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Abstract 
The different roles and natures of spacetime appearing in a quantum field theory and in classical 
physics are analyzed implying that a quantum theory of gravitation is not necessarily a quantum 
theory of curved spacetime. Developing an alternative approach to quantum gravity starts with 
the postulate that inertial energy-momentum and gravitational energy-momentum need not be 
the same for virtual quantum states. Separating their roles naturally leads to the quantum gauge 
field theory of volume-preserving diffeomorphisms of an inner four-dimensional space. The clas-
sical limit of this theory coupled to a quantized scalar field is derived for an on-shell particle 
where inertial energy-momentum and gravitational energy-momentum coincide. In that process 
the symmetry under volume-preserving diffeomorphisms disappears and a new symmetry group 
emerges: the group of coordinate transformations of four-dimensional spacetime and with it Gen-
eral Relativity coupled to a classical relativistic point particle. 
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1. Introduction 
Spacetime is a basic ingredient in the construction of any Quantum Field Theory (QFT) of microscopic interac- 
tions such as the electro-magnetic, weak and strong forces in the Standard Model (SM). This is immediately ob- 
vious looking at both the canonical or the path integral quantization approaches full of mathematical expressions 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2014.510098
http://dx.doi.org/10.4236/jmp.2014.510098
http://www.scirp.org/
mailto:christian.wiesendanger@ubs.com
http://creativecommons.org/licenses/by/4.0/


C. Wiesendanger 
 

 
949 

such as Lagrangian densities, Fourier transforms, time-ordered products of quantum field operators etc., which 
are all defined on a four-dimensional spacetime conventionally taken as Minkowski space [1]-[4]. What that 
spacetime—clearly not the same as macroscopic observable spacetime—, however, really is and how its geome-
trical and other properties can be established is normally not further reflected. 

Looking at the experimental information we have about microscopic interactions of elementary particles 
which originates from scattering experiments, what we observe is a number of incoming particles—typically 
two characterized by their masses, four-momenta, electric charges etc. transitioning with some probability into a 
number of outgoing particles again characterized by their masses, four-momenta, electric charges etc. The nature 
and properties of these particles are defined for the incoming ones by the accelerator beam characteristics, and 
are deduced for the outgoing ones from analyzing their observable macroscopic spacetime trajectories after the 
scattering event. What is not observable is the detailed spacetime evolution of the transition process which 
happens at spacetime distances escaping any experimental access and which remains as a black box to the ob- 
server. 

We note that the three-dimensional space in which the observed trajectories of the outgoing particles appear is 
the macroscopic space that we abstract as part of an observable four-dimensional Minkowski space whose 
geometric properties we can establish experimentally. This is consistent with describing the trajectories as 
originating from classical relativistic point particles. 

To establish a model for what happens in the unobservable black box, one links the experimental information 
to the machinery of an appropriate QFT and its S-matrix by abstracting the incoming and outgoing particles as 
non-interacting asymptotic quantum states and employing the LSZ-reduction formalism to express the scattering 
amplitudes as Fourier-transformed, amputed, on-shell vacuum expectation values of time-ordered products of 
quantum field operators [1]-[4]. The asymptotic states have the characteristics such as mass, four-momentum, 
electric charge etc. experimentally established as discussed above and live in an appropriate Fock space. If such 
a model—the prototype of which is the SM—is correct, it allows us to predict the various observed transition 
probabilities. 

The key point to note is that the spacetime necessarily appearing in the definition of the QFT giving us a 
model of the black box is a mathematical idealization and is not the same as the macroscopic Minkowski space 
in which the classical trajectories of the incoming and outgoing particles appear. Whether or not the idealization 
of the scattering event itself happening in an unobservably small spacetime region by means of a QFT defined 
on a spacetime idealized as another Minkowski space is correct, it can only be established after the facts, i.e. by 
the correctness of the predictions of the model. 

Turning to gravitation spacetime is even more intimately woven into the construction of a field theory of gra- 
vity at the macroscopic level. Here the Equivalence Principle forces all classical particles to move on geodesics 
and implies the geometrization of gravity which is beautifully embodied in General Relativity (GR) [5]-[7]. 
Spacetime carries gravity by means of its non-Euclidean geometric structure which in turn is determined by the 
energy-momentum content of all non-gravitational matter and fields in spacetime. 

We now look at the question of how gravity might microscopically interact with elementary particles and the 
other three microscopic interactions. If it remains true that we essentially want to describe events such as the 
scattering of elementary particles and the quanta of the gravitational interaction (as well as the quanta of the 
other three microscopic interactions) by gravity, then a picture similar to the above should be applied. So the 
experimental observation of macroscopic trajectories of scattered elementary particles should allow assigning 
properties to the asymptotic quantum states of an appropriate QFT model for the black box of the scattering 
event itself. Again spacetime with some geometric structure will enter that QFT model. But whether the 
idealization of the scattering event itself happening in an unobservably small spacetime region by means of a 
QFT defined on that spacetime will be correct, it can again only be established after the facts, i.e. by the 
correctness of the predictions of the model. As a result the structure of macroscopic spacetime has no a priori 
implication for the microscopic idealization of the spacetime entering such a QFT model. 

So, a quantum theory of gravitation is not necessarily a quantum theory of curved spacetime. Instead any 
approach should be worthwhile to develop which respects the various conditions for a viable QFT such as 
causality, renormalizability and the validity of conservation laws such as for energy-momentum and which 
yields a classical limit respecting the Equivalence Principle, hence geometrizing gravity at the classical level. 
One such approach based on Minkowski space as the idealized spacetime embedded in the QFT model for 
gravity indeed exists. It takes as its basic postulate that the Equivalence Principle for observable physical states 
is necessarily valid, but for virtual quantum states it is not [8]-[10]. 
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2. Why Should Inertial and Gravitational Mass Be the Same for  
Virtual Quantum States? 

GR has been developed starting from the observed equality of inertial and gravitational mass I Gm m=  [5]-[7]. 
To be in agreement with observation this equality has to hold in any expression describing observable states in a 
gravitational context in their rest frames. However, in formulating a theory nothing enforces this equality for 
virtual (=non-observable) quantum states as long as it continues to hold for the on-shell (=observable) quantum 
states in that theory. 

Now (a) the observed equality of inertial and gravitational mass of an on-shell physical object in its rest frame 
together with (b) the conservation of the inertial energy-momentum Ipµ  in any frame tells us that in the rest 
frame   

( )
( )
( ), 0 , 0

a

I I G Gp m m pµ µ= ==                                (1) 

assuming that the gravitational energy-momentum Gpµ  plays a physical role different from that of the inertial 
energy-momentum, yet being observationally identical for on-shell objects. However, for off-shell states why 
shouldn’t there be two separate conservation laws, one for the inertial energy-momentum and the other for the 
gravitational energy-momentum? 

To explore this route let us postulate both Ipµ  and Gpµ  to be two separate four-vectors which are conserved, 
but in our approach through two different mechanisms. The conservation of Ipµ  is related to translation invari- 
ance in spacetime. Making use of Noether’s theorem a second conserved four-vector can be constructed which is 
related to the invariance under volume-preserving diffeomorphisms of a four-dimensional inner space. That 
four-vector is then interpreted as the gravitational energy-momentum Gpµ  in the construction of a gauge theory 
of gravitation which we will review in Section 4 below. 

In a series of papers we have established this theory as the gauge theory of the group of volume-preserving 
diffeomorphisms at the classical [8] and quantum level [9] where we also have calculated the beta function to 
one loop which shows that the pure gauge field theory is asymptotically free whereas the theory including all 
SM fields is not. To proof mathematical consistency and to ensure prediction power for physical quantities in 
terms of the original couplings, masses etc. we then have demonstrated the renormalizability of the theory to all 
orders in perturbation theory [10]. In these papers we have shown that one can consistently deal with the compli- 
cations arising from a non-compact gauge group, e.g. ensuring the positivity of the gauge field Hamiltonian or 
regularizing divergent integrals over inner degrees of freedom related to the infinite volume of the gauge group 
which arise in a perturbative expansion. 

Finally, the observed equality of inertial and gravitational energy-momentum in this approach is assured by 
introducing a physical limit for on-shell physical objects, the construction of which is based on the definition of 
observable asymptotic states and a suitable S-matrix [11] which is shown there to be unitary. In essence the limit 
amounts to equaling inertial and gravitational energy-momentum, hence ensuring the validity of the Equi- 
valence Principle. 

Now does all of this really yield a quantum theory of gravity? 
To properly answer this question we analyze below the classical limit 0→  of the gauge theory of volume- 

preserving diffeomorphisms coupled to a scalar matter field. In Section 3 we review the steps involved in taking 
the classical limit in scalar QED to re-iterate them in Section 5 in the present case. There we will find crucial 
differences to the QED case which result in the disappearance of the symmetry of the theory under volume- 
preserving diffeomorphisms of an inner space we have started with. Instead a new symmetry group will emerge: 
the group of coordinate transformations of four-dimensional spacetime and with it General Relativity. Hence, as 
is necessary for the interpretation of the gauge theory of volume-preserving diffeomorphisms as a quantum 
theory of gravity GR emerges as its classical limit. 

One final word on presentational style. Below we will use the same symbols for all: quantum field operators, 
classical fields and quantum mechanical (pseudo-)probability amplitudes. It will always be clear what is meant 
in which expression. However, for the sake of presentational clarity we have omitted the admittedly challenging 
“details” of normal ordering, gauge-fixing, employing Dirac brackets when quantizing etc so as to be able to 
focus on the main arguments. It is also understood that the physical limit has to be taken whenever aiming for 
the calculation of observable quantities. 
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3. Classical Limit of a Scalar Quantum Field Coupled to Quantum Electrodynamics 
In this section we review the way from a theory given in terms of a quantized scalar field coupled to the quan- 
tized electromagnetic field back to a theory in terms of a classical point particle coupled to classical electrody- 
namics [1] [6]. 

To do so we start with the action for a charged scalar field ( )xφ  and its conjugate ( )† xφ    

( ) ( ) ( ) ( ){ †4 2dMS x iD x x iD x x mµ
µ φ φ = − + ∫ ( ) ( )}† x xφ φ                     (2) 

coupled to the electromagnetic field ( )A xµ  with action 

( ) ( )4
2

1 .
4GS d xF x F x

e
µν

µν= − ∫                              (3) 

Both fields are defined on an idealized unobservable four-dimensional Minkowski spacetime 4M  as dis- 
cussed in the introduction. And both ( )xφ  and ( )A xµ  are non-commuting quantum field operators acting on 
a suitable Fock space and subject to canonical commutation relations—hence, the expressions above are to be 
taken with a grain of salt as stated in the introduction. 

Above   

( ) ( )D x iA xµ µ µ= ∂ +                                    (4) 

denotes the covariant derivative and   

 ( ) ( ) ( )F x A x A xµν µ ν ν µ= ∂ − ∂                                 (5) 

the field strength operator. 
The action M GS S+  is by inspection invariant under the combined gauge transformations   

( ) ( ) ( )A x A x xµ µ µ→ + ∂ Λ                                   (6) 

( ) ( ) ( )e i xx xφ φ− Λ→  

with ( )xΛ  a suitable scalar function. 
Though somewhat formal we can write down the field equations for the quantum field operators ( )xφ    

( )( ) ( )( ) ( ) ( )2 0i A x i A x x m xµ µ
µ µ φ φ− ∂ − ∂ − − =                     (7) 

and ( )A xµ    

( ) ( ) ( )
( )2

1 , MSF x j x j x
e A x

µ
µν ν ν ν

δ
δ

∂ = = −                        (8) 

which follow from varying the action M GS S+ . It is the field equation for ( )xφ  from which one recovers the 
relativistic Hamiltonian for a classical charged point particle [1] [6]. 

Let us turn to the classical limit 0→  which can be thought to come about in two steps with profound 
implications on the observability of spacetime. 

In the first step “second quantization” is reversed and the non-commuting field operators ( )xφ  and ( )A xµ  
which are subject to canonical commutation relations become commuting fields. ( )xφ  becomes a (pseudo-) 
probability amplitude for a charged relativistic quantum-mechanical point particle and ( )A xµ  becomes a 
classical Maxwell field. Both commuting fields are again described by the actions Equation (2) and Equation (3) 
which are invariant under the gauge transformations Equation (6) and by the corresponding field equations 
Equation (7) and Equation (8)—however, mathematically and physically their interpretation is now a very diffe- 
rent one. 

In the second step “first quantization” of the point particle is reversed as well and its non-commuting position 
and momentum operators xµ  and pν  subject to the canonical commutation relation ,x p iν ν

µ µη  = −   be- 
come commuting c-numbers which is reflected by the replacement   

 i pµ µ∂ ↔                                       (9) 
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based on the Correspondence Principle. xµ  simply becomes the position, pν  the momentum of a charged 
relativistic point particle. ( )A xµ  remains the classical Maxwell field. 

After the last step the field equation Equation (7) for the probability amplitude for a single charged relativistic 
quantum-mechanical particle is transformed into the relativistic Hamiltonian for a classical charged point 
particle   

( )( ) ( )( )1 1 0
2 2

p A x p A x m
m

µ µ
µ µ− − + =

                      
 (10) 

after multiplying with 1
2m

. This equation is now defined on macroscopic observable Minkowski spacetime. 

Let us next assume Equation (10) is all we know about the motion of a classical charged point particle in the 
background of a vector field ( )A xµ . We then see that the corresponding Hamiltonian equation of motion 
derived from Equation (10)   

( )mx F x xνµ µν=                                    (11) 

with Fµν  as in Equation (5) is invariant under a gauge transformation   

( ) ( ) ( )A x A x xµ µ µ→ + ∂ Λ                              (12) 

of the vector field. Now it cannot be that the trajectory of the point particle is not dependent on gauge trans- 
formations whereas the dynamics of the vector field is. So it is natural to look for vector field actions invariant 
under Equation (12). The action of lowest mass dimension is then immediately found to be [1] [6]   

( ) ( ) ( )4 3dGS xF x F x O Fµν
µν∝ − +∫                          (13) 

with the higher order terms suppressed at sufficiently low energies. As ( ) ( )4d xF x F xµν
µν∫  is dimensionless, 

any coupling constant in the leading order term has to be dimensionless too and the reasoning above allows one 
to immediately recover the gauge field action Equation (3). 

The case of a quantized scalar field coupled to the quantized electromagnetic field does not generate new 
insights by itself, but for the clarification of the different natures of spacetime entering the quantum field 
theoretical and the classical descriptions. And it paves the way for a similar reasoning in the case of a quantized 
scalar field coupled to the quantized gauge field for the gauge theory of volume-preserving diffeomorphisms. 
There new things will happen which result in GR emerging in the classical limit. 

4. Gauge Theory of Volume-Preserving Diffeomorphisms Revisited 
In this section we revisit the basics of the gauge theory of volume-preserving diffeomorphisms developed in [8]- 
[11]. 

As discussed in Section 2 we want to explore what happens when keeping inertial and gravitational energy- 
momentum as separate entities in a physical theory—taking the physical limit for observable quantities to ensure 
their equality as demanded by the Equivalence Principle. As both types of momentum are conserved we first 
need to establish two separate conservation laws for two four-vectors. Obviously conservation of inertial energy- 
momentum is related by Noether’s theorem to global spacetime translation invariance of the theory. Employing 
Noether’s theorem a second time to generate another conserved four-vector requires invariance of the theory 
under an independent second translation group. To be specific we take this group to be the larger group of vo- 
lume-preserving diffeomorphisms of a four-dimensional space 4V ⊂ R  whose coordinates are labelled by X α . 
As to further notations we refer to the Appendix. 

Infinitesimal group transformations can be written as   

( ) , 0,1, 2,3X X Xα α α α→ + =                               (14) 

where the condition on the infinitesimal translation parameter ( )Xα    

( ) 0Xα
α∇ =                                        (15) 

ensures volume preservation. 
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To represent this group on the various fields in the theory we need to add the necessary inner degrees of 
freedom so that all fields ( ),x Xφ  are defined on the product of an idealized unobservable four-dimensional 
Minkowski spacetime 4M  times the additional inner four-dimensional space 4V ⊂ R  we require to have 
finite volume. The X α  in ( ) ( ), Xx X xφ φ  labelling continous vectors can be thought of as a generalization 
of the inner indices a  in ( )a xφ  labelling discrete vectors in the context of a Yang-Mills theory. 

The action for a field ( ),x Xφ    

( ) ( )( )4 4 4d d , , ,M MS x X x X x Xµφ φ−= Λ ∂∫ ∫                           (16) 

is then automatically invariant under both global spacetime translations and volume-preserving diffeomorphisms 
which act on the field ( ),x Xφ  as 

, ,x x x X X Xµ µ µ α α α′ ′→ = → =                               (17) 

( ) ( ) ( ) ( ), , , .x X x X X x Xα
αφ φ φ→ − ⋅∇  

These invariances generate the independent conservation laws for two four-vectors [8]. 
Above Λ  is a parameter with dimension of length introduced to keep the volume element in inner space 

dimensionless. The volume integration 4 4d X −Λ∫  or sum over the continous indices X α  is nothing but the 
generalization of a sum over inner indices 

a∑  in Yang-Mills theories. In [8] we have shown the theory to be 
scale-invariant in inner space when rescaling Λ  at the same time as inner coordinates and fields so that Λ  
can be chosen arbitrarily. Note that the finite volume of the inner space V  can always taken to be equal to 

4Λ . 
Next we take the infinitesimal translations or gauge parameters ( )Xα  local   

 ( ) ( ), .X x Xα α→   (18) 

( ),x Xα  still obeys Equation (15) and Equation (17) still define the group representation on the fields. 
This requires the introduction of a covariant derivative   

 ( ) ( ), ,D x X A x Xα
µ µ µ α= ∂ + ∇  (19) 

to preserve the invariance of the action Equation (16) under local group or gauge transformations which is 
achieved by replacing ( ),D x Xµ µ∂ →  so that we now have   

( ) ( ) ( )( )4 4 4d d , , , , .M MS x X x X D x X x Xµφ φ−= Λ∫ ∫                (20) 

Above 
Xα α

∂
∇ =

∂
 denote the generators of the inner translations. The gauge fields ( ),A x Xα

µ  introduced  

in the process have to transform under local gauge transformations as   

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,A x X A x X x X A x X x X x X A x Xα α α β α β α
µ µ µ µ β β µ→ + ∂ + ⋅∇ − ⋅∇         (21) 

and obey the divergence-free condition   

( ), 0A x Xα
α µ∇ =  (22) 

as do all fields living in the gauge algebra. 
The homogenously transforming field strength components are then found to be   

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,F x X A x X A x X A x X A x X A x X A x Xα α α β α β α
µν µ ν ν µ µ β ν ν β µ= ∂ − ∂ + ⋅∇ − ⋅∇     (23) 

in terms of which the gauge field action of lowest mass dimension is [8]   

( ) ( )4 4 4
2

1 d d , , .
4GS x X F x X F x Xα µν

µν α
−= − Λ ⋅

Λ ∫ ∫                        (24) 

To be precise the above GS  is given in terms of an inner metric η  which is used to raise and lower inner 
indices after a partial gauge-fixing to the so-called Minkowski gauges which preserve η  [8]. 

In [10] we have shown that theories defined by M GS S+  are renormalizable as long as MS  contains fields 
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( ),x Xφ  and their spacetime derivatives of mass dimension four or less only. Note that to obtain physical 
observables and to implement the Equivalence Principle those physical observables obey we have to take the 
physical limit ensuring equality of inertial and gravitational energy-momentum at the end of all calculations. Its 
exact meaning in the process of defining a unitary S-matrix for quantum gravity has been established in [11]. 

5. Classical Limit of a Scalar Quantum Field Coupled to the Quantum Gauge Field  
Theory of Volume Preserving Diffeomorphisms 

In this section we derive the classical limit of a theory given in terms of a quantized scalar field coupled to the 
quantized gauge fields of the gauge theory of volume-preserving diffeomorphisms. In that process the inner 
space collapses, the field dependence on inner coordinates disappears and so does the symmetry under volume- 
preserving diffeomorphisms of the inner space. On the other hand a new symmetry group emerges: the group of 
coordinate transformations of four-dimensional spacetime and with it General Relativity coupled to a classical 
relativistic point particle. 

In order to follow 0→  when deriving the classical limit in all expressions we reinstall the factors of   
and take along factors of c , the speed of light, and Γ , the gravitational constant. 

Let us start again with the action for a scalar field ( ),x Xφ  and its conjugate ( )† ,x Xφ    

( ) ( ) ( ) ( ){ †4 4 4 2 2 4d d , , , ,M PS x X c i D x X x X i D x X x X m cµ
µ φ φ−  = − Λ + ∫ ∫   ( ) ( )}† , ,x X x Xϕ ϕ      (25) 

coupled to the gauge field ( ),A x Xα
µ  with action   

( ) ( )4 4 4
2 2 d d , , .

4G P
P

S x X F x X F x X
g

α µν
µν α

−= − Λ ⋅
Λ ∫ ∫
                 (26) 

Above we have taken Λ  to equal the Planck length PΛ    

3P c
Γ

Λ =
  (27) 

based on the inner scale invariance of the theory, have inserted factors of   to get the dimensions right and 
introduced a dimensionless coupling 2g . Note that   

3

2 2 16π4 P

c
g

=
ΓΛ

  (28) 

for the choice 2 4πg =  ensuring the correct Newtonian limit as demonstrated in [12]. Note in addition that this 
expression is independent of  . 

Above both fields ( ),x Xφ  and ( ),A x Xα
µ  are non-commuting quantum field operators defined on an 

idealized unobservable four-dimensional Minkowski spacetime times an inner space, acting on a suitable Fock 
space and subject to canonical commutation relations—hence, as in the case of electrodynamics the expressions 
above are to be taken with a grain of salt and have been properly elaborated in [11]. 

Though somewhat formal we can next write down the field equations for the quantum field operators 
( ),x Xφ    

( )( ) ( )( ) ( ) ( )2 2 4, , , , 0c i A x X i A x X x X m c x Xα µ µ β
µ µ α β φ φ− ∂ + ∇ ∂ + ∇ − =            (29) 

and ( ),A x Xα
µ    

( )( ) ( ) ( )
3

, , , ,
4π
c x X F x X j x X

αµ β α
µν νβ

=
Γ
                          (30) 

( )
( )

, ,
,

MSj x X
A x X

α
ν ν

α

δ
δ

= −  

where we have introduced the covariant derivative in the adjoint representation   

 ( )( ) ( )( ) ( ), , , .x X A x X A x X
α γ α α

µ µ µ γ β β µβ
η= ∂ + ∇ −∇  (31) 
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Let us turn to the classical limit 0→  which can be thought to come about in the same two steps as in the 
case of electrodynamics again with profound implications on the observability of spacetime, but this time with 
additional complications. 

In the first step “second quantization” is reversed and the non-commuting field operators ( ),x Xφ  and 
( ),A x Xα

µ  which are subject to canonical commutation relations become commuting fields. ( ),x Xφ  be- 
comes a (pseudo-)probability amplitude for a single relativistic quantum-mechanical particle in the background 
of a classical gauge field ( ),A x Xα

µ . Both commuting fields are again described by the actions Equation (25) 
and Equation (26) which are invariant under the gauge transformations Equation (17) and Equation (21) and by 
the corresponding field equations Equation (29) and Equation (30)—however, mathematically and physically 
their interpretation in the physical limit is now a very different one. 

In the second step “first quantization” of the point particle is reversed as well and its non-commuting position 
and momentum operators xµ  and pν  subject to the canonical commutation relation ,x p iν ν

µ µη  = −    as 
well as its non-commuting inner coordinate operators Xα  and Pβ  subject to the canonical commutation rela- 
tion ,X P iβ β

α αη  = −    become commuting c-numbers which is reflected by the replacements   

,i p i Pµ µ α α∂ ↔ ∇ ↔ 
 (32) 

based on the Correspondence Principle. xµ  simply becomes the position, pν  the momentum—with Xα  and 
Pβ  their inner analogs—of a single relativistic classical particle. ( ),A x Xα

µ  remains a classical gauge field. 

After multiplying with 2

1
2mc

 the field equation Equation (29) for the probability amplitude for a single  

charged relativistic quantum-mechanical particle is transformed into the Hamiltonian for a relativistic classical 
point particle   

( )( ) ( )( ) 21 1, , 0
2 2

p A x X P p A x X P mc
m

α µ µ β
µ µα β+ + + =                  (33) 

which now depends on the inner coordinates Xα  and Pβ  as well. 
So far nothing dramatic in comparison to the electrodynamics case has happened. However, we have not  

taken into account yet that (A) with 0→  the Planck length 3 0P c
Γ

Λ = →
  and with it the finite inner  

space collapses to a point and (B) that a classical point particle is by definition always observable so that we 
have to take the physical limit in the Hamiltonian above. Note that the argument does not depend on taking 

PΛ = Λ  as any length Λ  is proportional to PΛ  which tends to zero with 0→  taking the volume of the 
inner space V  to zero as well which is proportional to 4 2

PΛ ∝  . 
The collaps of the inner space due to (A) implies that the field dependence on inner coordinates disappears: 
( ) ( ),A x X A xα α

µ µ→ , and with it the symmetry under volume-preserving diffeomorphisms of the inner space 
and (B) tells us to take the physical limit   

 .P pα α→  (34) 

As a result Equation (33) becomes   

( )( ) ( )( ) 21 1 0.
2 2

p A x p p A x p mc
m

α µ µ β
µ µα β+ + + =                 (35) 

This equation is now defined on a macroscopic observable spacetime the geometry of which becomes evident 
below. 

We can re-write this in a more perspicuous form in terms of   

( ) ( )e x A xµ µ µ
α α αη= +                              (36) 

or of  

( ) ( )( ) ( )( )g x A x A xµ µ
αβ µα µα β βη η= + +                      (37) 

as 
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( )( ) ( )( ) 21 1 0
2 2

p A x A x p mc
m

α µ µ β
µα µα β βη η+ + + =



 

( ) ( ) 21 1 0
2 2

p e x e x p mc
m

α µ β
µα β + =


                             (38) 

( ) 21 1 0.
2 2

p g x p mc
m

α β
αβ + =  

As we will see ( )e xµ
α  has to be interpreted as a vierbein and ( )g xαβ  as a metric on the observable 

macroscopic spacetime which leads us back to GR [5] [6]. 
To get there let us derive the Hamiltonian equations from the last expression above   

( )1H g x p x
mp

β
γβ γγ

∂
= =

∂
                                  (39) 

( )1 .
2

g xH p p p
mx x

αβα β
γγ γ

∂
= = −

∂ ∂
                               (40) 

The first equation tells us that if we interpret ( )g xγβ  as a metric, pα  and xγ  transform under a general 
coordinate transformation 

( ) ( ) ( ) ( ), x xx x x g x g x g x
x x

γ δ
α α

αβ αβ γδα β

∂ ∂′ ′ ′→ → =
′ ′∂ ∂

                     (41) 

as contra- and covariant vectors respectively 

, .x xp p p x x x
x x

α β
α α β

α α ββ α

′∂ ∂′ ′→ = → =
′∂ ∂

                         (42) 

In addition the Hamiltonian equations tell us that the point particle moves on geodesics of the metric ( )g xαβ   

( ) ,x x x xγ γ α β
αβ= −Γ                                     (43) 

where   

( ) 1
2

g gg
x g

x x x
δβ αβγ γδ δα

αβ β α δ

∂ ∂ ∂
Γ = + − 

∂ ∂ ∂                            
 (44) 

are the usual non-covariant Christoffel symbols. 
So at the same time as the inner space has collapsed and the field dependence on inner coordinates has 

disappeared—and with it the symmetry under volume-preserving diffeomorphisms of the inner space—we see a 
new symmetry group emerging: the group of coordinate transformations of macroscopic observable four-di- 
mensional spacetime and with it a classical relativistic point particle moving on geodesics as required by the 
Equivalence Principle. In fact it should better be like this, as the physical limit Equation (34) we have taken to 
arrive at Equation (35) expresses nothing but the equivalence of inertial and gravitational mass for observable 
particles which forces the latter to move on geodesics. 

Now it cannot be that the trajectory of the point particle is not dependent on general coordinate transfor- 
mations whereas the dynamics of the metric field ( )g xαβ  is. So it is natural to look for actions for the metric 
invariant under Equation (41). The action of lowest mass dimension is then immediately found to be [1] [6] 

( ) ( ) ( )4 2d ,GS x g x R x O R∝ − − +∫                          (45) 

where R  denotes the scalar curvature. The terms of higher order in the curvature tensor are suppressed at 
sufficiently low energies. 

As ( ) ( )4d x g x R x−∫  carries the dimension of length to the power minus two, any coupling constant in the  

leading order term has to have dimension of energy times time and dimensional analysis allows one to infer that  

it has to be proportional to 
3c
Γ

 recovering the Einstein-Hilbert action for GR. 
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We finally note that GR emerging in the classical limit does not depend on the order of taking the various 
limits in the reasoning above. 

6. Conclusions 
In this paper we have first clarified the different natures of spacetime entering a QFT model at the microscopic 
level versus entering the description of a relativistic point particle in the background of a classical field. 

Taking the different natures of spacetime into account we then have established GR to emerge as the classical 
limit of the gauge field theory of volume-preserving diffeomorphisms coupled to a scalar field. To get there we 
have reiterated the way from scalar QED back to a classical relativistic point particle coupled to classical 
electrodynamics. In that process two crucial differences to the QED case occur: on the one hand the inner space 
needed to represent the gauge group on fields collapses; the field dependence on inner coordinates disappears 
and so does the symmetry under volume-preserving diffeomorphisms of the inner space. On the other hand a 
new symmetry group emerges: the group of coordinate transformations of macroscopic observable four-dimen- 
sional spacetime and with it General Relativity coupled to a classical relativistic point particle. Note that the 
argument does not depend on the scalar nature of the matter field and that one gets the same result e.g. for 
spinors when 0→  as spin terms are of ( )O 

. 
It is reassuring that not only the microscopic strong and electro-weak interactions can be described within a 

renormalizable quantum gauge field theory framework formulated on an idealized unobservable Minkowski 
spacetime. In fact gravity at the quantum level can be described by following exactly the same logic, however, 
the theory gets more complicated due to its non-compact gauge group having an infinite volume. Yet it is still 
renormalizable. So nature seems to allow for a consistent, rupture-free picture based on conservation laws and 
symmetry considerations at least up to energy scales far beyond experimental reach. 
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Appendix: Notations and Conventions 
Generally, (M4, η ) denotes the four-dimensional Minkowski space with metric ( )diag 1,1,1,1η = − , small 
letters denote space-time coordinates and parameters and capital letters denote coordinates and parameters in 
inner space. 

Specifically, , , ,x y zλ µ ν


 denote Cartesian spacetime coordinates. The small Greek indices , , ,λ µ ν   
from the middle of the Greek alphabet run over 0,1, 2,3 . They are raised and lowered with η , i.e. x xνµ µνη=  
etc. and transform covariantly w.r.t. the Lorentz group ( )1,3SO . Partial differentiation w.r.t. to xµ  is denoted  

by 
xµ µ

∂
∂ ≡

∂
. 

, , ,X Y Zα β γ
  denote inner Cartesian coordinates we can always choose by partially fixing the gauge to so- 

called Minkowskian gauges [8]. The small Greek indices , , ,α β γ   from the beginning of the Greek alphabet 
run again over 0,1, 2,3 . They are raised and lowered with η , i.e. x xβ

α αβη=  etc. and transform covariantly 

w.r.t. the inner Lorentz group ( )1,3SO . Partial differentiation w.r.t. to X α  is denoted by 
Xα α

∂
∇ ≡

∂
. 

The same lower and upper indices are summed unless indicated otherwise. 
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