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Abstract

The analytic properties of the scattering amplitude are discussed, and a representation of the po-
tential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy prob-
lem solution for the Navier-Stokes equations is provided. The paper also describes the time blo-
wup of classical solutions for the Navier-Stokes equations by the smoothness assumption.
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1. Introduction

In this paper, we introduce important explanatory results presented in a previous study in [1]. We therefore res-
tate the basic to clarify out understanding of them. We begin by considering some ideas about the potential in
the inverse scattering problem, and this is then used to estimate solutions of the Cauchy problem for the Navier-
Stokes equations. A similar approach has been developed for one-dimensional nonlinear equations [2]-[5], but to
date, there have been no results for the inverse scattering problem for three-dimensional nonlinear equations.
This is primarily through difficulties in solving the three-dimensional inverse scattering problem. This paper is
organized as follows: the study begin describing the inverse scattering problem, giving in a formula for the scat-
tering potential. Using this potential, we obtain uniform time estimates in time for solutions to the Navier-Stokes
equations, which suggest the global solvability of the Cauchy problem for the Navier-Stokes equations. Essen-
tially, the present study expands the results for one-dimensional nonlinear equations with inverse scattering me-
thods to multi-dimensional cases. Our main achievement is a relatively unchanged projection onto the space of
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solutions associated with the continuous spectrum for the nonlinear equations, which allows us to focus solely
on the behavior associated with the decomposition of the solutions to the discrete spectrum. In the absence of a
discrete spectrum, we obtain estimations for the maximum potential in the weaker norms, compared with the
norms for the Sobolev spaces.

Consider the operators H =-A, +q(x) and H,=-A, defined in the dense set W R3) in the space
L, (R3); let g be a bounded fast-decreasing function. The operator H is called the Schrédinger operator. We
consider the three-dimensional inverse scattering problem for the Schrédinger operator, i.e, the scattering poten-
tial must be reconstructed from the scattering amplitude. This problem has been studied by many researchers
([6]-[9], and references therein).

2. Results

Consider Schrédinger’s equation:
~AY+q(x)¥ =[k*| W, keC. @)
Let ¥, (k, 6,x) be asolution of (1) with the foIIowmg asymptotic behavior:
gilkl

v, (k,0,x)=e""+ M Ak, €', 49)+0(| J |X| = oo, )

where A(k,0',0) is the scattering amplitude and 0 = x/|x| 6eS? for keC*={Im k>0}
A(k,0',0 j q(x)¥, (k,8,x)e ™ dx. (3)

Let us also define the solution ¥_(k,#, x) for keC = {Im k<0} as
Y_(k,0,x)="¥, (-k,-0,x).
As is well known [2]:

¥, (k,0,x)-¥_(k,0,x) ——j A(k,0,0)¥_(k,0',x)d¢’, keR. @)

This equation is the key to solving the inverse scattering problem, and was first used by Newton [7] [8] and
Somersalo et al. [9].
Equation (4) is equivalent to the following:

¥ =SY )

where S is a scattering operator with kernel S (k,I) :
)= [, (ko x) " (1, %) dx.
The following theorem was stated in [6]:
Theorem 1. (The energy and momentum conservation laws) Let qe R . Then, SS*=1, S*S =1, where

| is aunitary operator.
Definition 1. The set of measurable functions R with norm defined by

o, - J.. U9 gy

6
x-yf
is recognized as being of Rollnik class.
As shown in [10], W, (k,x) is an orthonormal system of H eigenfunctions for the continuous spectrum. In
addition to the continuous spectrum, there is a nite number N of H negative eigenvalues, designated as —Ej2
with corresponding normalized eigenfunctions

v, (x—E7) (i=1N),

‘/’i(x’_Eiz)eLZ(Rs)

where y, (X,—Ejz)e LZ(R3).
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We present Povzner’s results [10] below:
Theorem 2. (Completeness) For both an arbitrary f eL, (Ra) and for H eigenfunctions, Parseval’s identity
is valid.

f1, = (P Py F)+(Py fL Py T).
6
PDf:zfjl//j(X,—Ej), Pe f =], [57F(5)¥. (5,6,x)dods, ©
j=1

where f and f ; are Fourier coefficients for the continuous and discrete cases.
Theorem 3. (Birman-Schwinger estimation). Let g < R . Then, the number of discrete eigenvalues can be es-
timated as:

B! ax)aty) o
N(q)—(4n)2IR3fR3 |X—y|2 dxdy. ()

This theorem was proved in [11].
Let us introduce the following notation:

NA=[, A(k,0',6)d6.
For f(k,&'x),
Df = [, A(k,0',6) f (k,6',x)dé, (8)
b (V2,0,x) =", ©(J7,0'x)= (¥, (V2,0 %) - )a, ©)

where

s=T1[(kiE, ) (k)]

J:
We define the operators T,,T for fewzl(R) as follows:

f(s)
T f=- lim ds, Imz>0, 10
+ 27 Imlzaoj'fOO S—27 S mz> ( )
. f
Tf=-tiim | )4, 1mz<o, (11)
2mi Imz->07— g — 7
TH =%(T+ £t (12)

Consider the Riemann problem of finding a function @, that is analytic in the complex plane with a cut
along the real axis. Values of @ on the upper and lower sides of the cut are denoted @, and ®_ respec-
tively. The following presents the results of [12]:

Lemma 1.
TT:EI, TT+:£T+, Tsz—in, T+:T+1I, T7:T—£I. (13)
4 2 2 2 2
Theorem4.Let geR, g=>, —D_; then
o, =T, 0. (14)

The proof of the above follows from the classic results for the Riemann problem.
Lemma2.Let qeR, g, = g(ﬁ,&,x), g = g(ﬁ,—@,x). Then,

¥, (Vz,0,x)A (T 9. +e'“X) ¥_(Vz,0,x)A =(T_g_ +e*iﬁ”). (15)

The proof of the above follows from the definitionsof g, ®,, ® and ¥, ¥_.
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Definition 2. Denote by TA the set of functions f (k,6,60") with the norm
[#ls =sposcor ([T + ) <o
Definition 3. Denote by R, ; ,, the set of functions g suchthat g =(1-T.D)f,forany f e TA.

Lemma 3. Suppose ||A|,, <a <1. Then, the operator (I -T_D), defined on the set TA has an inverse de-
finedon R, ;.

The promg of the above follows from the definitions of D, T_ and the conditions of Lemma 3.

Lemma 4. Let qe R, and assume that (I —TiD)'1 exists. Then,

9=T.9-T.g, (16)
T.g.=(1-T.D) " T.Dg, (17)
¥ =%(I ~T.D)"T D¢, +4,. (18)

The proof of the above follows from the definitions of g,®,,¥, and Equation (4).
Lemma5. Let qe %, and assume that (1 -T,D)™ exists. Then,

lT_D+£T_D =1T_D£T_D +£T_D+Q,
A A A A A
where Q represents the terms of higher order appearingin T.D.
Proof: Using
[ (xK)=W_(x1)dx=5(k-1),
[ oty (6 K) gy (x,1)dx =5 (k1)
and
o0 l i
Y = Z(——TD) @ + &y
i\ A
We establish the proof.
Lemma 6. Let g e R . Then,
q=lim[H,¥_/¥_]. (19)

Lemma 7. Let qe%®,and assume that (1-T,D)" exists. Then,

q= "mKi N (I —TD)lTDH0¢Oj/(i N(1-T.D)" T DH,g, + N¢OH. (20)

Z—>®©

The proof of the above follows from the definitions of N, ¥, , and Lemma 4.
Lemma8.Let qe%R.Then |D|<2.

The proof of the above follows from the definition of D and the unitary nature of S.
Lemma 9. Let qeRnL,(R*). Then,

E; < [Ja(olly [ ox (21)
max|y; (x)| < 2ay, ||L2(Ra)' (22)

The proof of the above follows from the definitions of E?, v, and (1).
Lemma 10. Let qe R L, (R®). Then,

max|Pod] < 2l ol max|y; (x)]. (23)

The proof of the above follows from the definition of P, f .
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Lemma11. Let geRnL,(R%),and |A],, <a <L.Then,
max|Poc0| < Cla, s)- (24)
To prove this result, one calculates
[oa¥ dx= jRa(A;{g + kZ‘I{)dx. (25)
Using Lemma 5, the first approximation can be obtained in terms of §:

Pl =[s [ sa¥ ¥ dxdk = [, [ (AW +K*W )W dxdk

- J.R3 J.R3|:Hoi(_TD)i g + kzg‘,(—'ﬂD)i ¢0}‘I’_dxdk

i=1

(26)

Pl =[] . q¥ ¥ _dxdk

= IR3 .[R3 I:Ho (—T_D + ,Ll)¢0 +k? (—T_D +,U)¢0:|l1’__dXdk.

where u represents terms of higher order for § and T_D. The lemma can be proved using obvious estima-
tions for x and Lemmas 5, 6, and 8.

(27)

3. Conclusions for the Three-Dimensional Inverse Scattering Problem

This study has shown once again the outstanding properties of the scattering operator, which, in combination with
the analytical properties of the wave function, enable an almost-explicit formula for the potential to be obtained
from the scattering amplitude. Furthermore, this approach overcomes the problem of over-determination, result-
ing from the fact that the potential is a function of three variables, whereas the amplitude is a function of five va-
riables. We have shown that it is sufficient to average the scattering amplitude to eliminate the two extra variables.

4. Cauchy Problem for the Navier-Stokes Equation

Numerous studies of the Navier-Stokes equations have been devoted to the problem of the smoothness of its solu-
tions. A good overview of these studies is given in [13]-[17]. The spatial differentiability of the solutions is an
important factor, this controls their evolution. Obviously, differentiable solutions do not provide an effective de-
scription of turbulence. Nevertheless, the global solvability and differentiability of the solutions has not been
proven, and therefore the problem of describing turbulence remains open. It is interesting to study the properties
of the Fourier transform of solutions of the Navier-Stokes equations. Of particular interest is how they can be
used in the description of turbulence, and whether they are differentiable. The differentiability of such Fourier
transforms appears to be related to the appearance or disappearance of resonance, as this implies the absence of
large energy flows from small to large harmonics, which in turn precludes the appearance of turbulence.

Thus, obtaining uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations
means that the principle modeling of complex flows and related calculations will be based on the Fourier trans-
form method. The authors are continuing to research these issues in relation to a numerical weather prediction
model; this paper provides a theoretical justification for this approach. Consider the Cauchy problem for the
Navier-Stokes equations:

g —VAQ+(q,Vq)=-Vp+ f(xt), divg=0 (28)

Al =% (x) (29)
in the domain Q; = R*x(0,T), where:
divg, =0. (30)

The problem defined by (28), (29), (30) has at least one weak solution (g, p) in the so-called Leray-Hopf
class [13].

The following results have been proved [14]:

Theorem 5. If
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&b eW, (R®), fel(Q) (31)
there is a single generalized solution of (28), (29), (30) in the domain Q; , T, e [O,T], satisfying the following
conditions:

g. Vid, VpelL(Q), (32)

Note that T, dependson q, and f.
Lemma 12. Let g, eW,; (R®), feL,(Q-). Then,

sup Jaff o) IVl oy 07 <l oy #1 @

Our goal is to provide global estimations for the Fourier transforms of the derivatives of the solutions to the
Navier-Stokes Equations (28), (29), (30) without requiring the initial velocity and force to be small. We obtain the
following uniform time estimation. Using the notation

(k) =[oa(x)e“dx, a(k-1)=[,a(x)e" ax, (34)
Gug () = [ A (k=) 5 ([ —|I|2)dl/|k|. (35)

Assertion 1. The solution of (28) (30) according to Theorem 5 satisfies:
6=0+ [ ([(a¥)a]+ F)ar, (36)

where F=-Vp+ f.
This follows from the definition of the Fourier transform and the theory of linear differential equations.
Assertion 2.The solution of (28) (30) satisfies:

kk, . <k =
p= g, +iy —F 37
2 Y 2R 37)
and the following estimations:
" p||L2(R3 3||Vq"?|:/22R3 ”q"L2 R3 (38)
AL
|vp|L2(R3)_W _| ||(||Vf|+3|V | (39)

This expression for p is obtained using div and the Fourier transform. The estimations follow from this re-
presentation.
Lemma 13. The solution of (28), (29), (30) in Theorem 5 satisfies the following inequalities:

jR3|x|2 la* dx+j; J‘R3|x|2 |Vq|* dxdz < const, (40)

IRs |X|4 |Q|2 dx + I; sz |X|4 |Vq|2 dxd < const, (41)
or

||Vq||L2(R3) + f; _[R3 |k|2 |€q|2 dkdz < const, (42)

||V2q () +j; [ lk[ |ﬁzq|2 dkdz < const, (43)

This follows from the Navier-Stokes equations, our first a priori estimation (Lemma 1), and Lemma 2.
Lemma 14. The solution of (28) (30) satisfies the following inequalities:

. T t
maa < max|a, | + 50 [af o + [ [Vl ) . ()

1908
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~ T ~ t -
max|Va| < max|Vey |+ sup [Vl cs) + [, eI [Vl o) A7, (45)

mElX|V2q| < m§x|V2qo| — sup Vg dkdr, (46)

0<t<T

12
Lz(Ra) +I; J.R3|k|2 ||V2q Lz(Ra)

These estimations follow from (9), Parseval’s identity, the Cauchy-Schwarz inequalit{, and Lemma 3.

Lemma 15. The solution of (28) (30) according to Theorem 5 satisfies C; <const, (i=0,2, 4) , where:
t) =2 t 12 t 2
G=[[E[dr. F=(aV)a+F. G =[|v&[dr, ¢, =[|v?F[dr. 47)

This follows from our a priori estimation (Lemma 1) and the assertion of Lemma 3.
Lemma 16. The solution of (28) (30) according to Theorem 5 satisfies to the following inequalities:

1 1
~ - 1)y C}
|Q(|k|(ek—el),t)|s|q0(|k|(ek—ei))|+[5jzm, (48)
where
Cozmlflrdr, F=(q,V)q+F. (49)

Proof. From (36), we have the inequality:

[a(lel(ex —e:).0) < (Kl (e e ] e, (ke —e,) e, (50)
where
F=(a.V)q+F. (51)
Using the notation
= |foe MR (K (e e, ) thae] (52)

And Hélder’s inequality in 1 , the following inequality can be obtained:
1

1<| [} ' drjp U;||fl|qdr):, (53)

where p and q satisfy 1/p+1/g=1.Let p=q=2;then

o VK leeal (t-0)

1
1 rt1= 2 2
1 5(.[0|F1| dT)
I<|=—| ————. (54)
2v) k|l —e,]
Using the estimation for | in (53), the assertion in the lemma can be proved.
Lemmal7.Let ge®R and

m3x|q| <o,

Then,

fo 28 oy < .+ mpil” 9

A proof of this lemma can be obtained using Plancherel’s theorem. For
1
V2
K= 1 1
2

v2 —4nCC,
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consider the transformation of the Navier-Stokes:

v f
t'=tA, V=—, f'=—. 56
y A7 (56)
Lemma 18. Let
4
A= 1 =
v3(CC, +1)3
then
k<8
7
Proof. Using the definitions for C and C, we get
1 1 -
k[ V(v 2 4nCC, ’ (57)
A A A?
« 5 4ncc, )’ 8 5
=V Vo= < (58)

We now obtain uniform time estimations for Rollnik’s norms of the solutions of (28) (30). The following (and
main) goal is to obtain the same estimations for

max|q|
X

the velocity components of the Cauchy problem for the Navier-Stokes equations. We shall use Lemmas 6 and 11.
Theorem 6. Let

6% W/ (R*), VG el (R%), felL(Q), feL(R)nL(Q), VfelL(R)nL(Q)

Then, there exists a unique generalized solution of (28) (30) satisfying the following inequality:
3
max .2:1: max |a;| < const

where the value of const depends only on the conditions of the theorem.
Proof. It suffices to obtain uniform estimates of the maximum velocity components g, , which obviously fol-
low from

max|cj
X

Because uniform estimates allow us to extend the local existence and uniqueness theorem over the interval in
which they are valid. To estimate the velocity components, Lemma 10 can be used:

= qi/ [IOT ol o+ A +1)' h= ﬁ

Using Lemmas (13)-(17) for

v, = Q./UOT ||qx||iz(R3)dt +A +1),

we can obtain ||A||, <a <1where A is the amplitude of potential v, and N(v;)<1. That is, discrete solu-
tions are not significant in proving the theorem, so its assertion follows the conditions of Theorem 6, which de-
fines uniform time estimations for the maximum values of the velocity components.

Theorem 6 asserts the global solvability and uniqueness of the Cauchy problem for the Navier-Stokes equa-
tions.

Theorem 7. Let
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%W/ (R?), VG el (R%), felL(Q), feL(R)nL(Q), VfeL(R)nL(Q)

lim|val,, ) = (59)
Then, there exists i, j and X, such that
tlLl’Ql//j(XO,t)zoo or !LrHN(qj)ﬂo. (60)

Proof. A proof of this lemma can be obtained using ¢, = P,.g; + P,g, and uniform estimates P,_q;.
Theorem 7 describes the blowup of classical solutions for the Navier-Stokes equations.

5. Conclusion

Uniform global estimations of the Fourier transform of solutions of the Navier-Stokes equations indicate that the
principle modeling of complex flows and related calculations can be based on the Fourier transform method. In
terms of the Fourier transform, under both smooth initial conditions and right-hand sides, no apparent fluctuations
appear in the speed and pressure modes. A loss of smoothness in terms of the Fourier transform can only be ex-
pected for singular initial conditions or unbounded forces in L, (Q; ). Theorem 7 describes the time blowup of
the classical solutions for the Navier-Stokes equations arises, and complements the results of Terence Tao [17].
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