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Abstract 
Estimation for the parameters of the generalized logistic distribution (GLD) is obtained based on 
record statistics from a Bayesian and non-Bayesian approach. The Bayes estimators cannot be ob- 
tained in explicit forms. So the Markov chain Monte Carlo (MCMC) algorithms are used for compu- 
ting the Bayes estimates. Point estimation and confidence intervals based on maximum likelihood 
and the parametric bootstrap methods are proposed for estimating the unknown parameters. A 
numerical example has been analyzed for illustrative purposes. Comparisons are made between 
Bayesian and maximum likelihood estimators via Monte Carlo simulation. 
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1. Introduction 
Record values and the associated statistics are of interest and importance in many areas of real life applications 
involving data relating to meteorology, sport, economics, athletic events, oil, mining surveys and lifetesting. 
Many authors have studied records and associated statistics. Among them are Ahsanulla [1] [2], Resnick [3], 
Raqab and Ahsanulla [4], Nagaraja [5], Arnold et al. [6] [7], Raqab [8], Abd Ellah [9] [10], Sultan and Bala- 
krishnan [11], Preda and Panaitescu [12], Mahmoud et al. [13] and Sultan et al. [14]. 

Let 1 2 3, , ,X X X   a sequence of independent and identically distributed (iid) random variables with cumuli- 
tive distribution function ( )F x  and probability density function ( )f x . Setting  

( )1 2 3min , , , , , 1n nY X X X X n= ≥
 we say that jX  is a lower record and denoted by ( )L jX  if 1j jY Y −< ,  

1j > . For more detail and references see Nagaraja [5], Ahsanullah [2] and Arnold et al. [7]. 
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The standard logistic distribution has important uses in describing growth and as a substitute for the normal 
distribution. It has also attracted interesting applications in the modeling of the dependence of chronic obstruct- 
tive respiratory disease prevalence on smoking and age, degrees of pneumoconiosis in coal miners, geological 
issues, hemolytic uremic syndrome data for children, physicochemical phenomenon, psychological issues, sur- 
vival time of diagnosed leukemia patients, and weight gain data. A generalized logistic distribution is proposed, 
based on the fact that the difference of two independent Gumbel distributed random variables has the standard 
logistic distribution. The generalized logistic distribution (GLD) has received additional attention in estimating 
its parameters for practical usage see for example Asgharzadeh [15]. The form of the probability density func- 
tion (pdf) and cumulative distribution function (cdf) of the two parameter generalized logistic distribution de- 
noted by ( )GLD ,λ θ  are given, respectively, by 

( ) ( )( ) ( ) ( )1
1 exp exp ,     ,   0,    0,f x x x x

λ
λθ θ θ λ θ

− +
= + − − −∞ < < ∞ > >                (1) 

( ) ( )( )1 exp ,    ,    0,     0.F x x x
λ

θ λ θ
−

= + − −∞ < < ∞ > >                      (2) 

Here λ  and θ  are the shape and scale parameters, respectively, the above GLD was originally proposed as 
a generalization of the logistic distribution by Johnson et al. [16]. For 1λ = , the GLD becomes the standard lo- 
gistic and it is symmetric. The pdf in (1) has been obtained by compounding an extreme value distribution with 
a gamma distribution, different estimation procedures can be found in Chen and Balakrishnan [17]. 

The rest of the paper is organized as follows. In Section 2, we derive point estimation and the approximate 
confidence interval based on maximum likelihood estimation. The parametric bootstrap confidence intervals are 
discussed in Section 3. Section 4 describes Bayes estimates and construction of credible intervals using the MCMC 
algorithms. Section 5 contains the analysis of a numerical example to illustrate our proposed methods. A simula- 
tion studies are reported in order to give an assessment of the performance of the different estimation methods in 
Section 6. Finally we conclude with some comments in Section 7. 

2. Maximum Likelihood Estimation 
Suppose that ( ) ( ) ( )1 2, , ,L L L nx x x x=   be the lower record values of size n  from the generalized logistic distri- 

bution ( )GLD ,λ θ . The likelihood function for observed record x  was given by see Arnold et al. [7] 

( ) ( )( ) ( )( )
( )( )

1

1
, ,

n L i
L n

i L i

f x
x f x

F x
λ θ

−

=

= ∏                                (3) 

where ( ).f  and ( ).F  are given respectively, by (1) and (2), the likelihood function can be obtained by subs- 
tituting from (1) and (2) in (3) and written as 

( ) ( )( )( ) ( )( )
( )( )1

exp
, 1 exp .

1 exp

n L in n
L n

i L i

x
x x

x

λ θ
λ θ λ θ θ

θ

−

=

−
= + −

+ −
∏                     (4) 

The natural logarithm of the likelihood function (4) is given by 

( ) ( )( )( ) ( ) ( )( )( )
1 1

, log log log 1 exp log 1 exp .
n n

L n L i L i
i i

L x n n x x xλ θ λ θ λ θ θ θ
= =

= + − + − − − + −∑ ∑       (5) 

Differentiating (5) with respect to λ  and θ  and equating the results to zero, we obtain the likelihood equa- 
tions for the parameters λ  and θ  as 

( )
( )( )( ),

log 1 exp 0,L n

L x n x
λ θ

θ
λ λ

∂
= − + − =

∂                         (6) 

( ) ( ) ( )( )
( )( )( ) ( )

( ) ( )( )
( )( )( )1 1

exp exp,
0.

1 exp 1 exp

n nL n L n L i L i
L i

i i
L n L i

x x x xL x n x
x x

λ θ θλ θ
θ θ θ θ= =

− −∂
= + − + =

∂ + − + −
∑ ∑                    (7) 
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From (6), the maximum likelihood estimate (MLE) of λ  say λ̂ , can be obtained as 

( )( )( )
ˆ .

log 1 exp L n

n

x
λ

θ
=

+ −
                                (8) 

The MLE of the θ  say θ̂  can be obtained by solving the non-linear likelihood equation 

( ) ( ) ( )( )
( )( )( ) ( )( )( ) ( )

( ) ( )( )
( )( )( )1 1

exp exp
.

1 exp log 1 exp 1 exp

n nL n L n L i L i
L i

i i
L n L n L i

nx x x xnf x
x x x

θ θ
θ

θ θ θ θ= =

− −
= + − +

+ − + − + −
∑ ∑         (9) 

Therefore, θ̂  can be obtained as the solution of the non-linear equation in the form 

( )θ θΨ = ,                                     (10) 

where 

( ) ( )
( ) ( )( )

( )( )( )
( ) ( )( )
( )( )( ) ( )( )( )

1

1 1

exp exp

1 exp 1 exp log 1 exp

n n L i L i L n L n
L i

i i
L i L n L n

x x nx x
n x

x x x

θ θ
θ

θ θ θ

−

= =

 − − Ψ = − − + − + − + −  
∑ ∑         (11)  

Since θ̂  is a fixed point solution of non-linear Equation (9), therefore, it can be obtained by using a simple 
iterative scheme as follows 

( ) 1,j jθ θ +Ψ =                                     (12) 

where jθ  is the thj  iterate of θ̂ . The iteration procedure should be stopped when 1
ˆ ˆ

j jθ θ+ −  is sufficiently  

small. Once we obtain θ̂  from (9), and the MLE of λ  say λ̂  becomes 

( )( )( )
ˆ .

ˆlog 1 exp L n

n

x
λ

θ
=

+ −
                               (13) 

The asymptotic variance—covariance matrix of the maximum likelihood estimates for the two parameters λ  
and θ  is the inverse of the Fisher information matrix after ignoring the expectation operators as following 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

12 2

2

2 2

2
,

, ,
var cov ,

,
, ,cov , var

L x L x

L x L x

λ θ

λ θ λ θ
λ λ θ λ θλ

λ θ λ θθ λ θ
θ λ θ

−
 ∂ ∂
− −  

∂ ∂∂   =
   ∂ ∂

   − −
 ∂ ∂ ∂   

  

  

             (14) 

with 
( )2

2 2

,
,

L x nλ θ

λ λ

∂
= −

∂                                 (15) 

( ) ( ) ( ) ( )( )
( )( )( )

2 2 exp, ,
,

1 exp

L n L n

L n

x xL x L x

x

θλ θ λ θ
λ θ θ λ θ

−∂ ∂
= =

∂ ∂ ∂ ∂ + −
                    (16) 

( )
( )( ) ( )( )

2

2 2

,
, , ,L n L i

L x n S x T x
λ θ

λ θ θ
θ θ

∂ −
= − −

∂                       (17) 

where 

( )( ) ( ) ( )( )
( )( )( )

2

2

exp
, ,

1 exp

L n L n
L n

L n

x x
S x

x

θ
θ

θ

−
=

+ −
                           (18) 
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( )( ) ( ) ( )( )
( )( )( )

2

2
1

exp
, .

1 exp

n L i L i
L i

i
L i

x x
T x

x

θ
θ

θ=

−
=

+ −
∑                           (19) 

The asymptotic normality of the MLE can be used to compute the approximate confidence intervals for para- 
meters λ  and θ . Therefore, ( )1 100%α−  confidence intervals for parameters λ , and θ  become, respec- 
tively, as 

( ) ( )2 2var   and  var ,Z Zα αλ λ θ θ± ±
   

                      (20) 

where 2Zα  is the percentile of the standard normal distribution with right-tail probability 2α . 

3. Bootstrap Confidence Intervals 
In this section, we propose to use confidence intervals based on the parametric bootstrap methods 1) percentile 
bootstrap method (Boot-p) based on the idea of Efron [18]; 2) bootstrap-t method (Boot-t) based on the idea of 
Hall [19]. The algorithms for estimating the confidence intervals using both methods are illustrated as follows. 

3.1. Percentile Bootstrap Method 
Algorithm 1 

Step 1. From the original data ( ) ( ) ( )1 2, , ,L L L nx x x x=   compute the ML estimates of the parameters λ


 and  

θ


 by (13) and (9). 
Step 2. Use λ



 and θ


 to generate a bootstrap sample ( ) ( ) ( )1 2, , ,L L L nx x x x∗ ∗ ∗ ∗=  . 

Step 3. As in Step 1, based on x∗  compute the bootstrap sample estimates of λ  and θ , say λ ∗  and θ ∗ .  
Step 4. Repeat Steps 2-3 N  times representing N  bootstrap MLE’s of λ  and θ  based on N  different 

bootstrap samples. 
Step 5. Arrange all sλ ∗′  and sθ ∗′ , in an ascending order to obtain the bootstrap sample [ ] [ ] [ ]( )1 2, , , ,N

l l lϕ ϕ ϕ
  

1, 2l =  (where 1ϕ λ ∗≡


, 2ϕ θ ∗≡


).  

Let ( ) ( )lG z P zϕ= ≤  be the cumulative distribution function of lϕ . Define ( )1
lboot G zϕ −=  for given z .  

The approximate bootstrap ( )100 1 %α−  confidence interval of lϕ  is given by 

1,
2 2lboot lboot
α αϕ ϕ −    
        

.                              (21) 

3.2. Bootstrap-t Method 
Algorithm 2 

Step 1. From the original data ( ) ( ) ( )1 2, , ,L L L nx x x x=   compute the ML estimates of the parameters λ


 and  

θ


 by Equations (13) and (9). 
Step 2. Using λ



 and θ


 generate a bootstrap sample ( ) ( ) ( ){ }1 2, , , .L L L nx x x∗ ∗ ∗
  Based on these data, compute  

the bootstrap estimate of λ  and θ , say λ ∗  and θ ∗  and following statistics 

( )
( )

( )
( )

1 2  and  
Var Var

n n
T T

λ λ θ θ

λ θ

∗ ∗

∗ ∗

∗ ∗

− −
= =

   

 

 

where ( )Var λ ∗  and ( )Var θ ∗  are obtained using the Fisher information matrix. 

Step 3. Repeat Step 2, N boot times. 
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Step 4. For the 1T ∗  and 2T ∗  values obtained in Step 2, determine the upper and lower bounds of the 
( )100 1 %α−  confidence interval of λ  and θ  as follows: let ( ) ( ) , 1, 2iH x P T x i∗= ≤ =  be the cumulative 

distribution function of 1T ∗  and 2T ∗ . For a given x , define 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1
- -Var   and  Var .Boot t Boot tx n H x x n H xλ λ λ θ θ θ− − − −= + = +


    

 

Here also, ( )Var λ


 and ( )Var θ


 can be computed as same as computing the ( )Var λ ∗  and ( )Var θ ∗ .  

The approximate ( )100 1 %α−  confidence interval of λ  and θ  are given by 

- - - -, 1   and  , 1 .
2 2 2 2Boot t Boot t Boot t Boot t
α α α αλ λ θ θ          − −                    

   

                (22) 

4. Bayes Estimation Using MCMC 
In Bayesian approach, the performance depends on the prior information about the unknown parameters and the 
loss function. The prior information can be expressed by the experimenter, who has some beliefs about the un- 
known parameters and their statistical distributions. This section describes Bayesian MCMC methods that have 
been used to estimate the parameters of the generalized logistic distribution (GLD). The Bayesian approach is 
introduced and its computational implementation with MCMC algorithms is described. Gibbs sampling proce- 
dure [20] [21] and the Metropolis-Hastings (MH) algorithm [22] [23] are used to generate samples from the 
posterior density function and in turn compute the Bayes point estimates and also construct the corresponding 
credible intervals based on the generated posterior samples. By considering model (1), assume the following 
gamma prior densities for θ  and λ  as 

( ) ( ) ( )1

1

exp     if 0
, ,

0                         if 0

a
ab b

h a b a
θ θ θ

θ
θ

−
− >= Γ

 ≤

                        (23) 

and 

( ) ( ) ( )1

2

exp     if 0
, .

0                          if 0

c
cd d

h c d c
λ λ λ

λ
λ

−
− >= Γ

 ≤

                         (24) 

The joint prior density of λ  and θ  can be written as 

( ) ( ) ( ) ( ) ( ) ( )1 1
1 2, , , exp .

a c
a cb dh h a b h c d b d

a c
λ θ θ λ θ λ θ λ− −= = − −

Γ Γ                (25) 

Based on the likelihood function of the observed sample is same as (4) and the joint prior in (25), the joint 
posterior density of λ  and θ  given the data, denoted by ( ),h xλ θ∗ , can be written as 

( ) ( ) ( )
( ) ( )

0 0

, ,
, ,

, , d d

x h
h x

x h

λ θ λ θ
λ θ

λ θ λ θ λ θ
∗

∞ ∞

×
=

×∫ ∫





                        (26) 

therefore, the Bayes estimate of any function of λ  and θ  say ( ),g λ θ , under squared error loss function is 

( ) ( )
( ) ( ) ( )

( ) ( )
0 0

,

0 0

, , , d d
ˆ , , .

, , d d
x

g x h
g E g

x h
λ θ

λ θ λ θ λ θ λ θ
λ θ λ θ

λ θ λ θ λ θ

∞ ∞

∞ ∞

×
= =  

×

∫ ∫
∫ ∫





             (27) 

The ratio of two integrals given by (27) cannot be obtained in a closed form. In this case, we use the MCMC 
algorithm to generate samples from the posterior distributions and then compute the Bayes estimator of ( ),g λ θ  
under the squared errors loss (SEL) function. For more details about the MCMC methods see, for example, Re- 
zaei et al. [24] and Upadhyaya and Gupta [25]. 
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4.1. MCMC Algorithm 
The Markov chain Monte Carlo (MCMC) algorithm is used for computing the Bayes estimates of the parameters 
λ  and θ  under the squared errors loss (SEL) function. We consider the Metropolis-Hastings algorithm, to 
generate samples from the conditional posterior distributions and then compute the Bayes estimates. The Me- 
tropolis-Hastings algorithm generate samples from an arbitrary proposal distribution (i.e. a Markov transition 
kernel). The expression for the joint posterior can be obtained up to proportionality by multiplying the likelihood 
with the joint prior and this can be written as 

( ) ( )( )( ) ( )( )
( )( )

1 1

1

exp
, exp log 1 exp ,

1 exp

n L in c n a
L n

i L i

x
h d b x

x

θ
λ θ λ θ λ θ λ θ

θ
∗ + − + −

=

−
 ∝ − − − + −   + −

∏          (28) 

from (28), the conditional posteriors distribution of parameter λ  can be computed and written, by 

( ) ( )( )( )( )1
1 exp log 1 exp .n c

L nh d xλ θ λ λ θ∗ + −  ∝ − + + −                        (29) 

Therefore, the conditional posteriors distribution of parameter λ , is gamma with parameters ( )n c+  and 

( )( )( )( )log 1 exp L nd xθ+ + −  and, therefore, samples of λ  can be easily generated using any gamma generat-  

ing routine. 
The conditional posteriors distribution of parameter θ  can be written as 

( ) ( )( )( ) ( ) ( )( )( )1
2

1 1
exp log 1 exp log 1 exp .

n n
n a

L n L i L i
i i

h b x x xθ λ θ θ λ θ θ θ∗ + −

= =

 
∝ − − + − − − + − 

 
∑ ∑       (30) 

The conditional posteriors distribution of parameter θ  Equation (30) cannot be reduced analytically to well 
known distributions and therefore it is not possible to sample directly by standard methods, but the plot of it (see 
Figure 1) show that it is similar to normal distribution. So to generate random numbers from this distribution, 
we use the Metropolis-Hastings method with normal proposal distribution. The choice of the hyper parameters 

, ,a b c  and d  which make (30) close to the proposal distribution and obviously more convergence of the 
MCMC iteration. We propose the following MCMC algorithm to draw samples from the posterior density func- 
tions; and in turn compute the Bayes estimates and also, construct the corresponding credible intervals. 

Algorithm 3 
Step 1. 0 ,θ θ=



 M nburn= . 
Step 2. Generate 1λ  from gamma distribution ( )1 .h λ θ∗  

Step 3. Generate 1θ  from ( )2h θ λ∗  using (MH) algorithm in [22] [23]. 

Step 4. Compute ( )tλ  and ( )tθ . 
Step 5. Repeat Steps 2-4 N  times. 
Step 6. Obtain the Bayes estimates of λ  and θ  with respect to the SEL function as 

( )
1

1 ,
N

i
i M

E x
N M

λ λ
= +

=
− ∑



 
( )

1

1 .
N

i
i M

E x
N M

θ θ
= +

=
− ∑



 

Step 7. To compute the credible intervals of λ  and θ , 1, , Nλ λ  order and 1, , Nθ θ  as ( ) ( )1 Nλ λ< <   
and ( ) ( )1 Nθ θ< < . Then the ( )100 1 %α−  symmetric credible intervals of λ  and θ  become 

( ) ( )( ) ( ) ( )( )2 22 21 1
,    and   , .

N NN Nα αα αλ λ θ θ
− −

   
      

                       (31) 

5. Numerical Computations 
To illustrate the estimation results obtained in the above sections, consider the first seven lower record values 
simulated from a two-parameter generalized logistic distribution (1) with shape and scale parameters, respectively 
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                   Figure 1. Posterior density function of θ  given λ .                      
 
tively, 3λ =  and 2β = , as follows: 1.0509, 0.0780, −0.1271, −0.1892, −0.6437, −1.0886, −1.1212. Based on 
these lower upper record values, we compute the approximate MLEs, Bootstrap (Boot-p, Boot-t) and Bayes es- 
timates of λ  and θ  using MCMC algorithm, we assume that informative priors 2.1, 1.5, 3.2a b c= = =  and 

1.55d =  on both λ  and θ . The density function of ( )2h θ λ∗  given in (30) is plotted Figure 1. It can be 
approximated by normal distribution function as mentioned in Subsection 4.1. Also the 95%, approximate 
maximum likelihood estimation (AMLE) confidence intervals, Bootstrap confidence intervals and approximate 
credible intervals based on the MCMC samples are computed. The results are given in Table 1. Figure 2 and 
Figure 3 plot the MCMC output of λ  and θ , using 10 000 MCMC samples (dashed line represent means and 
red lines represent lower and upper bounds of 95% probability intervals). The plot of histogram of λ  and θ  
generated by MCMC method are given in Figure 4 and Figure 5. This was done with 1000 bootstrap sample 
and 10,000 MCMC sample and discard the first 1000 values as “burn-in”. 

6. Simulation Study and Comparisons 
In this section, we conduct some numerical computations to compare the performances of the different estima- 
tors proposed in the previous sections. Monte Carlo simulations were performed utilizing 1000 lower record 
samples from a two-parameter generalized logistic distribution (GLD) for each simulation. The mean square er- 
ror (MSE) is used to compare the estimators. The samples were generated by using ( ) ( ), 2,1.2λ θ = , 
( )3.22,1.5 , with different sample of sizes ( )n . For computing Bayes estimators, we used the non-informative 
gamma priors for both the parameters, that is, when the hyper parameters are 0. We call it prior 0: 

0a b c d= = = = . Note that as the hyper parameters go to 0, the prior density becomes inversely proportional to 
its argument and also becomes improper. This density is commonly used as an improper prior for parameters in 
the range of 0 to infinity, and this prior is not specifically related to the gamma density. For computing Bayes 
estimators, other than prior 0, we also used informative prior, including prior 1, 1a = , 2b = , 2c =  and 

1d = , also we used the squared error loss (SEL) function to compute the Bayes estimates. We also computed 
the Bayes estimates and 95% credible intervals based on 10,000 MCMC samples and discard the first 1000 val- 
ues as “burn-in”. We report the average Bayes estimates, mean squared errors (MSEs) and coverage percentages. 
For comparison purposes, we also computed the MLEs and the 95% confidence intervals based on the observed 
Fisher information matrix. Finally, we used the same 1000 replicates to compute different estimates Tables 2-5 
report the results based on MLEs and the Bayes estimators (using MCMC algorithm) on both λ  and θ . 

7. Conclusions 
The main aim of this paper is study the estimate the parameters of the generalized Logistic distribution using the 
Bootstrap, MCMC algorithms and comparing them through numerical example and simulation study. There are 
many authors have studied classic Bayesian methods, for example, Amin [26] discussed Bayesian and non- 
Bayesian estimation from Type I generalized Logistic distribution based on lower record values, Aly and Bleed 
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                      Figure 2. Trace plot MCMC output of λ .                       
 

 
                      Figure 3. Trace plot MCMC output of θ .                       
 

 
                      Figure 4. Histogram of λ  generated by MCMC method.           
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                      Figure 5. Histogram of θ  generated by MCMC method.          
 
Table 1. Results obtained by MLE, Bootstrap and MCMC method of λ  and θ .                                     

Method Parameter Point Interval Length 

MLEs 
λ  3.0047 [−0.2232,6.2325] 6.4557 
θ  1.9865 [0.1956,3.7774] 3.5817 

Boot-p 
λ  2.9316 [1.6633,3.9486] 2.2852 
θ  2.0012 [1.1767,2.9481] 1.7714 

Boot-t 
λ  3.1591 [3.0250,4.8306] 1.8057 
θ  2.1924 [1.1922,3.4791] 2.2869 

MCMC 
λ  2.8700 [1.2621,5.2139] 3.9519 
θ  1.8946 [0.9046,3.2826] 2.3779 

 
Table 2. Average values of the different estimators and the corresponding MSEs. when ( ) ( ), 2,1.2λ θ = .                  

n 
MLE MCMC (Prior 0) MCMC (Prior 1) 

λ  θ  λ  θ  λ  θ  

5 
1.8045 1.0185 1.9232 1.0044 1.9931 1.1082 
(0.243) (0.0804) (0.2522) (0.0793) (0.2158) (0.0758) 

7 
1.9541 1.0233 2.0110 1.1144 2.121 1.0938 

(0.2173) (0.0742) (0.2367) (0.0737) (0.1814) (0.0731) 

9 
1.8884 1.1396 2.0199 1.0225 2.0773 1.1233 

(0.2004) (0.0710) (0.215) (0.0696) (0.1465) (0.0627) 

12 
2.0051 1.1570 1.9729 1.0726 2.1549 1.1242 

(0.1395) (0.0632) (0.1459) (0.0622) (0.1258) (0.0551) 

15 
1.9879 1.1078 2.0460 1.0791 2.1864 1.0792 

(0.1239) (0.0580) (0.1367) (0.0591) (0.1157) (0.0523) 

18 
1.9862 1.1665 2.0478 1.1941 2.1083 1.0975 

(0.1138) (0.0464) (0.1245) (0.0488) (0.1049) (0.0437) 

20 
1.9828 1.1481 1.9854 1.0953 2.1957 1.1131 

(0.1045) (0.0384) (0.1115) (0.0385) (0.0948) (0.0400) 

23 
1.9716 1.1446 1.9977 1.0480 2.1747 1.1421 

(0.1006) (0.0311) (0.1039) (0.0324) (0.0913) (0.0391) 

25 
1.9967 1.1383 1.9591 1.1063 2.1763 1.1123 

(0.0942) (0.0219) (0.0965) (0.0224) (0.0907) (0.0211) 

Note: The first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses. 
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Table 3. The average confidence lengths relative estimate of parameters and the corresponding coverage percentages when 
( ) ( ), 2,1.2λ θ = .                                                                                         

n MLE MCMC (Prior 0) MCMC (Prior 1) 

 λ  θ  λ  θ  λ  θ  
5 4.8702 2.4925 3.9902 2.8843 3.895 1.8332 

 (0.945) (0.932) (0.947) (0.939) (0.941) (0.944) 

7 4.7022 2.3674 3.9165 2.7655 3.8132 1.6703 

 (0.951) (0.945) (0.949) (0.952) (0.957) (0.961) 

9 4.6367 2.3167 3.8037 2.6514 3.7922 1.6412 

 (0.948) (0.961) (0.950) (0.947) (0.962) (0.955) 

12 4.5491 2.2694 3.6974 2.5728 3.6816 1.6245 

 (0.952) (0.945) (0.935) (0.947) (0.951) (0.948) 

15 4.4749 2.2076 3.6741 2.4502 3.6548 1.5628 

 (0.946) (0.935) (0.947) (0.954) (0.948) (0.943) 

18 4.3877 2.1902 3.5398 2.3935 3.5167 1.5056 

 (0.955) (0.932) (0.940) (0.941) (0.934) (0.945) 

20 4.2899 2.1206 3.3972 2.3739 3.4720 1.4860 

 (0.957) (0.960) (0.952) (0.963) (0.949) (0.951) 

23 4.1493 2.0834 3.3104 2.2731 3.4250 1.3359 

 (0.947) (0.950) (0.939) (0.961) (0.956) (0.942) 

25 3.9063 1.9875 3.1455 2.1301 3.1112 1.2858 

 (0.944) (0.953) (0.955) (0.950) (0.961) (0.949) 

Note: The first figure represents the average confidence lengths, with the corresponding coverage percentages reported below it in parentheses. 
 
Table 4. Average values of the different estimators and the corresponding MSEs when ( ) ( ), 3.22,1.5λ θ = .                

n MLE MCMC (Prior 0) MCMC (Prior 1) 

 λ  θ  λ  θ  λ  θ  
5 3.2188 1.536 3.2428 1.5141 3.1885 1.6195 

 (0.3966) (0.1007) (0.4165) (0.1042) (0.3878) (0.0951) 

7 3.3344 1.4766 3.1343 1.4757 3.2048 1.4382 

 (0.3356) (0.0945) (0.3522) (0.0946) (0.2991) (0.0915) 

9 3.1654 1.4312 3.1273 1.4812 3.1491 1.5037 

 (0.2832) (0.0876) (0.2914) (0.0879) (0.2507) (0.0765) 

12 3.0307 1.4325 3.2107 1.4301 3.2125 1.4789 

 (0.2599) (0.0778) (0.2509) (0.0781) (0.2184) (0.0723) 

15 3.3056 1.4989 3.2191 1.4418 3.2116 1.4698 

 (0.1910) (0.0615) (0.1962) (0.0629) (0.1693) (0.0588) 

18 3.2708 1.5056 3.2027 1.4691 3.1473 1.4733 

 (0.1734) (0.0574) (0.1885) (0.0583) (0.1233) (0.0462) 

20 3.2311 1.5006 3.1915 1.4984 3.2360 1.4139 

 (0.1161) (0.0463) (0.1351) (0.0495) (0.0952) (0.0341) 

23 3.1083 1.5203 3.2963 1.5485 3.2186 1.5506 

 (0.0848) (0.0182) (0.0946) (0.0177) (0.0508) (0.0101) 

25 3.2571 1.5921 3.2216 1.574 3.2757 1.4958 

 (0.0713) (0.0097) (0.0721) (0.0098) (0.0363) (0.0074) 

Note: The first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses. 
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Table 5. The average confidence lengths relative estimate of parameters and the corresponding coverage percentages when 
( ) ( ), 3.22,1.5λ θ = .                                                                                      

n MLE MCMC (Prior 0) MCMC (Prior 1) 
 λ  θ  λ  θ  λ  θ  
5 5.1771 3.5337 5.1266 3.3999 4.6647 2.5659 
 (0.954) (0.943) (0.948) (0.936) (0.951) (0.947) 
7 5.1173 3.4583 5.0925 3.3214 4.6213 2.3181 
 (0.952) (0.938) (0.940) (0.936) (0.951) (0.939) 
9 5.0559 3.3879 5.0618 3.2440 4.4488 2.2556 
 (0.955) (0.948) (0.939) (0.961) (0.947) (0.954) 

12 5.0164 3.3633 5.0247 3.2027 4.3837 2.1898 
 (0.946) (0.951) (0.947) (0.953) (0.938) (0.949) 

15 4.9628 3.2716 4.9799 3.1927 4.2322 2.1307 
 (0.952) (0.956) (0.948) (0.933) (0.949) (0.950) 

18 4.7335 3.1509 4.7563 3.1384 4.1996 2.0984 
 (0.954) (0.947) (0.955) (0.951) (0.944) (0.946) 

20 4.4643 3.1286 4.4889 3.1281 4.0891 1.9796 
 (0.962) (0.952) (0.959) (0.961) (0.953) (0.942) 

23 4.2226 3.0712 4.2475 3.0835 4.0354 1.7458 
 (0.961) (0.948) (0.949) (0.945) (0.952) (0.956) 

25 4.1321 3.0216 4.1350 3.0291 3.9818 1.5514 
 (0.958) (0.946) (0.945) (0.960) (0.957) (0.951) 

Note: The first figure represents the average confidence lengths, with the corresponding coverage percentages reported below it in parentheses. 
 
[27] presented Bayesian estimation for the generalized Logistic distribution Type-II censored accelerated life 
testing. In this paper Bayesian estimation for the parameters of the generalized logistic distribution (GLD) are 
computed based on the lower record values using MCMC method. We assume the gamma priors on the un- 
known parameters and provide the Bayes estimators under the assumptions of squared error loss functions (SEL). 
The Metropolis-Hastings (MH) algorithm from the MCMC method is used for computing Bayes estimates. It 
has been noticed that, 

1) From the results obtained in Tables 2-5, it can be seen that the performance of the Bayes estimators with 
respect to the non-informative prior (prior 0) is quite close to that of the MLEs, as expected. Thus, if we have no 
prior information on the unknown parameters, then it is always better to use the MLEs rather than the Bayes es- 
timators, because the Bayes estimators are computationally more expensive. 

2) Tables 2-5 report the results based on non-informative prior (prior 0) and informative prior, (prior 1) also 
in these case the results based on using MH algorithm are quite similar in nature when comparing the Bayes es- 
timators based on informative prior clearly shows that the Bayes estimators based on prior 1 perform better than 
the MLEs, in terms of MSEs. 

3) From Tables 2-5, it is clear that the Bayes estimators based on informative prior perform much better than 
noninformative prior and the MLEs in terms of MSEs. 
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