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Abstract 

We demonstrate the functional inverse of a Winter map, which is an analog of the exponential map, 
for Lie algebras over fields of prime characteristic. 
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“Historically,” note Strade and Farnsteiner in [1], “Lie algebras emerged from the study of Lie groups.” In 
Section 1.1 of [1], they give a simple example of the close connection between Lie algebras and Lie groups. In 
prime characteristic, David Winter [2] has defined maps which mimic the zero-characteristic exponential maps. 
See also Lemma 1.2 of [3]. In this paper, we focus on the following “Winter maps”: if x  is an element of a 
characteristic- p  Lie algebra L  such that ( )ad 0,p

L x =  we set 

( ) ( ) ( ) ( )
( )

2 3 1ad ad ad 
ad ad 

2! 3! 1 !

p
L L L

L L

x x x
x I x

p
ξ

−

= + + + + +
−

  

where I  is the identity transformation of L . Such ad-nilpotent elements of degree less than p  do exist in 
some graded Lie algebras, as can be seen from Lemma 2.3 and Proposition 2.7 of Chapter 4 of [1], as well as 
from Lemma 1 of [4]; of course, it is well known that non-zero-root vectors of simple classical-type Lie algebras 
are ad-nilpotent of degree less than or equal to four. 

We will show here that for x L∈  such that ( )ad 0,p
L x =  the inverse of ( )ad L xξ  as a linear trans- 

formation of L  is ( )( )ad L xξ − , so that such transformations generate a group G  of linear transformations 
of L . We will also show that ( )( )ad ad ,L Lx xλ ξ =  where, for g  a linear transformation of L , and I  as 
above, we define 

 ( ) ( ) ( ) ( ) ( )
( )

2 3 1

2 3 1 !

pg I g I g I
g g I

p
λ

−− − −
= − − + −

−
  (1) 

Thus, like ( )ln x  and ( )exp x , λ  is, in a sense, the functional inverse of ξ . 
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Lemma 1 If x  and c  are elements of L  such that ( )ad 0,p
L x =  and ( )ad 0,p

Lc =  then 

( ) ( ) ( ) ( )
( )
( ) ( )

( )( )

1

0 0
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! !

ad ad 
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j i jp i
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i p j i p

x c
x c

j i j

x c
j i j

ξ ξ
−−

= =

−− −

= = − −

=
−

+
−

∑∑

∑ ∑
 

Proof. We group terms with respect to total degree in ad L x  and ad Lc  


 
Lemma 2 Let ,a b F∈ , and suppose that x  is an element of L  such that ( )ad 0.p

L x =  then  

( )( ) ( )( ) ( )( )ad ad ad .L L L
a x b x a b xξ ξ ξ= +  

Proof. We have by Lemma 1 that ( )( ) ( )( )ad ad L La x b xξ ξ  equals 

( )
( )

1

0 0

ad 
0

! !

ij i jp i
L

i j

a b x
j i j

−−

= =

+
−∑∑  

which we can write in terms of binomial coefficients as 

( )2

0 0

ad 
!

ip i
L j i j

i j
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−

= =

 
 
 

∑ ∑  

By the Binomial Theorem, the above expression is equal to 

( ) ( )
1

0

ad 
!

ip
iL

i

x
a b

i

−

=

+∑  

which we can rewrite as 

( )( )1

0

ad 
!

i
p

L

i

a b x
i

−

=

+
∑  

and recognize as ( )( )ad La b xξ + .   
Lemma 3 For any integer 2n≧  and any integer j , 0 j n< < , we have 

( )
0

1 0
n k j

k

n
k

k=

 
− = 

 
∑  

Proof. We proceed by induction on n  and j . When 2n = , we must have 1j = , and we have 
0 2 2 0.− + =  For any 2n > , when 1j = , we have  
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Now, for any 3n≧  and any positive integer j  less than n , suppose that 1( 1) 0n k i
k

n
k

k=

 
− = 

 
∑  for all  

positive i  less than .j  Then we have 
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by induction, and the fact that ( ) ( )0 1 1 1 0 0k nn n
k

n
k=

 
− = − = = 

 
∑  (the “ 0j =  case”).   

Lemma 4 Let x  be an element of L  such that ( )ad = 0p
L x . Define 

( ) ( )
( )

12

0

ad 
ad =

1 !

ip
L

L
i

x
x

i
δ

+−

= +∑                                 (2) 

Then for any positive integer n  less than p , 

( )( ) ( )
( ) ( ) ( )

1 1

0 0
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!
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L
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∑ ∑                      (3) 

Proof. We proceed by induction on n . Since when 1n = , (3) is just (2), the initial step of the induction  

proof is established. Suppose (3) is true for 1n k= ≧ . Then ( )( ) 1
ad 

k
L xδ

+
 equals 

( )
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We group terms with respect to total degree ( 1t k+ + , in this case) in ad L x  and get that 
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Rewriting the above expression using another binomial coefficient, we get that ( )( ) 1
ad 

k
L xδ

+
 equals 
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We change the order of summation to get 
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We replace the index of summation r  by r k−  to get 
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Adding and subtracting terms, we get 
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Setting q k j= − , we see, as in the proof of Lemma 3, that when r ≥ 1,  
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by that same Lemma 3. Thus, 
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so from the Binomial Theorem, we get that ( )( ) 1
ad 

k
L xδ

+
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We now distribute to get that ( )( ) 1
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We replace the latter index of summation j  by 1j −  to get that ( )( ) 1
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We change the order of summation and factor to get that ( )( ) 1
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By binomial arithmetic ( )( ) 1
ad 

k
L xδ

+
 equals 

( )
( )

( )
( ) ( ) ( ) ( )( )

11 1 11 1 1

0 1

ad 1
1 1 1 1 1 .

1 !

t kp k kt k j t k kL

t j

x k
k k j k

jt k

+ +− + − −
+ + + + −

= =

 +   + + − + − − + −  + +    
∑ ∑  

The above displayed formula is just (3) for 1n k= + ; i.e., ( )( ) 1
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k
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+
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Thus, the induction step is complete.   
Theorem The linear transformation ( )ad L xξ  of L  has ( )( )ad L xξ −  as its inverse, whereas the map ξ  

of ad L  to the group of non-singular linear transformations of L  has λ  as its inverse, in the sense that 
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(a). ( ) ( )( )ad ad L Lx x Iξ ξ − = , and  

(b). ( )( )ad ad L Lx xλ ξ = .  

Proof. (a) If, in Lemma 2, we let 1a =  and 1b = − , we see that (a) is true. 
(b) Since ( )ad L x Iξ −  equals the ( )ad L xδ  of Lemma 4, we have that ( )( )ad L xλ ξ  equals 

( )( ) ( )( ) ( )( ) ( )( )2 3 1
ad ad ad 

ad 
2 3 1

p
L L L

L

x x x
x

p
δ δ δ

δ
−

− + − −
−

  

which, by Lemma 4 equals 
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+
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We replace the index t  by t n−  to get that 
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We change the order of summation to get that 
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We replace the index j  by n j−  to get that 
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We cancel an n  and a j  and combine the 1−  factors to get that 
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We replace the index n  by 1n +  and we replace the index j  by 1j + , and we get that 
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We change the order of summation to get that 

( )( ) ( ) ( ) ( )
1 1 11

1 0

ad 
ad 1 1

!

tp t tj tL
L

t j n j

x n
x j

jt
λ ξ

− − −
−

= = =

 
= − +  

 
∑ ∑ ∑  

We now appeal to a little more binomial arithmetic to observe that since 
1
1

j j
j j

+   
=   +   

 and 

1
1 1

t t t
j j j

+     
+ =     + +     

, it follows by induction that 

1

1

t
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−
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from which we obtain that 
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We replace the index j  by 1j −  to get that 

( )( ) ( ) ( )
1

1 1

1 1

ad 
ad 1

!

tp t jL t
L

t j

x t
x j

jt
λ ξ

−
− −

= =

 
= −  

 
∑ ∑  

Finally, we use Lemma 3 to see that we are left with ad L x    
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