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Abstract 

The problem of classification of the subset of the vertices of the n-dimensional unit cube in respect 
to all “shifts” by a vector from nB  is studied. Some applications for the investigation of the addi-
tive channels of communication are represented. 
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Let { }0,1F =  be a two element Galois field and 2
nF  be an n-dimensional space on that field. In other words, 

2
nF  is the set of vertices of the n-dimensional unit cube, { }0,1 .nnB =  The subsets nB  have many different 

interpretations in the terms of Boolean function theory, or of correcting code theory, or of partially ordered set 
theory, or that of additive channels etc. And each of these theories is connected with a certain class of 
restrictions imposed on the properties of the subsets, nB  We consider the “shift” of the subsets nB , and we 
define equvalence as equality that is accurate within the shift. To define the subsets stabilizers and the transitive 
subfamilies we use the classic ways connected with Burnside’s Lemma.  

Let 
nB

m
 
 
 

 be the family of all m-element subsets of the cube .nB  The transformation group nB  operates 

on this set as follows. For any 
n

m
A B
∈


 
 

 and ny B∈  let the following is valid: 

{ }.A y y x x A+ = + ∈  

Thus A y+  is the shift of the set A  on the vector y . The transitive set generated by A  has the standard 
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form:  

( ) { }.nG A A y y B= + ∈  

The family n
mL  of all transitive sets ( )G A  generates the partition 

nB
m

 
 
 

:  

( )
( )

.
n
mG

n

A L

G A
B
m ∈

 
 
 

=


 

The cardinality ( )G A  of a transitive set is found in terms of the stabilizer AG  of the set A : 

{ }; .n
AG y B A y A= ∈ + =  

It is well known [1] [2] that AG  is a subsets in nB  and the cardinality of the transitive set ( )G A  is equal 
to the index of the subsets AG ; that is: 

 ( ) ( ) ,n
AG A ind B G=                                     (1) 

where ( )
n

n
A

A

B
ind B G

G
=  is the index of the group nB  in regard to the subsets AG . 

Example.  
1) Let A  be a subgroup in nB , and { }1 2, , , lH H H  be the family of cosets of the subgroup A , and  

2 .
n

l
A

=  

If we form the set:  

1
,

j

k

i
j

M H
=

=


 

out of an arbitrary collection of the cosets 
1 2
, , ,

ki i iH H H , then .
nB

M
k A
 

∈  
 

 

Let x A∈  and iy A H+ =  be an arbitrary cosets to the subgroup A ; then .i ix H x y A y A H+ = + + = + =  
Consequently, any element of the group, A , belongs to the stabilizer of  the set M , and thus: MG A≥  
and .M k A= ⋅  

This example will be used in the sequel. 
As (1) shows, to define the cardinality of the transitive set ( )G A  it is sufficient to know the cardinality of 

the stabilizer AG . 
Let us note that the group AG  acts on the given set A , that is, AG  is a stabilizer and we can use the same 

way of argumentation as we did above.  
If x A∈ , then the transitive set ( ) { },  AG x x y y G= + ∈  is defined in the standard way and:  

( ) ( ) ,A xG x ind G G=                                      (2) 

where xG  is the stabilizer of the element, x A∈ . Taking into account that: 

{ }: ,x AG y G y x x= ∈ + =  

we have { }0xG = , for all x . Then we have from (2): 

( ) ( ) ,AG x ind G E=  

that is, ( )G x  is equal to the index of the unit subgroup E, or:  

( ) .AG x G=  

Lemma 1. The following comparison holds: 

( )0 mod .AA G≡  

This immediately follows from the formula of the partition A : 
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( ).
x A

A G x
∈

=


 

If ( )p nτ  is the power index of the prime number p , which is included in the canonic presentation n , then 
the following statements hold true: 

Corollary 1. The following inequality holds true: 
( )22 .A

AG τ≤  

Corollary 2. The stabilizer { }0AG =  for any .
2 1

nB
A

m
 

∈ 
+ 

 

Corollary 3. Let 
4 2

nBA
m

 
∈ 

+ 
 and 

x A
y x

∈

= ∑  Then either { }0,AG y= , or { }0AG = . 

Lemma 2. The stabilizer { }0AG =  for an arbitrary set 
4

nB
A

m
 

∈ 
 

 if 0
x A

x
∈

≠∑ . 

Proof. We assume, 0, .Ay y G∃ ≠ ∈  Then the elements of the set { }1 2 4, , , mA x x x=   satisfy the following 
system: 

1 2 1

2 2 2

2 4

        
.

m

m

m m

x y x
x y x

x y x

+

+

+ =
 + =


 + =



 

Adding up all the equations of the system, we get the following equality: 
2 2 4

1 1 2 1
.

m m m

i i
i i i m

x y x
= = = +

+ =∑ ∑ ∑  From this it  

follows that: 
4

1
0,

m

i
i

x
=

=∑  which is a contradiction and it proves the Lemma.  

In the general case, if the element y  belongs to the stabilizer AG  of the subsets { }1 2, , , mA x x x=  , the 
following holds true (according to the definition): 

 { }1 2, , , .mA y x y x y x y A+ = + + + =  (3) 

Let mS  be a symmetrical group of the degree m . We denote the elements of the group mS  corresponding 
to transformation (3) by yg . Consequently, the element yg  should by written as follows: 

1 2

1 2   
.

    
m

m
y

i i i

x x x
g

x x x
 

=  
 





 

We consider the expansion yg  into a product of independent cycles: 
 1 .y kg v v v=   (4) 

Lemma 3. If eyg ≠ , then = 2iv , 1,i k= . 

Proof. If ( )1 2
= , , ,

pr i i iv x x x , we have from (4): 

 

1 2

2 3

1
.

p

i i

i i

i i

x y x

x y x

x y x

+ =


+ =


 + =



 (5) 

It follows from (5) that: 

( )1 2
,

p pi i i ix y x y y x x+ = + + = =  

that is, 2p =  Q. E. D.  
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To calculate the stabilizer one has to consider the multiset:  

{ }; , ,  where  ,i j i jA A x x x x A i j+ = + ∈ <  

which has a key role for the further considerations.  
Let { }1 2 2, , , mA x x x=  , and: 

( ){ },ij i jA A x xα+ = +  

where ijα  is the multiplicity of the inclusion of the element, ( )i jx x+ , into A A+ . 
Lemma 4. The stabilizer AG , of the set A , is the sets of elements ( )i jx x+ , where each occurs m times 

plus the zero element. 
Proof. Let ij mα =  then the following holds true:  

;  1, .
p pi jx x y p m+ = =  

Two different ,p q  pairs: ( ),
p pi jx x  and ( ),

q qi jx x , have no common elements; otherwise they coinside.  

Thus, the set of pairs ( ),
p pi jx x  form the partition A , and the point y belongs to AG , according to Lemma 3. 

From Lemma 4 a simple algorithm for building the stabilizer AG  follows and, as a matter of fact, it is re-  
duced to building of the multiset, A A+ . Complexity of such an algorithm is ( )2O m n , where 2A m= . The 

volume of the input information is the length of the recording of the set A , that is, ( )O mn . 
Lemma 5. If the cardinality of the subsets A  and that of the stabilizer AG  satisfy the following conditions:  

22 , 2 ,k k
AGA −= >  

then: 

2 .k
AG =  

Proof. Let 12k
AG −=  For any 1x A∈  we build the set { }1 1 ; AA x y y G= + ∈ . We choose any element 2x  

from 1\A A  and define the set { }2 2 ; AA x y y G= + ∈ . We assume that there exists 1 2x A A∈ ∩ . Then the 
vector x  can be represented in two ways, namely:  

1 1x x y= +  and 2 2x x y= +  

where 1 2, Ay y G∈ . Consequently, we get: 2 1 1 2 1x x y y A= + + ∈ , which contradicts the choice of the element 
2x . Hence, the following holds true:  

1 2 .A A = ∅  (6) 

Taking into account that 1 2
1
2AA A G A= = =  we have: 

 1 2 .A A A=                                    (7) 

We denote 1 2z x x= + . Taking into account that 2 1x A∉ , we have: Az G∉ . It follows from (6) and (7) that 
x A∀ ∈  is represented either in the form:  

1 1x x y= + , or 2 2x x y= +  

where 1 2, Ay y G∈ . If 1 1x x y= + , then 1 1 2 1x z x y z x y A+ = + + = + ∈ . It can be proved in the same way that 
x z A+ ∈ , for the case, 2 2x x y= + , Consequently, Az G∈  We got a contradiction and it concludes the proof 
of Lemma 5 if we take into account Lemma 1.  

Lemma 5 is a useful tool for calculation of the stabilizer AG  for 
2

n

k

BA
 

∈ 
 

. Its content can be interpreted as  

follows. If it is possible to define 22 1k− +  elements belonging to AG , then, taking into account that the 
cardinality of a stabilizer is an exponent with the base 2, we directly get: 2k

AG = . 
Examples. 
2) If 1m = , then { }1 2,A x x= . Consequently, { }1 2A A x x+ = + . Taking Lemma 4 into account, we get:  

{ }1 2 ,0AG x x= +  



V. Leontiev et al. 
 

 
71 

3) If 2m =  then { }1 2 3 4, , ,A x x x x=  Consequently: 

{ }1 2 1 3 1 4 2 3 2 4 3 4, , , , ,A A x x x x x x x x x x x x+ = + + + + + +  

All the partitions into pairs of the set A  are generated by one of them, for instance: 

{ } { }1 2 3 4, , .A x x x x=   

It follows from this that if:  

1 2 3 4 ,x x x x+ = +  

then the following equalities hold true:  

1 3 2 4 ,x x x x+ = +  

1 4 2 3.x x x x+ = +  

Consequently, the following statement holds true:  
Statement 1. If 1 2 3 4 0,x x x x+ + + =  then { }1 2 1 3 1 40, , ,AG x x x x x x= + + + , But if 1 2 3 4 0x x x x+ + + ≠  

then { }0 .AG =  
Examples. 
4) Let ( ) ( ) ( ) ( ){ }1 2 3 40011 , 1010 , 1110 , 0111A x x x x= = = = =  Then: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }1 2 1 3 1 3 1 42 , 2 , 2 , 2 2 1001 ,2 1001 ,2 1101 ,2 1101 ,2 0100A A x x x x x x x x+ = + + + + =  and

( ) ( ) ( ) ( ){ }0000 , 1001 , 0100 , 1101AG = . 

5) Let ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 3 4 5 6100 , 010 , 001 , 110 , 101 , 011A x x x x x x= = = = = = =  Then:  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 110 ,2 101 ,2 010 ,2 001 ,2 100 ,3 111 ,2 011A A+ =  And as 3m =  then: ( ) ( ){ }000 , 111AG =  

Now let us calculate the number of the sets that are transitive in regard to the group nB  The tool for such 
calculation is Burnside’s Lemma: [1] [2].  

Lemma (Burnside’s) 6. The number n
mL  of the equivalence classes or transitive sets is as follows:  

( )1 ,
2

n
m n

ny B

L N y
∈

= ∑  

where ( )N y  is the set of the (stationary) points y  of the transformation, that is:  

( ) ; .
nBN y A A y A

m
   = ∈ + =   
   

 

Lemma 7. The number of the solutions 
2

nB
X

m
 

∈ 
 

 of the following equation: 

,y X X+ =  (8) 

is 
12n

m

− 
 
 

, if 0y ≠ . 

Proof. According to Lemma 3, Equation (8) is equivalent to the system of the following equations: 

1 2

3 4

2 1 2

  

  

         
  ,

m m

i i

i i

i i

x x y

x x y

x x y
−

+ =


+ =


 + =



 (9) 

where the partition ( ) ( ) ( ){ }12 , 34 , , 2 1,2J m m= −  is chosen for the sake of certainty. Let us note that the 
following equation:  
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 ,x z y+ =  (10) 

has exactly 12n−  solutions for , nx z B∈  and it does not depend on y  if 0y ≠ . Indeed, choosing an x  we 
get: z x y= + . Further, if ( ),x z  and ( ),u v  are two solutions of Equation (10), then either these solutions do 
not overlap, or they coinside. Indeed, we get 0x z u v+ + + = , from x z y+ =  and u v y+ = ; consequently, it 
follows from x u=  that z v=  In the same way, if x v= , then z u=  Thus, all the solutions of system (9) 
can be obtained by choosing m  pairs from 12n−  pairs, which are solutions of (10).  

Theorem 1. The following equalities are valid: 

( )
1

2
2 21 2 1 ,

2 2

n n
n n

m nL
m m

−    
= + −         

                             (11) 

2 1
21 .

2 2 1

n
n

m nL
m+

 
=  

+ 
                                  (12) 

Proof. We get from Burnside’s Lemma: 

( ) ( ) ( )
0 0

21 1 1 10 .
2 2 2 2

n
n
k n n n n

y y
L N N y N y

k≠ ≠

 
= + = + 

 
∑ ∑  

Then, for the case 2k m= , taking into account Lemma 7, we get: 

( )
12n

N y
m

− 
=  
 

 

For 0y ≠ . This directly proves Formula (11). 
For the case 2 1k m= + , taking into account Corollary 2, we get: ( ) 0N y =  for all 0y ≠ , which proves 

formula (12).  
Thus, the above statements make, more or less, possible to know the structure of the stabilizer AG  of the set  

nBA
m

 
∈ 
 

 and to find the number of the transitive sets n
mL  which are generated by the action of the group 

nB  on 
nB

m
 
 
 

. 

Let us also note that, according to Corollary 1, 2t
AG ≤ , if ( )2 2 1tm q= + , where 

nBA
m

 
∈ 
 

. On the other 

hand, as Example 1 shows, for any subgroup 
2

n

t

BA
 

∈ 
 

 and for any collection of contiguous classes 

1
, ,

ki iH H  of the group nB  in regard to ,A  then the set 
1

j

k

i
j

M H
=

=


 is in the family 
2

n

t

B
k

 
 

⋅ 
 and 2t

MG ≥   

For an odd  ( ) 2 1k k q= +  the cardinality of the set M  is equal to ( )2 2 1t q + , and its stabilizer MG  has 
2t  elements. This shows that it is possible to draw the above mentioned boundary for the stabilizers of the 
considered sets. The following example of a contiguous class ( ){ }: 1 mod 2nA y B y= ∈ ≡  with the stabilizer 

( ){ }: 0 mod 2n
AG y B y= ∈ ≡  illustrates the above mentioned considerations, because 12n

AG −= . Thus, the 
estimate 2t

AG ≤  for the case ( )2 2 1tA q= +  is not so bad evaluation for the cardinality of the stabilizer of 
the set A . The “average” value of this boundary in the whole interval of the cardinalities 1, 2n   , is 2n  and 
this can serve as a “realistic” boundary for the cardinality of the stabilizer for a uniform distribution on the family 

of the sets 
nB

m
 
 
 

. 

The family nL  of all transitive sets ( )G A , where nA B⊆ , generates the partition 2
nB :  

( )
( )2 .

n

n

B

G A L

G A
∈

=


                                  (13) 
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As 
1

n
n n

m
m

L L
=

=


, then, according to Theorem 1, we have for the numbers nL  of the transitive sets the fo-  

llowing equality: 
Corollary 4. 

( )
[ ]2 1

0

2 1 21 2 1 .
2 2 1

n n n
n

n n
i

L
i i

−

=

    +
= + −     +    

∑  

Shifts and Additive Channels. One of the applications of the above considerations are the so called additive 
channels.  

We call any subsets { }0 1, , , n
mA y y y B= ⊆  additive channel [3] [4], if it carries out the following diction- 

ary function:  

, Д  0, .ix x y е i m′ = + Γ =  (14) 

Thus, any word x , if transmitted through the additive channel A , is transformed into one of the words x′  
of (14), in the result of the shift by the vector iy . 

Definition 1 [5]. We define the k th order neighbourhood of the vector, nv B∈ , in regard to nC B⊆ , as 
follows: 

( ) ( ){ } ( ) { }1 0:   , ,  k kС v u y u C v y C C v v−= + ∈ ∈ = . 

Definition 2. The code, { }0 , NV v v=  , corrects the errors of the additive channel }{ 0 , , mA y y=   if the 
following condition holds true: 

( ) ( )1 1    where     , 0,      i jA v A v i j N i j= ∅ = ≠ . 

The equivalent definition has the following form: The code { }0 , , NV v v=   corrects the errors of the additive 
channel }{ 0 , , mA y y=   if the following condition holds true: 

,     where     , 0, ,    , 0, ,     .i j r sv v y y i j N r s m i j+ ≠ + = = ≠                (15) 

As the k  order cardinality does not depend on the vector v  we denote: 

( )k kA A v= . 

Let us note that for the cardinality of the code V  correcting the errors of the additive channel { }1, , mA y y=   
the following boundaries hold true [3] [4]: 

2 1

2 2n n

V
A A

≤ ≤                                         (16) 

Actually, condition (15) makes possible to decode the initial message at the channel output through a standard 
“decoding table” of any word. 

If one takes the sphere of radius t with the centre at zero as A , then he gets the classic channel through which 
there take place no more than t distortions of the form: 0 1,1 0→ → . 

The main problem when investigating a given additive channel A  is the building the code V  of the 
maximum cardinality, correcting the errors of the channel A . Consequently, each additive channel generates its 
own coding theory, and the possibilities of examining and sorting out all these communication tools are rather 
limited. At the same time, some most simple considerations show that many of these additive channels are 
equivalent (identical) in the sense of their content. Indeed, the channels, A  and A y+ , are equivalent for any 

ny B∈ , in the sense that any code V ,correcting the errors of the additive channel A  corrects the errors of the 
additive channel A y+  as well, and vice versa. The above classification of the additive channels is based on 
these considerations. In particular, one can always consider that ( )0 0  belongs to the channel A  otherwise 
one could pass to the equivalent channel including the zero vector, without any loss of generality. 

Another definition of equivalence of additive channals is directly connected with the error correcting code. 
Let ( ),Х A V  be a predicate given on the Cartesian product 2 2

n nB B×  or: 
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( )
1;      if the code  corrects the errors of the channel  ;

,
0;                         if not.

V A
X A V 

= 


 

Definition 3 [5]. The two additive channels A  and C  are equivalent if the following condition holds true  
for all nV B⊆ :  

 ( ) ( ), , .Х A V Х C V=  (17) 

Actually, condition (17) means that if the code V  corrects the errors of the channel A , then the code V  
corrects the errors of the channel C  as well, and vice versa. In particular, if: 

( ) ,xT A A x= +  
(that is, ( )xT A  is a shift transformation) then: 

( ) ( )~ ,x yT A T A
 

for any pair of points , nx y B∈ ,where the tilde sign ( )~  means the notion of equivalence introduced above. 
We denote the equivalence class including the channel A  by ( )M A . 
Example. ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }000 , 100 , 101 , 010 , 110 , 111 , 011 .A C= =  

One easily can see that these channels are equivalent though 3,   and  4.A C= =  
Actually, in the general case, the channel cardinality is not any obstacle for classification and, in some certain 

cases, it defines the channel equivalence one to one.  
Statement 2. For any channel А  with the cardinality 12 1nA −> +  the followingtakes place: 

( ) ( )nM A M B= . 

Proof. It follows from (16) that any code V  for which either ( ), 1X A V = , or ( ), 1nX B V = , is consisted of 
one vector. On the other hand, for any code V  consisted of one vectorthe following equality is valid: 

( ) ( ), , 1,nX A V X B V= =  

that is: 

( ) ( )nM A M B= . 

Q. E. D. 
Note that the following example excludes the possibility of the contrary statement.  
Example. 
7) Let: ( ) ( ) ( ) ( ) ( ) ( ){ }0000 , 1000 , 0100 , 0010 , 0001 , 1111A = . Then: ( ) ( )nM A M B= , if 32A < . 
Now let us go back to Example 6. We have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),   8,   4.  .G A G C G A G C M A M C G A G C≠ = = = =   

It is obvious that this example is not an exception; therefore, we can use the following equality:  

( ) ( ){ }, ,n
xG A T A x B= ∈  

where ( )G A  is the transitive set of the channel A  in regard to the group of transformation nB . We get: 

( ) ( ).G A M A∈  

Taking into account (13), we state the following: 
Theorem 2. For any channel nA B⊆  there exist the channels 1, , kA A  from nB , such that the partition  

( ) ( )
1

k

i
i

M A G A
=

=


 is unique. 

This theorem shows the connection between the classes of equivalence for communication channels and the 
transitive sets of subsets nB , which are generated through the the action of the group nB  on them. 
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Though the expansion of ( )М A  is unique, the transitive sets included in the expansion are generated by 
different collections of “basic” channels, 1 2, , , kA A A . 

We reduced the investigation of communication channels to the investigation of transitive sets, and thus the 
investigation of the latter is reduced to that of the classes of equivalence, which can further be described 
introducing the relations of partial order:  

( ) ( ) ( ) ( ); , 1 , 1,   for all  .nM A M C X C V X A V V B≤ = → = ⊆  

Consequently, we came to the necessity of introducing of an invariant of an equivalence class, characterizing 
the given order. 

An invariant of any ( )М A  is the set ( )2 0A , including the zero vector, and this is its difference from the 
set A A+  which was defined above. 

Theorem 3. For any channels { }10 , , mA y y=   and { }20 , , mC z z=   the following holds: 

( ) ( )2 2~ 0 0A C A C=  

Proof. Let: ( ) ( )2 20 0A C= , and the code { }1, , NV v v=   corrects the errors of the channel A . Then, 
taking into account (15), we have: 

1,  where  , 0, ,   , 0, ,  .i j r sv v y y i j N r s m i j+ ≠ + = = ≠  

Consequently, ( )2 0i jv v С+ ∉ , which means that the code V  corrects the errors of the channel C . 
If ( ) ( )2 20 0A C≠ , then—without any loss of generality—we can assume that there exist ( )2 0y A∈  and 

( )2 0y C∉ . We consider the code { }0,V y= . Let us show that V  corrects the errors of the channel C , but 
does not correct the errors of the channel A . To prove this it is sufficient to show that both channels A  and 
C  include the zero point, and it can be done applying the shift transformation. Obviously, this transformation 
does not change the sets ( )2 0A  and ( )2 0C . The code { }0,V y=  corrects the errors of the channel C , be- 
cause: 

0 .i jy z z+ ≠ +
 

But y A A∈ + , that is, i jy y y= + . Hence: 

0 ,i jy y y+ = +
 

that is, the code V  does not correct the errors of A. Q. E. D. 
Unfortunately, the answer to the question: “is every set from nB  invariant under action of any equivalence 

class” is negative. For instance, all sets having cardinality 3 or 5 have no invariants from 𝐵𝐵𝑛𝑛 . 
Statement 3. An equivalence class does not include more than one group. 
Proof. Let the channels, 1 2an d C C  be groups from ( )M A . It follows from the following obvious 

equalities: 

( ) ( )
( ) ( )

2
1 1 1

2
2 2 2,

0 ,

0

M C C C

M C C C

= =

= =
 

that 1 2C C= . Q. E. D. 
Statement 4. If the group, A , is the equivalence class invariant of some channel C , then ( )A M C∈  and 

it has the maximum cardinality in that equivalence class. 
In other words, a group channel is a “preferable generator” in its equivalence class. 
Concluding, we note that the preceding definitions are symmetrical in regard to the pair ( ),A V  and, conse-

quently, both the generation and correction of errors have the same essence. It means that all statements in regard 
to the communication channels A  hold true in regard to the codes V  of the pair ( ),A V . 
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