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Abstract 
A simple and elegant method to simulate single order reflection profile based on 1-D paracrystal-
line model has been proposed here. For variety of polymer films this approach has been applied to 
compute microcrystalline parameters like crystallite size and lattice strain. Other metallic oxide 
compounds are also analysed using this approach. Employing this model, X-ray diffraction pat-
terns from various polymer samples have been analysed and corresponding microstructure pa-
rameters have been reported in this article. 
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1. Introduction 
Broadening of Bragg reflections in polymer/metal oxide samples has drawn attention of many crystallographers 
for developing a technique to quantify the patterns [1]-[13]. A modified Williamson-Halland Warren-Averbach 
procedure was given by [14]. International union of crystallography has brought out a monograph on this subject 
in 1999 for the benefit of investigators working on materials science [15]. For ball milled Ni X-ray powder sam-
ples, a whole powder pattern modelling based on modelling of diffraction pattern was reported [8]. Later on 
several investigators also explored the possibility of computing crystallite size and lattice strain from single line 
profile analysis X-ray data [16]. This was of main interest for investigators carrying out research work on natu-
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ral and man-made polymers to bring out structure-property relation in these materials [17]. Employing various 
distribution functions and Hosemann’s paracrystalline model, single line profile analysis was also proposed 
during this period [18]. In fact this method was used during the participation of Round Robin analysis of stan-
dard samples [19]. A simple program for extracting microstructure information from X-ray diffraction patterns 
has been reported [20]. The accurate powder diffraction peak profile by numerical procedure has been reported 
[21]. An elegant method of computation of common volume fraction of any type of polyhedra has been reported 
[22]. In this article it is very clear that the crystallite size is different along different Bragg angles and assump-
tion of symmetric crystallite size as done in various other methods is not appropriate. There is a continued inter-
est in this endeavour, as many have expressed the inability of obtaining a reliable set of parameters. This article 
is in this direction of suggesting an improved method based on Hosemann’s 1-dimensional paracrystalline mod-
el which can be used to compute microcrystalline parameters for both polymer and metal oxide materials. If the 
periodicity along one direction, with an assumption that the lateral size is infinitely large as compared to the 
longitudinal periodicity, it can be treated as 1-dimensional problem even though it is, physically, a 3D problem. 
The treatment of 1-D problem is rigorous, analytical and has been derived more than 80 years ago. Here we have 
used the same result with slight modifications. 

2. Theory 
Let us consider, at random, a set of rods of length “d” such that this length is distributed around a mean value 
“x”. Here let us assume that the distance probability is a Gaussianin shape and it is identified by H1(x). The av-
erage length is given by 

( )1 10
dx x xH x x

∞
= = ∫                              (1) 

Using H1(x) we can calculate the probability distribution of length vectors by the propagation of errors. The po-
sition of second Gaussian is 

( ) ( ) ( )2 1 1H x H x H x= ∗                              (2) 

where “*” represents convolution process. The average length of second vector is given the Equation (1) with 
H2(x). The probability distribution thus produced forms a one dimensional lattice with an atom/molecule at lat-
tice edge. The Gaussian function is normalised so that all the peaks have an area of 1. We can continue this to 
find nth lattice point. This is done as follows: 

( ) ( )2 2
1 expH x C a x= −                               (3) 

where 
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2π

C
δ
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δ

=  and δ is the lattice strain. Convolution of this function at x1 is given by 
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With a substitution ( ) ( )12 2s a x x= −  and using ( )2
e d πs s

∞ −

−∞
=∫  we find  

( ) ( )2 2
2 exp 2

2
CH x a x= −                             (5) 

Extending this to the nth Gaussian we get 

( )2 2expn
CH a x n
n

= −                               (6) 

Taking the Fourier cosine transformation, we have 

( ) ( ) ( )exp dnnI s H x ixs s
∞

−∞
= ∑ ∫                             (7) 

the intensity profile due to convolution of “n” Gaussians. Figure 1(a) and Figure 1(b), and Figure 2(a) and 
Figure 2(b) show the simulation of convoluted Gaussians and their intensity profile for. 



M. B. Nanda Prakash et al. 
 

 
50 

 
Figure 1. Convolution of Gaussians and their Fourier trans-
form: N (number of convoluted Gaussians) and g is percentage 
of lattice distortion. First Gaussian Peak is located at 0.4 nm 
and corresponding peak position in Fourier transformed is lo-
cated at 15.70. 

 

 
Figure 2. Flowchart for the computation of microstructural pa-
rameters and simulation of the experiment pattern. 

 
Solution to the Equation (7) is 

( ) ( )nnI s I s= ∑                                     (8) 

where 

( ) ( )( )2 2 22 exp 4nI s a n s a= −                                (9) 

with 2
2

1 .
2

a
δ

=  

Crystallite Size Probability Distribution 
The crystallite size distribution at t shifted by a distance equal to dth position (last Gaussian), we have 
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( ) ( )
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∗

 is the width of the distribution. Thus the contribution of the shape function at this point is 

( ) ( )d  p t t x t x−                                     (11) 

Here (t − x) is the shape function. Thus the resulting shape function will be 

( ) ( )( )d
x

Q x p t t x t
∞

= −∫                                 (12) 

We get 

( ) ( ) ( )e 1x dQ x x dα− −= + −                                   (13) 

The Fourier transform of this equation is given by 

( ) ( )correction e disxI s Q x x
∞

−∞
= ∫                                (14)  

Substituting for Q(x) we get 

( ) ( ) ( )correction 2

1e e 1 d
π2

x d isxI s x d xα

δ
∞ − −

−∞

 
= + −  

 
∫                       (15) 

Consider the first term. Since p(t) is +ve, we take x → |x| and then carry out the integration by breaking it into 
two terms. 
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The first and second integrations give 
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               (17) 

With this incorporation of correction we have an expression for the intensity as 

( ) ( )total correctionI I s I s= ∗                                  (18) 

3. Application of the Procedure 
For computation of crystallite size and strain from X-ray diffraction pattern, it is important to have good expe-
rimental data. We have used eight polymer samples wherein reasonably good X-ray data is available. The sam-
ples are two cotton fibers (SAHANA, JAYADHAR), two silk fibers (TASSAR, MUGA) and two polymers 
(HPMC, PVA). The flowchart for the computation of crystallite size and strain is given in Figure 2. The results 
are given in Table 1. To begin with X-ray powder data is corrected for instrumental broadening using Stokes 
method [23]. Then onwards, X-ray data as input to the program, starts with number of profiles. Beginning, peak 
position and end of each profiles are given as input using GUI method. Program searches for a good set of mi-
crostructural parameters including the width of asymmetric exponential column length distribution till one ob-
tains a reasonable goodness standard deviation between simulated and experimental whole powder pattern rec-
orded from the sample. This is checked visually also. An option is provided in the program for a slight variation 
in the parameter for a possible good fitting between simulated and experimental whole powder pattern data. The 
routine also give in the output appropriate standard deviation in these microstructural parameters. Figure 3 and 
Figure 4 show the goodness of the whole powder patter fitting technique suggested here. 
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Table 1. Microstructural parameters for natural and man-made polymers using the present and earlier methods. 

Samples Peaks d in nm D in nm Strain (%) D in nm reported Strain (%) values 

PVA 
1 0.4544 1.36 ± 0.11 10.0 ± 0.8 2.92(a) 1.0 

2 0.2267 0.23 ± 0.02 10.0 ± 0.8   

HPMC 
1 0.9528 3.81 ± 0.30 10.0 ± 0.8 7.32(b) 1.0 

2 0.4492 1.35 ± 0.11 22.2 ± 1.6 2.45 0.5 

TASSAR 

1 0.5323 1.60 ± 0.13 11.1 ± 0.9 3.0(c) 14.0 

2 0.4389 1.76 ± 0.14 11.8 ± 0.8 2.70 9.0 

3 0.2678 0.54 ± 0.04 7.7 ± 0.6 1.60 4.0 

MUGA 

1 0.5274 2.11 ± 0.17 11.1 ± 0.9 3.10(d) 30.0 

2 0.4389 1.32 ± 0.10 9.1 ± 0.7 2.20 30.0 

3 0.2654 0.53 ± 0.04 6.3 ± 0.5 1.10 5.0 

SAHANA 

1 0.5822 1.75 ± 0.14 10.0 ± 0.8 2.34(e) 0.1 

2 0.5352 1.61 ± 0.13 8.3 ± 0.6   

3 0.3857 1.54 ± 0.12 7.7 ± 0.6 3.48 0.1 

4 0.2584 0.52 ± 0.07 7.1 ± 0.5 3.16 0.2 

JAYADHAR 

1 0.5704 2.28 ± 0.17 10.0 ± 0.8 2.46(f) 0.1 

2 0.5377 2.15 ± 0.17 11.1 ± 0.8   

3 0.3870 1.16 ± 0.09 6.7 ± 0.6 3.37 0.1 

4 0.2562 0.51 ± 0.04 8.3 ± 0.7 2.16 2.0 
(a)[24] [25]; (b)[26] [27]; (c)[29] [30]; (d)[28] [29]; (e)[31]; (f)[31] [32]. 
 

 
Figure 3. Comparison of experimental and simulated whole powder pat-
tern X-ray profiles. Right side gives column length exponential distribu-
tion. 
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Figure 4. Comparison of experimental and simulated whole powder 
pattern X-ray profiles. Right side gives column length exponential 
distribution. 

 

4. Results and Discussion 
Samples chosen here represents reasonably amorphous in nature, in a sense that a well defined delta-type Bragg 
reflections are rarely observed. Scherrer and Williamson-Hall methods relay on 1) instrumental broadening cor-
rection, 2) background correction and 3) accuracy of measuring FWHM using peak fit and peak separation pro-
cedures. Multiple and single order Fourier methods by Warren and others do relay on initial Fourier coefficients. 
In all these methods, our experience suggest that while refining the parameters against the profile and hence the 
whole powder pattern, the program selectively choose to give more weightage to the crystalline parameter than 
lattice strain parameter leading to either over or under estimation of crystallite size. Normally in polymers we 
have a situation where in a few unit cells contributes for a Bragg reflection. Under these circumstances we look 
for a method which can compute microstructural parameters with reasonable accuracy in a straight forward 
manner. In this direction, present method is quite useful. As mentioned in the flow chart, an approximate crys-
tallite size is estimated using Nandi et al.’s initial slope method for a selected profile after all the corrections. 
This is done using Graphic User Interface technique wherein the beginning, peak and end of the profile is se-
lected graphically in the program. Then the parameters like background, size and strain are varied continuously 
such that the final parameters are used to simulate the profile. This process is continued for all the available pro-
files. At the end of the day, all the profile parameters are used to compute the whole powder pattern to an accu-
racy which is always less than 5 percent between the simulated and experimental profiles, which is also verified 
visually using the graphics user interface in the program. The results are in broad agreement with single order 
Fourier method based on Warrens approach used earlier. 

5. Conclusion 
Essentially, crystallite size is the region between defects. Associated with this, there are non-uniform strains 
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leading to shifts of atoms/molecules from their ideal positions. These two together along with other extended 
defects lead to peak broadening. Absolute accuracy of these results is always a problem. The restrictions are less 
stringent if one seeks results in a semi-quantitative manner. Here in a straight forward method, using exponential 
column length distribution, crystallite size is computed by a visual inspection of the profile and also the whole 
pattern. It is observed that it is difficult to extract accurate parameters from Rietveld analysis when the peak 
shape is mixed Gaussian-Lorentzian. Here the accuracy can be improved by the goodness off it in terms of sim-
plified peak shape. 

Acknowledgements 
Authors acknowledge UPE and CPEPA grants from UGC, NewDelhi, India.  

Program is freely available at the site faculty.physics.uni-mysore.ac.in/rs. 

References 
[1] Zernike, F. and Prins, J.A. (1927) Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. 

Zeitschrift für Physik, 41, 184-194. http://dx.doi.org/10.1007/BF01391926 
[2] Warren, B.E. (1969) X-Ray Diffraction. Addison-Wesley, Reading. 
[3] Hosemann, R. and Bagchi, S.N. (1962) Direct Analysis of Diffraction by Matter. North-Holland, Amsterdam. 
[4] Hall, I.H. and Somashekar, R. (1991) The Determination of Crystal Size and Disorder from the X-Ray Diffraction 

Photograph of Polymer Fibres. 2. Modelling Intensity Profiles. Journal of Applied Crystallography, 24, 1051. 
http://dx.doi.org/10.1107/S0021889891007707 

[5] Balzar, D. (1993) X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors. Jour-
nal of Research of the National Institute of Standards and Technology, 98, 321. http://dx.doi.org/10.6028/jres.098.026 

[6] Delhez, R., de Keijser, T.H., Langford, J.I., Louer, D., Mittemeijer, E.J. and Sonneveld, E.J. (1993) The Rietveld Me-
thod. In: Young, R.A., Ed., IUCr Monograph on Crystallography 5, Oxford University Press, Oxford, 132-166. 

[7] Langford, J.I. and Lour, D. (1982) Diffraction Line Profiles and Scherrer Constants for Materials with Cylindrical 
Crystallites. Journal of Applied Crystallography, 15, 20-26. http://dx.doi.org/10.1107/S0021889882011297 

[8] Scardi, P. and Leoni, M. (2002) Whole Powder Pattern Modeling. Acta Crystallographica Section A. Foundations of 
Crystallography, 58, 190-200. http://dx.doi.org/10.1107/S0108767301021298 

[9] Nandi, R.K., Kuo, H.K., Schlosberg, W., Wissler, G., Cohen, J.B. and Crist Jr., B. (1984) Single-Peak Methods for 
Fourier Analysis of Peak Shapes. Journal of Applied Crystallography, 17, 22-26.  
http://dx.doi.org/10.1107/S0021889884010943 

[10] Le Bail, A. and Lour, D. (1978) Smoothing and Validity of Crystallite-Size Distributions from X-Ray Line-Profile 
Analysis. Journal of Applied Crystallography, 11, 50-55. http://dx.doi.org/10.1107/S0021889878012662 

[11] Klug, H.P. and Alexander, L.E. (1974) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 
2nd Edition, Wiley, New York. 

[12] Kuzel Jr., R. and Klimanek, P. (1989) X-Ray Diffraction Line Broadening Due to Dislocations in Non-Cubic Crystal-
line Materials. III. Experimental Results for Plastically Deformed Zirconium. Journal of Applied Crystallography, 22, 
299-307. http://dx.doi.org/10.1107/S0021889889001585 

[13] Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystal-
lography, 2, 65-71. http://dx.doi.org/10.1107/S0021889869006558 

[14] Ungar, T., Gubicza, J., Ribarik, G. and Borbely, A. (2001) Crystallite Size Distribution and Dislocation Structure De-
termined by Diffraction Profile Analysis: Principles and Practical Application to Cubic and Hexagonal Crystals. Jour-
nal of Applied Crystallography, 34, 298-310. http://dx.doi.org/10.1107/S0021889801003715 

[15] Snyder, R.J., Fiala, J. and Bunge, H.J. (1999) Defect and Microstructure Analysis by Diffraction. Oxford University 
Press, Oxford. 

[16] Somashekar, R., Hall, I.H. and Carr, P.D. (1989) The Determination of Crystal Size and Disorder from X-Ray Diffrac-
tion Photographs of Polymer Fibres. 1. The Accuracy of Determination of Fourier Coefficients of the Intensity Profile 
of a Reflection. Journal of Applied Crystallography, 22, 363-371. http://dx.doi.org/10.1107/S0021889889004085 

[17] Lee, K.G., Barton, R. and Schultz, J.M. (1995) Structure and Property Development in Poly(P-Phenylene Terephtha-
lamide) during Heat Treatment under Tension. Journal of Polymer Science Part B: Polymer Physics, 33, 1-14. 
http://dx.doi.org/10.1002/polb.1995.090330101 

[18] Somashekar, R. and Somashekarappa, H. (1997) X-Ray Diffraction-Line Broadening Analysis: Paracrystalline Method. 

http://dx.doi.org/10.1007/BF01391926
http://dx.doi.org/10.1107/S0021889891007707
http://dx.doi.org/10.6028/jres.098.026
http://dx.doi.org/10.1107/S0021889882011297
http://dx.doi.org/10.1107/S0108767301021298
http://dx.doi.org/10.1107/S0021889884010943
http://dx.doi.org/10.1107/S0021889878012662
http://dx.doi.org/10.1107/S0021889889001585
http://dx.doi.org/10.1107/S0021889869006558
http://dx.doi.org/10.1107/S0021889801003715
http://dx.doi.org/10.1107/S0021889889004085
http://dx.doi.org/10.1002/polb.1995.090330101


M. B. Nanda Prakash et al. 
 

 
55 

Journal of Applied Crystallography, 30, 147-152. http://dx.doi.org/10.1107/S0021889896010023 
[19] Balzar, D., Audebrand, N., Daymond, M.R., Fitch, A., Hewat, A., Langford, J.I., Le Bail, A., Lour, D., Masson, O., 

McCowan, C.N., Popa, N.C., Stephens, P.W. and Toby, B.H. (2004) Journal of Applied Crystallography, 37, 911-924.  
http://dx.doi.org/10.1107/S0021889804022551 

[20] Skoko, Z., Popovic, J., Dekanic, K., Kolbas, V. and Popovi, S. (2012) XBroad: Program for Extracting Basic Micro-
structure Information from X-Ray Diffraction Patterns in Few Clicks. Journal of Applied Crystallography, 45, 584-597.  
http://dx.doi.org/10.1107/S0021889812014859 

[21] Beyerlien, K.R., Snyder, R.L. and Scardi, P. (2011) Powder Diffraction Line Profiles from the Size and Shape of Na-
nocrystallites. Journal of Applied Crystallography, 44, 945-953. http://dx.doi.org/10.1107/S0021889811030743 

[22] Leonardi, A., Leoni, M., Siboni, S. and Scardi, P. (2012) Common Volume Functions and Diffraction Line Profiles of 
Polyhedral Domains. Journal of Applied Crystallography, 45, 1162-1172.  
http://dx.doi.org/10.1107/S0021889812039283 

[23] Stokes, A.R. (1948) A Numerical Fourier-Analysis Method for the Correction of Widths and Shapes of Lines on X- 
Ray Powder Photographs. Proceedings of the Physical Society, 61, 382-391.  
http://dx.doi.org/10.1088/0959-5309/61/4/311 

[24] Bhajantria, R.F., Ravindrachary, V., Harisha, A., Crasta, V., Nayak, S.P. and Poojary, B. (2006) Microstructural Stu-
dies on BaCl2 Doped Poly(Vinyl Alcohol). Polymer, 47, 3591-3598. http://dx.doi.org/10.1016/j.polymer.2006.03.054 

[25] Lakshmeesha Rao, B., Mahadevaiah, O., Sangappa, Y., Asha, S. and Somashekar, R. (2012) Microstructural Parame-
ters in Electron Irradiated PVA Films by Wide Angle X-Ray Scattering Studies (WAXS). Advanced Materials Re-
search, 585, 532-536. http://dx.doi.org/10.4028/www.scientific.net/AMR.585.532 

[26] Divakara, S., Siddaraju, G.N. and Somashekar, R. (2010) Comparative Study of Natural and Man-Made Polymers Us-
ing Whole Powder Pattern Fitting Technique. Fibres and Polymers, 11, 861-868.  
http://dx.doi.org/10.1007/s12221-010-0861-7 

[27] Sangappa, Demappa, T., Mahadevaiah, Ganesh, S., Divakara, S. and Somashekar, R. (2008) Microstructural Parame-
ters in Electron-Irradiated Hydroxypropyl Methylcellulose Films Using X-Ray Line Profile Analysis. Journal of Ap-
plied Polymer Science, 109, 3983-3990. http://dx.doi.org/10.1002/app.28495 

[28] Divakara, S., Madhu, S. and Somashekar, R. (2009) Stacking Faults and Microstructural Parameters in Non-Mulberry 
Silk Fibres. Pramana, 73, 927-938. http://dx.doi.org/10.1007/s12043-009-0159-8 

[29] Divakara, S., Somashekar, R. and Roy, S. (2009) Correlation between Microstructure and Microrheological Parameters 
of Various Silk Fibres. Indian Journal of Fibre and Textile Research, 34, 168-174. 

[30] Reddy, T., Roy, S., Prakash, Y., Somashekarappa, H., Ramesh, K., Divakara, S. and Somashekar, R. (2011) Stress- 
Strain Curves and Corresponding Structural Parameters in Mulberry and Non-Mulberry Silk Fibers. Fibers and Poly-
mers, 12, 499-505. http://dx.doi.org/10.1007/s12221-011-0499-0 

[31] Niranjana, A.R., Divakara, S. and Somashekar, R. (2011) Characterization of Field Grown Cotton Fibres Using Whole 
Powder Pattern Fitting Method. Indian Journal of Fibre and Textile Research, 36, 9-17. 

[32] Abhishek, S., Samir, O.M., Annadurai, V., Gopalkrishne Urs, R., Mahesh, S.S. and Somashekar, R. (2005) Role of 
Micro-Crystalline Parameters in the Physical Properties of Cotton Fibers. European Polymer Journal, 41, 2916-2922.  
http://dx.doi.org/10.1016/j.eurpolymj.2005.06.005 

http://dx.doi.org/10.1107/S0021889896010023
http://dx.doi.org/10.1107/S0021889804022551
http://dx.doi.org/10.1107/S0021889812014859
http://dx.doi.org/10.1107/S0021889811030743
http://dx.doi.org/10.1107/S0021889812039283
http://dx.doi.org/10.1088/0959-5309/61/4/311
http://dx.doi.org/10.1016/j.polymer.2006.03.054
http://dx.doi.org/10.4028/www.scientific.net/AMR.585.532
http://dx.doi.org/10.1007/s12221-010-0861-7
http://dx.doi.org/10.1002/app.28495
http://dx.doi.org/10.1007/s12043-009-0159-8
http://dx.doi.org/10.1007/s12221-011-0499-0
http://dx.doi.org/10.1016/j.eurpolymj.2005.06.005

	1-D Paracrystalline Model to Simulate a Bragg Reflection: Computation of Crystallite Size and Lattice Strain
	Abstract
	Keywords
	1. Introduction
	2. Theory
	Crystallite Size Probability Distribution

	3. Application of the Procedure
	4. Results and Discussion
	5. Conclusion
	Acknowledgements
	References

