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Abstract 

Let T  be a tree. The set of leaves of T  is denoted by ( )Leaf T . The subtree ( )LeafT T−  of T  

is called the stem of T . A stem is called a k-ended stem if it has at most k-leaves in it. In this paper, 
we prove the following theorem. Let G  be a connected graph and 2k ≥  be an integer. Let u  

and v  be a pair of nonadjacent vertices in G . Suppose that ( ) ( ) 1G GN u N v G k≥ − − . Then G  

has a spanning tree with k-ended stem if and only if G uv+  has a spanning tree with k-ended 

stem. Moreover, the condition on ( ) ( )G GN u N v  is sharp. 
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1. Introduction 

We consider simple graphs, which have neither loops nor multiple edges. For a graph G , let ( )V G  and 
( )E G  denote the set of vertices and the set of edges of G , respectively. We write G  for the order of G  

(i.e., ( )G V G= ). For a vertex v  of G , the degree of v  in G  is denoted by )(deg vG , and the set of 
vertices adjacent to v  is called the neighborhood of v  and denoted by )(vNG . In particular, ( ) ( )degG Gv N v= . 
An edge joining two vertices x  and y  is denoted by xy  or yx . 

Let T  be a tree. A vertex of T  with degree one is often called a leaf of T , and the set of leaves of T  is 
denoted by ( )Leaf T . The subtree ( )LeafT T−  of T  is called the stem of T  and denoted by ( )Stem T . A 
spanning tree with specified stem was first considered in [1]. 

A tree having at most k  leaves is called a k-ended tree. So a tree whose stem has at most k  leaves in it is 
called a tree with k-ended stem. Notice that a tree with 2-ended stem is nothing but a caterpillar, whose stem is a 
path. We consider a spanning tree with k-ended stem. 
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We make a remark about spanning trees with k-ended stem from the point of view of dominating set. A 
subgraph H  of a graph G  is said to dominate G  if every vertex of G  not contained in H  has a neighbor 
in H . Namely, H  dominates G  if every vertex ( ) ( )v V G V H∈ −  satisfies ( ) ( )GN v V H ≠ ∅

. So a 
graph G  has a spanning tree with k-ended stem if and only if G  has a k-ended tree that dominates G . There 
are many researches on dominating cycles and dominating paths (for example, see [2] and [3] with stronger 
definition of domination). Thus the concept of spanning trees with k-ended stem can be also considered as a 
generalization of dominating paths. 

For an integer 2k ≥  and a graph G , ( )k Gσ  denotes the minimum degree sum of k  independent ver- 
tices of G . The following theorem gives a sufficient condition using ( )k Gσ  for a graph to have a spanning 
tree with k-ended stem. 

Theorem 1 (Tsugaki and Zhang [4]) Let G  be a connected graph and 2k ≥  be an integer. If  

( )3 2 1,G G kσ ≥ − +  

then G  has a spanning tree with k-ended stem.  
Another result on spanning trees with k-ended stem is the following. 
Theorem 2 (Kano and Yan [5]) Let G  be a connected graph and 2k ≥  be an integer. If G  satisfies one 

of the following conditions, then G  has a spanning tree with k-ended stem. 
(1) ( )1 1.k G G kσ + ≥ − −  
(2) G  is claw-free and ( )1 2 1k G G kσ + ≥ − − .  
A closure operation is useful in the study of the existence of hamiltonian cycles, hamiltonian paths and other 

spanning subgraphs in graphs. It was first introduced by Bondy and Chvátal. 
Theorem 3 (Bondy and Chval [6]) Let G  be a graph and let u  and v  be two nonadjacent vertices of 

G . 
(1) Suppose ( ) ( )deg degG Gu v G+ ≥ . Then G  has a hamiltonian cycle if and only if G uv+  has a hamil- 

tonian cycle. 
(2) Suppose ( ) ( )deg deg 1G Gu v G+ ≥ − . Then G  has a hamiltonian path if and only if G uv+  has a ha- 

miltonian path.  
After [6], many researchers have defined other closure concepts for various graph properties. The following 

theorem gives a result on closure for spanning k-ended tree. 
Theorem 4 (Broersma and Tuinstra [7]) Let 2≥k  be an integer, and let G be a graph. Let u  and v  be 

a pair of nonadjacent vertices of G  with ( ) ( )deg deg 1G Gu v G+ ≥ − . Then G  has a spanning k-ended tree 
if and only if G uv+  has a spanning k -ended tree.  

Another type of closure theorem on spanning k-ended tree can be found in Fujisawa, Saito and Schiermeyer 
[8]. The interested reader is referred to the survey [9] on closure concepts. 

In this paper, we prove the following theorem. 
Theorem 5 Let G  be a connected graph and 2≥k  be an integer. Let u  and v  be a pair of nonadjacent 

vertices of G  such that  

( ) ( ) 1.G GN u N v G k≥ − −                                      (1) 

Then G  has a spanning tree with k-ended stem if and only if uvG +  has a spanning tree with k-ended 
stem.  

Before proving Theorem 5, we show that the condition (1) in Theorem 5 is sharp. We construct a graph G  
as follows. Let 2≥k  and 1≥m  be integers, and let mK  be a complete graph of order m , which is a 
subgraph of G . Let 1 1, , , , , , ,k ku u u v v v   be 2 2k +  vertices of G  not contained in mK . Join u  and v  
to all the vertices of mK  by edges. Join , 1 ,iu i k≤ ≤  to u  and iv  by edges. Then the resulting graph is G  
(see Figure 1). It is immediate that G uv+  has a spanning tree with k-ended stem, where all the vertices of 

mK  and v  are leaves of the spanning tree, and ( ) ( ) 2G GN u N v G k= − − . However G  has no spanning 
tree with k-ended stem. Therefore the condition (1) is sharp. Moreover, in Figure 1,  

( ) ( )deg deg 2 2G Gu v m k G m k+ = + = + − − . Since m  be an arbitrary integer, the degree sum of u  and v  
can be arbitrarily great. This implies that we can not find a condition similar to Theorem 4 for spanning tree with 
k-ended stem. 

Some results on spanning k-ended trees and other spanning trees with given properties can be found in [10], 
and many current results on spanning trees can be found in [11]. 
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Figure 1. A graph G having no spanning tree with k-ended stem.  

2. Proof of Theorem 5 

In this section we prove Theorem 5. Without mentioning, we often use the fact that ( )V T  is a disjoint union of 
( )( )LeafV T  and ( )( )StemV T . 

Proof of Theorem 5. Since the necessity of the theorem is trivial, we only prove the sufficiency. Assume, to 
the contrary, that uvG +  has a spanning tree with k-ended stem but G  does not have a spanning tree with k- 
ended stem. Let us denote *G G uv= + . Choose a spanning tree T  with k-ended stem of *G  so that 

(T1) ( )( )Leaf Stem T  is as small as possible, and 

(T2) ( )Stem T  is as small as possible subject to (T1). 

It is obvious that the edge uv  is contained in T  since otherwise T  is a spanning tree with k-ended stem 
of G . Let ( )( ) { }1 2Leaf Stem , , , lT X x x x= =  . Then obviously 2 l k≤ ≤ . 

Claim 1. (1) X  is an independent set of G ; (2) For every lixi ≤≤1 , , there exists a vertex ( )Leafiy T∈  
that is adjacent to ix  in T  and ( ) ( ) { }* Leafi iG

N y T x⊆  . 
By the choice (T1), it is easy to see that if 3≥l , then X  is an independent set of *G , and so is of G . 

Assume that 2l =  and the two leaves 1x  and 2x  of ( )Stem T  are adjacent in *G . It is easy to see that 1x  
and 2x  are not adjacent in ( )Stem T  since otherwise we can obtain a spanning tree with 2-ended stem of G  
from T . If u  and v  are both contained in ( )Stem T , then 1 2T uv x x− +  is a spanning tree with 2-ended 
stem of G , which contradicts the assumption. Hence we may assume that u  is a vertex of ( )Stem T  and v  
is a leaf of T  by symmetry of u  and v  and by ( )uv E T∈ . Since G  is connected, v  is adjacent to a ver- 
tex w . If w  is contained in ( )Stem T , then T uv wv− +  is a spanning tree with 2-ended stem of G , a con- 
tradiction. If w  is a leaf of T , let *w  be the vertex of ( )Stem T  adjacent to w  in T , and let z  be a 
vertex of ( )stem T  adjacent to *w . Then *

1 2T uv w z x x wv− − + +  is a spanning tree with 2-ended stem of G , 
a contradiction. Therefore, { }1 2,X x x=  is an independent set of *G . Hence (1) of Claim 1 follows. 

Suppose that there exists a vertex sx , 1 s l≤ ≤ , such that every leaf y  adjacent to sx  in T  satisfies 
( ) ( ) { }( )* Stem sG

N y T x− ≠ ∅ . Then for every leaf y  adjacent to sx  in T , remove the edge syx  from 
T  and add an edge yz  of *G , where ( )( ) { }Stem sz V T x∈ − . Denote the resulting tree of *G  by *T .  
Then *T  is a spanning tree of *G  and satisfies ( ) ( ) { }*Stem Stem sT T x= − , which contradicts the condition  

(T2). Therefore, (2) of Claim 1 holds. 
Hereafter, we take the vertices ( )1iy i l≤ ≤  as in Claim 1(2). Let { }1 2, , , lY y y y= 

. Since the edge uv  
is contained in T , let 1 2T uv T T− =  , where ( )1u V T∈  and ( )2v V T∈ . Since G  is a connected graph, 
there exist a vertex ( )1a V T∈  and a vertex ( )2b V T∈  which are adjacent in G . 

Claim 2. l k= .  
The claim holds when 2k = , and so we assume that 3≥k . If 2l k≤ − , then T uv ab− +  is a spanning 

tree with k-ended stem of G , which contradicts the assumption. Next we consider the case where 1l k= − . If 
either v  is a leaf of T  or the degree of v  in ( )Stem T  is 1 or greater than 2, then T uv ab− +  is a spann- 
ing tree with k-ended stem of G , which contradicts the assumption. Thus the degree of v  in ( )Stem T  is 2. 
By symmetry of u  and v , we may assume that the degree of u  in ( )Stem T  is also 2, and it is clear that 
uv  is an edge of ( )Stem T . 

First we consider 1l k= −  and 4k ≥ . If a vertex ( )1x X V T∈ 
 is adjacent to v  in G , then xvuvT +−  

is a spanning tree with k-ended stem of G , a contradiction. Thus no vertex of ( )1X V T
 is adjacent to v  in 

G . By symmetry of u  and v , no vertex of ( )2X V T
 is adjacent to u  in G . Assume that a vertex Xx∈  

is adjacent to u  in G  and 1T  contains at least two vertices of X . Then the path in ( )Stem T  connecting 
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x  and u  contains a vertex of degree at least 3 in ( )Stem T . Let e  be an edge of the path which is incident 
with a vertex with degree at least 3 in ( )Stem T . Then exuTT −+′ =  is a spanning tree with k-ended stem of 

*G , and u  has degree at least 3 in ( )Stem T ′ . Then we can derive a contradiction by the same argument as in 
the above first paragraph. Therefore if a vertex x  of X  is adjacent to u  in G , then 1T  contains exactly 
one vertex of X . Note that x  may be adjacent to u  but not to v . Since 3X l= ≥  by 4≥k , 2T  con- 
tains at least two vertices of X , which means no vertex of X  is adjacent to v  in G  by the same argument 
on 1T  and x  given above. 

By the above fact and Claim (1), we obtain  

( ) ( ) ( ) { }( ) { }, ,G GN u N v V G Y X u v x⊆ − − −   

which implies ( ) ( ) 2 1 2G GN u N v G l G k≤ − − < − −  by 1l k= −  and 4k ≥ , which contradicts (1). 
Next we consider the case where 3k =  and 1 2l k= − = . In this case, ( )Stem T  is a path, and let 1x  and 

2x  be the leaves of ( )Stem T  where ( )1 1x V T∈  and ( )2 1x V T∈ . By the same argument as in the above 
paragraph, we have that neither u  and 2x  nor v  and 1x  are adjacent in G . We shall show that u  and 

1x  are not adjacent in G . Assume that u  and 1x  are adjacent in G . Let *a  be the vertex adjacent to a  in 
T  if ( )Leafa T∈  or *a a=  if ( )Stema T∈ , and let c  be a vertex adjacent to *a  in ( )Stem T . Then 

abuxcauvT ++−− 1
*  is a spanning tree with 3-ended stem of G , a contradiction. Similarly, v  and 2x  are 

not adjacent in G . 
By the above fact and Claim 1, we obtain  

( ) ( ) ( ) { } { } { }1 2 1 2, , , ,G GN u N v V G y y x x u v⊆ − − −
 

which implies ( ) ( ) 6 2G GN u N v G G k≤ − < − −  by 3k = , which contradicts (1). Hence Claim 2 holds. 
We consider the following two cases: 
Case 1. u  and v  are both contained in ( )Stem T . 
Subcase 1.1 Both u  are v  are vertices of ( )( )Stem Stem T .  
In this case, by Claim 1 (2), we have  

( ) ( ) ( ) { }, ,G GN u N v V G Y u v⊆ − −
 

then ( ) ( ) 2G GN u N v G k≤ − −  by Claim 2, which contradicts (1). 
Subcase 1.2 u  is a leaf of ( )Stem T  and v  is a vertex of ( )( )Stem Stem T .  
In this case, without loss of generality, let 1u x= . If either v  has degree greater than 2 in ( )Stem T  or 

b v= , then abvuT +−  is a spanning tree with k-ended stem of G , which is a contradiction. Hence v  has 
degree 2 in ( )Stem T  and b v≠ . 

Let *b  be the vertex adjacent to b  in T  if ( )Leafb T∈  or *b b=  if ( )Stemb T∈ . Then  
{ }*

1 2, , , kb x x x∉  , since otherwise, abvxT +− 1  is a spanning tree with k-ended stem of G . Let ( ),T iP v x  
be the path connecting v  and ix  in ( )Stem T . Then there exists at least one vertex x X∈  such that 

( ),TP v x  pass through *b . We assign an orientation in ( ),TP v x  from v  to x , and b∗+  be the successor of 
*b . If v  and x  are adjacent in G , then 1T vx b b ab vx∗ ∗+− − + +  is a spanning tree with k-ended stem of G , 

which contradicts the assumption. Therefore, by Claim 1(2), we have  

( ) ( ) ( ) { }1 1 2, , , , , ,G G kN v N x V G v x x y y⊆ − 
 

Then ( ) ( )1 2G GN v N x G k≤ − − , which contradicts (1). 
Case 2. u  is a vertex of ( )Stem T  and v  is a leaf of T . 
Subcase 2.1 u  is a leaf of ( )Stem T . 
In this case, if v  is adjacent to a vertex w  in G , where w  is a vertex of ( )Stem T , then vwuvT +−  is 

a spanning tree with k-ended stem of G , which contradicts the assumption. So the neighborhood of v  is con- 
tained in ( )Leaf T . Without loss of generality, let 1u x=  and 1v y= . 

By Claim 1 (2), we have  

( ) ( ) ( ) ( ) ( ) ( )1 1,  and Leaf .G G G GN u N x V G X Y N v N y T Y= ⊆ − − = ⊆ −  

Hence  

( ) ( ) ( ) .G GN u N v V G X Y⊆ − −
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That means ( ) ( ) 2 2G GN u N v G k G k≤ − ≤ − − , which contradicts (1). 
Subcase 2.2 u  is a vertex of ( )( )Stem Stem T .  

In this case, by Claim 1 (2), ( )GN u Y = ∅
. If there exists some y Y∈  such that ( )yv E G∈ , then yvuvT +−  

is a spanning tree with k-ended stem of G , which contradicts the assumption. Hence ( )GN v Y = ∅
. We have  

( ) ( ) ( ) { }, ,G GN u N v V G Y u v⊆ − −
 

then ( ) ( ) 2G GN u N v G k≤ − − , which contradicts (1). 
Consequently, the proof is complete.  
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