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Abstract 
A review of the concepts developed about mathematical and physical fractals is presented fol-
lowed by experimental results of the latter, considered to be a fourth state of matter which per-
vades the universe from galaxies to submicroscopic systems. A model of multiple fractal aggrega-
tion via a computer code is shown to closely simulate physical fractals experiments carried out in 
simulated and in real low gravity. 
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1. Introduction 
Fractal geometry and structures pervade our universe, living matter included. The field of fractals has developed 
after the advent of fast digital computers which provides easy means for their study. The word fractal was 
coined by Benoît Mandelbrot [1], who also introduced the concepts of fractal geometry and fractal dimension. 
The foundations for the new developments were laid by 19th and 18th century mathematicians, particularly Cava-
lieri, Cantor, Lebesgue, Hausdorff, Besicovitch, Banach, Borel, Kuratowski and Kolmogorov, who developed 
the concepts of topological and metric spaces as well as a rigorous theory of measures, crucial to the under-
standing of the generalisation of the concept of dimension, leading to non-integer values (fractal dimensions). 

Mandelbrot gave in 1982 a tentative definition of a fractal: A set for which the Hausdorff-Besicovitch dimen-
sion strictly exceeds the topological dimension. The latter are axiomatically 0 (zero) for a “point”, 1 (one) for a 
line, 2 (two) for a surface, etc. Mandelbrot retracted the definition given above because it would exclude many 
physical fractals and replace it introducing the concept of self-similarity: A fractal is a shape made by parts 
similar to the whole in some way [2]. This definition entails scale invariance of the appearance of parts of a 
whole. Physical fractals exhibit a finite range of scale where this invariance holds. Fractals in nature are mostly 
random structures showing disordered features. Fractal aggregates may be thought to be stochastic polymers and 
thus the smallest contituent discrete element is usually called monomer. Mathematical fractals are generated by 
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algorithms (or a set of definite rules) and may exhibit an infinite range of scale invariance. They are sometimes 
called deterministic fractals. 

1.1. A Mathematical Fractal 
Work preceding the pleiade of recent developments includes examples justifying the introduction of the new 
concept of fractal dimension: one easy to grasp is the Cantor triadic dust [3]. The set is generated starting from a 
line segment C of unit length, 

[ ]0 0,1C =                                              (1) 

and a sequence obtained by extracting successively the central third from each closed interval: 

[ ] [ ]1 0,1 3 2 3,1C =                                        (2) 

[ ] [ ] [ ] [ ]2 0,1 9 2 9,1 3 2 3,7 9 8 9,1C =                                 (3) 

etc. 
The sequence is shown in Figure 1 and is such that: 

0 1 2 3C C C C⊃ ⊃ ⊃ ⊃                                     (4) 

Therefore Cantor’s set (Figure 1) can be expressed as follows 

k kC C=


                                          (5) 

It is a set with an infinite number of segments, a non dense subset of he original line segment converging to 
an infinite set of points: “dust” particles. The generic term of C consists of 2k closed intervals of length (1/3)k. 
Thus the total length of Ck is: 

( )2 3 k
kL =                                           (6) 

and 
lim 0kk

L
→∞

=                                           (7) 

Therefore, although the Cantor “dust” contains an infinite subset of points of [0,1] distributed along the seg-
ment it is of topological dimension 0 as shown. Such dimension corresponds to a single point and logically it 
should be expected that an infinite set of points should be reflected by a more meaningful parameter than that of 
topological dimensions. It is necessary to remember how we usually “measure” bodies, surfaces or lines. For 
example, considering the floor in a room it is possible to use surface elements of variable linear dimension ε to 
cover the set to any desired accuracy. The “capacity” CA of a covering element can be expressed in general as 

nCA Kε=                                           (8) 
For squares K = 1, for disks K = π, with n = 2, for spheres K = 4/3π, n = 3. 
The area A of a floor can be given by a covering with N elements as  

nA NKε=                                           (9) 
 

 
Figure 1. Cantor’s triadic dust.                            



R. J. Slobodrian 
 

 
1793 

If the surface to be measured is not dense, (like the one dimensional Cantor’s “dust”), it is possible to write 
formally a covering element as 

DK εσ ε=                                          (10) 

understandably   2Dε <  and it would account for the non-dense caracter of the surface, substituting the topo-
logical dimension of a surface. Choosing A = 1 the following expression is obtained: 

( )1 1, DN K εε ε=                                       (11) 

( )
( )

ln 1, ln
ln 1

N K
Dε

ε
ε
−

=                                    (12) 

Taking the limit the term in K can be omitted and then one obtains a definition for the fractal dimension D: 

( )
( )0

ln 1,
lim

ln 1
N

D
ε

ε
ε→

=                                     (13) 

This definition follows closely those of Kolmogorov (1958) [4] and of Mandelbrot (1982) The symbol 1 
represents the set and ε is the linear dimension of the element to cover it, the latter is often called “ball”. Assume 
now that 1 is the segment [0,1]. Evidently ( )1, 1N ε ε= , and therefore expression (13) yields D = 1, coincident 
with the topological dimension of a solid line. Applying this to Cantor’s triadic set (“dust”), ( )ln 1, 2kN ε =  
and 1 3kε =  and therefore 

ln 2 ln 2lim 0.63
ln 3ln 3

k

kk
D

→∞
= → =                               (14) 

And as surmised before the dimension D is non integer. A non dense set is thus reflected by a generalized di-
mension D fractal dimension exceeding the topological dimension. 

1.2. Example of a Two Dimensional Fractal 
A two dimensional set of carbon particles (Figure 2(a)) demonstrates an application of preceding formulae. The 
experiment was carried out by deposition of the particles on a plate, after traversing a tetrachloride carbon liquid. 
The high density of the fluid allowed a slow random fall of the particles. The pattern was analyzed using a frame 
grabber system to construct Figure 2(b), where the slope yields the fractal dimension of the set. 

 

  
(a)                                                           (b) 

Figure 2. (a) 2-dimensional fractal; (b) a graph of its fractal dimension given by the slope of the line of points.          
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2. Physical Fractal Aggregates 
In order to appeal to everyday life intuition let us mention snowflakes in free fall. They are the result of aggre-
gation of water crystals during their fall through the atmosphere. Usually their velocity is constant due to aero-
dynamics. It simulates the behavior of aggregation of matter in a gravitation free environment. The latter has 
become available during the 20th century via aircraft in parabolic fight, and on space stations (Mir and ISS). 
Dust is ubiquitous in the Earth’s atmosphere and undergoes processes of aggregation leading to increased 
masses and precipitations on the earth’s surface. Cosmic dust pervades outer space and the study of its behavior 
is now possible. Flotation is also a means to simulate conditions of reduced gravity. Flotation in water is used 
for training of astronauts. Flotation of small particles in gases also allows studying aggregation processes simu-
lating low gravity. 

2.1. Nomenclature of Fractals 
A typical fractal aggregate is shown in Figure 3. Self similarity and scale invariance is demonstrated by the 
small aggregate on the upper right side. The constituent particles are spherical but fractals may be formed by 
units of varied forms (v.l. micro-crystals). 

2.2. Computer Simulation of Aggregation 
The physical process is random and this characteristic should provide the mathematical basis for simulations of 
aggregation. Figure 4 shows a computer generated aggregate. The constituent particles are spherical and radii  

 

 
Figure 3. Scanning electron microscope (SEM) image of a 3D 
aggregate. The procedure of production is described in [7].       

 

 
Figure 4. Computer simulated aggregate.  
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are variable, the usual name is monomer by analogy with chemical polymers. Branches are called dendrites 
(from Greek: dendros: tree). The deep valleys are called fjords (from Norwegian: inlet). The computer program 
consists of sections: 1) Generation of aggregates via random walk paths and attachment of monomers; 2) 
Graphical display of the result; 3) Printing of the graph. 

This image is shown with shadows as illuminated by a light slightly skewed from the left. Multiple fractal ag-
gregation shall be discussed further down in this paper. 

2.3. Low Gravity Powder Aggregates 
They were carried out on aircraft in parabolic flight and also on the space shuttle. Figure 5 shows the schematic 
of an apparatus flown on NASA’s KC-135 aircraft. It allows the simultaneous recording of two perpendicular 
images of the experimental volume via an optical system with a prism. This technique allows a perfect synchro-
nization of the images. This is the experimental recoding of images in the Monge geometrical projections. Fig-
ure 6(a) and Figure 6(b) shows images of aggregates obtained. 

Blum et al. [6] carried out experiments on particle aggregation on the Space Shutttle. The main results are 
shown below in Figure 7. 

 

 
Figure 5. Powder aggregation apparatus [5]. A. Experimental cell; 
B: Bellows; C. Lens assembly; D. Camera; E. Mirrors; F. Prism.        

 

   
Figure 6. (a) & (b) Powder aggregates images recorded in parabolic flight.                                      
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Figure 7. Shows results of Ref. [6].                        

 
The top images are the raw data, below are reconstructed images, at right is a three dimensional image from 

the lower images, proving aggregation and also the formation of proto planets from cosmic dust via such proc-
ess.  

3. Evaporation—Condensation Aggregation 
Condensation of matter in vapor form yields aggregates at variance with powder aggregations. The latter are due 
to surface adherence of monomers and there is no matter continuity throughout the aggregate. The former result 
in topological connected sets of monomers as is illustrated in Figure 8. They are synterized [7]. Figure 9 shows 
the full aggregate. 

Aggregates with typical monomers were analyzed by scattering of He-Ne laser radiation (Figure 10) to de-
termine the fractal dimension D from the angular distribution of the intensity I(q), where q is the modulus of the 
initial to final wave vectors (Figure 11). This is a non-destructive indirect measurement method. 

4. Multiple Fractal Aggregations and Simulations 
Aggregations take place at random in the available volume and multiple aggregates are formed. Figure 12 illus-
trates the complexity of aggregates generated simultaneously. Simulation of multiple aggregations are shown in 
Figure 13 with our program. Similarly Figure 14(a) shows an inset which is adequately simulated. 

5. Concluding Remarks: Fractal Physics 
Classical physics is based on fundamental continuity of space and time. Quantum phenomena have introduced 
discontinuity concepts (“jumps”) in physics, but they are interpreted in terms of equations within continuous 
space and time. There are fundamental questions concerning the transition between quantized and classical 
realms but they are not yet resolved. On occasion so called semiclassical physics can be applied successfully to 
phenomena [8] but doubts have been raised repeatedly about the validity of the correspondence principle of 
Niels Bohr [9]. It has been recently recognized that certain phenomena within this transition region can be clas-
sified in a new domain: fractal physics [10], with special topological content, discrete entities and intrinsic ran-
domness. Most importantly it has been realized that fractal physics pervades the whole universe at all scales in 
space and time. 

The aggregates obtained correspond to an underlying randomness and provide examples of complexity in dy-
namical systems [11]. The sizes of monomers obtained imply that they are within the realm of the transition re-
gion from quantum to classical phenomena and they may provide a testing ground for the validity of Bohr’s 
correspondence principle. The nanometer scale yields matter where surfaces are extremely large with respect to 
the volume. The ratio is increased by a factor of 107 as compared with the ratio for ordinary compact matter at 
cm scales. These aggregates are certainly manifestations of a new state of matter [12], and bear promise of novel 
physical properties and applications. 

Acknowledgements 
Space agencies of Canada, Europe and USA have supported the research of this paper over many years and they 
are warmly thanked. The program FRAC was written by Drs. Eric Litvak and Carl Robert, they are thanked 
heartily. 

My colleagues Drs. Claude Rioux and Michel Piché have contributed with experimental instruments, exper- 



R. J. Slobodrian 
 

 
1797 

 
Figure 8. Detail of the attachment of Zn monomers 
of the fractal in Figure 9.                        

 

 
Figure 9. Zn aggregate via vapor condensation.         

 

 
Figure 10. Set-up to measure a fractal dimension by scattering of a laser beam. It is a non de-
structive method.                                                                 
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Figure 11. Example of a measurement with the set-up of 
Figure 10. The line (straight) proves fractality and its slope 
gives a measure of its dimension.                          

 

 
Figure 12. Experimental multiple aggregation.                                

 

 
Figure 13. Simulation of multiple aggregation with our program 3DMXYF, the graph was 
obtained with program FRAC which calculated its fractal dimension.                       
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(a) 

 
(b) 

Figure 14. (a) SEM image of an aggregate; (b) Multiple aggrega-
tion simulation. Notice the similarity with (a) in the circle.         
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