori estimation (Lemma 1), and Lemma 2. 
Lemma 14. The solution of (28) (30) satisfies the following inequalities: 

( ) ( )3 3
2 2

2 2
0 00

max max sup d ,
2

t

L R L Rk k t T

Tq q q q τ
≤ ≤

≤ + + ∇∫                     (44) 
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( ) ( )3 332 2

2 2
0 00

max max sup d d ,
2

t

L R L RRk k t T

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫                (45) 

( ) ( )33 3
2 2

222 2 2 2
0 00

max max sup d d ,
2

t

RL R L Rk k t T

Tq q q k q k τ
≤ ≤

∇ ≤ ∇ + ∇ + ∇∫ ∫              (46) 

These estimations follow from (9), Parseval’s identity, the Cauchy-Schwarz inequality, and Lemma 3. 
Lemma 15. The solution of (28) (30) according to Theorem 5 satisfies ( )const, 0, 2, 4iC i≤ = , where: 

( )
22 2 2

0 1 1 2 1 4 10 0 0
d , , , d , d .

t t t
С F F q q F С F С Fτ τ τ= = ∇ + = ∇ = ∇∫ ∫ ∫             (47) 

This follows from our a priori estimation (Lemma 1) and the assertion of Lemma 3. 
Lemma 16. The solution of (28) (30) according to Theorem 5 satisfies to the following inequalities: 

( )( ) ( )( )
11
22 0

0
1e e , e e ,
2 e ek k

k

C
q k t q k

v kλ λ
λ

 − ≤ − +   − 
                   (48) 

where 

( )
2

0 1 10
d , , .

t
С F F q q Fτ= = ∇ +∫                            (49) 

Proof. From (36), we have the inequality: 

( )( ) ( )( ) ( ) ( )( )
22 e e

0 10
e e , e e e e e , d ,k

t v k t
k k kq k t q k F k tλ τ

λ λ λ τ− − −− ≤ − + −∫ 

          (50) 

where 

( )1 , .F q q F= ∇ +                                    (51) 

Using the notation 
( ) ( )( )

22 e e
10

e e e , d ,k
t v k t

kI F k tλ τ
λ τ− − −= −∫                           (52) 

And Hölder’s inequality in I , the following inequality can be obtained: 

( )22

1 1

e e
10 0

e d d ,k
p qp qt tv k tI Fλ τ τ τ− − −   ≤    

  
∫ ∫                          (53) 

where p  and q  satisfy 1 1 1p q+ = . Let 2p q= = ; then 

( )
1

2 21
12 0

d1 .
2 e e

t

k

F
I

v k λ

τ ≤   − 

∫ 

                                (54) 

Using the estimation for I  in (53), the assertion in the lemma can be proved. 
Lemma 17. Let q∈ℜ  and 

max .
k

q < ∞  

Then, 
( ) ( ) ( )3 3 2

1
2

2 d d max .LR R k

q x q y
x y C q q

x y
≤ +

−
∫ ∫                        (55) 

A proof of this lemma can be obtained using Plancherel’s theorem. For  

1
2

1
2

1
2

04π

vK
v CC

=

−
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consider the transformation of the Navier-Stokes: 

2, , .v ft tA v f
A A

′ ′ ′= = =                                (56) 

Lemma 18. Let  

( )
1 2
3 30

4 ,
1

A
v CC

=
+

 

then 
8 .
7

K ≤  

Proof. Using the definitions for C  and 0C  we get 
11 1

2 2 0
2

4π
,

CCv vK
A A A

−
 

    = −       
 

                              (57) 

11 1
02 2

3 2

4π 8 .
7

CC
K v v

A

−
 

= − ≤  
 

                                (58) 

We now obtain uniform time estimations for Rollnik’s norms of the solutions of (28) (30). The following (and 
main) goal is to obtain the same estimations for 

max
x

q  

the velocity components of the Cauchy problem for the Navier-Stokes equations. We shall use Lemmas 6 and 11. 
Theorem 6. Let 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 2 3 3 2 3
0 2 0 2 2 1 2 1 2, , , , .T T Tq W R q L R f L Q f L R L Q f L R L Q∈ ∇ ∈ ∈ ∈ ∩ ∇ ∈ ∩ 

  

Then, there exists a unique generalized solution of (28) (30) satisfying the following inequality:  
3

1
max max constit xi

q
=

≤∑  

where the value of const  depends only on the conditions of the theorem. 
Proof. It suffices to obtain uniform estimates of the maximum velocity components iq , which obviously fol-

low from 
max ,ix

q  

Because uniform estimates allow us to extend the local existence and uniqueness theorem over the interval in 
which they are valid. To estimate the velocity components, Lemma 10 can be used: 

( )
( )

3
2

2
0 0 10 2

3 30

4d 1 , .
1

T
i i x L Rv q q t A A

v CC

 = + + = 
 

+
∫  

Using Lemmas (13)-(17) for 

( )3
2

2
00

d 1 ,
T

i i x L Rv q q t A = + + 
 ∫  

we can obtain 1iA α
ΤΑ

< < where iA  is the amplitude of potential iv  and ( ) 1iN v < . That is, discrete solu-
tions are not significant in proving the theorem, so its assertion follows the conditions of Theorem 6, which de-
fines uniform time estimations for the maximum values of the velocity components. 

Theorem 6 asserts the global solvability and uniqueness of the Cauchy problem for the Navier-Stokes equa-
tions. 

Theorem 7. Let 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 2 3 3 2 3
0 2 0 2 2 1 2 1 2, , , ,T T Tq W R q L R f L Q f L R L Q f L R L Q∈ ∇ ∈ ∈ ∈ ∩ ∇ ∈ ∩ 

  

( )3
20

lim .L Rt t
q

→
∇ = ∞                                   (59) 

Then, there exists ,i j  and 0x  such that 

( ) ( )
0 0

0lim , or lim .j jt t t t
x t N qψ

→ →
= ∞ = ∞                         (60) 

Proof. A proof of this lemma can be obtained using i Ac i D iq P q P q= +  and uniform estimates Ac iP q . 
Theorem 7 describes the blowup of classical solutions for the Navier-Stokes equations. 

5. Conclusion 
Uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations indicate that the 
principle modeling of complex flows and related calculations can be based on the Fourier transform method. In 
terms of the Fourier transform, under both smooth initial conditions and right-hand sides, no apparent fluctuations 
appear in the speed and pressure modes. A loss of smoothness in terms of the Fourier transform can only be ex-
pected for singular initial conditions or unbounded forces in ( )2 TL Q . Theorem 7 describes the time blowup of 
the classical solutions for the Navier-Stokes equations arises, and complements the results of Terence Tao [17]. 
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