
Advances in Pure Mathematics, 2014, 4, 295-301 
Published Online June 2014 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2014.46039  

How to cite this paper: Izmirli, I.M. (2014) On Some Properties of Digital Roots. Advances in Pure Mathematics, 4, 295-301.  
http://dx.doi.org/10.4236/apm.2014.46039  

 
 

On Some Properties of Digital Roots 
Ilhan M. Izmirli 
Department of Statistics, George Mason University, Fairfax, USA 
Email: iizmirl2@gmu.edu 
 
Received 23 March 2014; revised 24 April 2014; accepted 9 May 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Digital roots of numbers have several interesting properties, most of which are well-known. In this 
paper, our goal is to prove some lesser known results concerning the digital roots of powers of 
numbers in an arithmetic progression. We will also state some theorems concerning the digital 
roots of Fermat numbers and star numbers. We will conclude our paper by an interesting applica-
tion. 
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1. Introduction 
The part of mathematics that deals with the properties of specific types of numbers and their uses in puzzles and 
recreational mathematics has always fascinated scientists and mathematicians (O’Beirne 1961 [1], Gardner 1987 
[2]). 

In this short paper, we will talk about digital roots—a well-established and useful part of recreational mathe-
matics which materializes in as diverse applications as computer programming (Trott 2004) [3] and numerology 
(Ghannam 2012 [4]). As will see, digital roots are equivalent to modulo 9 arithmetic (Property 1.6) and hence 
can be thought of as a special case of modular arithmetic of Gauss (Dudley, 1978) [5]. 

Let us start out by the following existence theorem: 
Theorem 1.1. Let n  be a natural number and let ( )s n  denote the sum of the digits of n . In a finite num-

ber of steps, the sequence ( ) ( )( ) ( )( )( ), , ,s n s s n s s s n 

 becomes a constant. 
Proof. Let 1

1 1 010 10 10k k
k kn d d d d−

−= + + + + , where for any 0 j k≤ ≤ , 0 9jd≤ ≤ . This implies that 

( ) 1 1 0k ks n d d d d−= + + + +  

If n  is a one digit number, that is if 1 1 0k kd d d−= = = = , then, ( ) 0s n d n= =  is the required constant. 
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Else, at least one of 1 1, , ,k kd d d−   is positive and, 

( )s n n<  

Thus, repeatedly applying the s operator, we will get a decreasing sequence of numbers. Once a term of this 
sequence becomes a single digit number, from then on the sequence will remain a constant. 

Definition 1.1. Let ( )nρ  denote the constant value the sequence ( ) ( )( ) ( )( )( ), , ,s n s s n s s s n 

 converges 
to. We call ( )nρ  the digital root of n . 

Here are some simple properties that follow immediately from this definition: 

Property 1.1. ( ) 9
9
nn nρ  = −   

, where x    stands for the geatest integer less than or equal to x . 

Property 1.2. ( )
9            if mod9 0

mod9    otherwise
n

n
n

ρ
=

= 


 

Property 1.3. ( ) ( ) ( )( )m n m nρ ρ ρ ρ+ = + . 

Property 1.4. ( ) ( ) ( )( )mn m nρ ρ ρ ρ= . 

Property 1.5. ( )( ) ( )n nρ ρ ρ= . 
Property 1.6.  
This 9 9×  symmetric matrix Table 1, which is formed by replacing the numbers in a regular 9 9×  multip-

lication table by their digital roots, is referred to as a Vedic square. Vedic squares have been used extensively to 
create geometric patterns and symmetries, and even musical compositions by highlighting specific numbers. For 
more information see Pritchard (2003) [6]. 

Closely related to the concept of digital roots is that of additive persistence, which is defined as the number of 
(additive) steps required to obtain its digital root. We will denote the additive persistence of a nonnegative in-
teger n by ( )AP n . Clearly, for any single digit number 𝑛𝑛the additive persistence is 1. ( )34568 2AP = , be-
cause we need two steps to obtain ( )34568ρ : 

Step 1. 3 4 5 6 8 26+ + + + =  
Step 2. 2 6 8+ =  
The smallest number with additive persistence of , 2k k ≥  is 

1999 9  
1 followed by 9k ’s. For more information on additive persistence see Hinden (1974) [7]. 
Some Well-Known Results 
Proposition 1.1. Digital root of a square is 1, 4, 7, or 9. 
By Property 1.2, the digital root of 2x  is 

( ) ( ) ( )( )2x x xρ ρ ρ ρ=  

which can only be ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 21 1, 2 4, 3 9, 4 7, 5 7, 6 9, 7 4, 8 1,ρ ρ ρ ρ ρ ρ ρ ρ= = = = = = = =   
( )29 9ρ = . 
Proposition 1.2. Digital root of a perfect cube is 1, 8 or 9. 
Proof is similar to the one given above. 
Proposition 1.3. Digital roots of the powers of a natural number x form a cyclical sequence. This cycle is the 

same for all numbers 9x k+ , where k is any natural number: 
This follows because for any x , 0 9x≤ ≤  and for any two natural numbers k  and r  

( )( ) ( ) ( ) ( )( )9 r rx k x x xρ ρ ρ ρ ρ+ = =   

We can use Table 2 to compute digital roots of powers of large numbers. For example, 

( ) ( )54 5414,764 4 1ρ ρ= =  

Proposition 1.5. Digital root of an even perfect number (except 6) is 1. 
Proof. Every even perfect number m  is of the form 



I. M. Izmirli 
 

 
297 

Table 1. The multiplication table for digital roots is the 
familiar modulo 9 multiplication table with 0 replaced by 
9.                                               

 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 

2 2 4 6 8 1 3 5 7 9 

3 3 6 9 3 6 9 3 6 9 

4 4 8 3 7 2 6 1 5 9 

5 5 1 6 2 7 3 8 4 9 

6 6 3 9 6 3 9 6 3 9 

7 7 5 3 1 8 6 4 2 9 

8 8 7 6 5 4 3 2 1 9 

9 9 9 9 9 9 9 9 9 9 

 
Table 2. Digital roots of the powers of a natural number x 
form a cyclical sequence.                             

x  Digital Roots of Successive Powers of x  

0 0 

1,10,19,  1 

2,11, 20,  1,2,4,8,7,5  

3,12,21,  1,3,9,9,9,  

4,13, 22,  1,4,7  

5,14,23,  1,5,7,8, 4,2  

6,15, 24,  1,6,9,9,9,  

7,16,25,  1,7,4  

8,17,26,  1,8  

9,18,27,  1,9,9,9,9,  

 

( )12 2 1p pm −= −  

where 2 1p −  is a Mersenne prime. By putting 12 px −= , we have 

( ) ( ) ( ) ( ) ( )22 2m x x x x xρ ρ ρ ρ ρ= − = −  

Here, the last equality follows from properties 1, 2, and 3 above. 
By proposition 1.2, 

( ) 4,7,1,7,1,xρ =  
and 

( ) ( )2 5,8,2,8,2,x xρ ρ =   

Hence the result follows. 
To generalize the concept of digital roots to any other base b , one should simply change the 9 in the formu-

las to 1b − . For more information on digital roots see Averbach and Chein (2000) [8]. 
In the following sections, we will prove some results on digital roots of powers of numbers in an arithmetic 

progression as well as digital roots of Fermat numbers and star numbers. 

2. Digital Roots of Powers of Numbers in an Arithmetic Progression 
We start with the following 
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Proposition 2.1. Let k, m and n be three consecutive terms in an arithmetic progression with common differ-
ence d . Let 

3 3 3x k m n= + +  
If d is not a multiple of 3, then ( ) 9xρ = . 
Proof. Let k m d= −  and n m d= + . Then 

( )3 3 3 3 2 2 23 6 3 2 .x k m n m md m m d= + + = + = +  

Consequently, to prove the proposition, we must prove ( )2 22m m d+  is divisible 3 by for any natural num-
ber m and for any natural number d that is not a multiple of three. 

If m is divisible by 3, the result follows. So, let us consider the two cases: 
Case 1. 3 1m r= + . In this case 

( ) ( )( )2 2 2 22 3 1 9 6 1 2m m d r r r d+ = + + + +  

Since 3 1d s= ± , 
2 22 18 12 2d s s= ± +  

Thus, 

( ) ( )( )
( )( )
( )( )

2 2 2 2

2 2

2 2

2 3 1 9 6 1 18 12 2

3 1 9 6 18 12 3

3 3 1 3 2 6 4 1

m m d r r r s s

r r r s s

r r r s s

+ = + + + + ± +

= + + + ± +

= + + + ± +

 

Case 2. 3 2m r= + . In this case 

( ) ( )( )2 2 2 22 3 2 9 12 4 2m m d r r r d+ = + + + +  

Again, 
2 22 18 12 2d s s= ± +  

Thus, 
( ) ( )( )

( )( )

2 2 2 2

2 2

2 3 2 9 12 18 12 6

3 3 2 3 4 6 4 2

m m d r r r s s

r r r s s

+ = + + + ± +

= + + + ± +
 

Remark. The restriction on d  is necessary. For example, let 7, 10k m= =  and 13n = . 
Then, 

3 3 3 343 1000 2197 3540x k m n= + + = + + =  
and 

( ) 3xρ =  
Using the fact that a sum is divisible by a positive integer if all terms are divisible by a positive integer we get 
Theorem 2.1. Let q be a multiple of three. Let 1 2, , , qn n n  be any q consecutive terms of an arithmetic pro-

gression whose common difference d is not a multiple of three. Let 
3 3 3
1 2 qx n n n= + + +  

Then, ( ) 9xρ = . 
For example, let 

1 2n = , 2 7n = , 3 12n = , 4 17n = , 5 22n =  and  6 27n =  
Then, 

3 3 3
1 2 6 8 343 1728 4913 10648 19683 37323x n n n= + + + = + + + + + =  

and ( )37323 9ρ = . 
Again if 3d = , this does not hold. As a counterexample, 

1 2n = , 2 5n = , 3 8n = , 4 11n = , 5 13n =  and 6 16n =  



I. M. Izmirli 
 

 
299 

3 3 3
1 2 6 8 125 512 1331 2197 4096 8269x n n n= + + + = + + + + + =  

and ( )8296 7ρ = . 
Corollary 2.1. Let q be a multiple of three. Putting 1d = , we get that the sum of the cubes of q consecutive 

integers is divisible by 9. Putting 2d = , we get that the sum of the cubes of q consecutive odd integers (even 
integers) is divisible by 9. 

Although similar results do not necessarily hold for sixth powers, we show that they do for ninth powers. In 
fact, we find out that the restriction on d is not needed for ninth powers. 

Proposition 2.2. Let 1 2 9, , ,n n n  be nine consecutive terms in an arithmetic progression with common dif-
ference d. Let 

9 9 9
1 2 9x n n n= + + +  

Then, ( ) 9xρ = . 
Proof. This follows by writing 

1 5 4n n d= −  

2 5 3n n d= −  

3 5 2n n d= −  

4 5n n d= −  

6 5n n d= +  

7 5 2n n d= +  

8 5 3n n d= +  

9 5 4n n d= +  

and noting that 

( )9 9 9 9 7 2 8
1 2 9 5 5 59 240 144,708x n n n n n d n d= + + + = + + +   

Using the fact that a sum is divisible by a positive integer if all terms are divisible by a positive integer we get 
Theorem 2.2. Let q  be a multiple of nine. Let 1 2, , , qn n n  be any q  consecutive terms of an arithmetic 

progression whose common difference d. Let 
9 9 9
1 2 qx n n n= + + +  

Then, ( ) 9xρ = . 
Corollary 2.2. Let q  be a multiple of nine. Putting 1d = , we get that the sum of the ninth powers of q  

consecutive integers is divisible by 9. Putting 2d = , we get that the sum of the ninth powers of q  consecutive 
odd integers (even integers) is divisible by 9. 

3. Digital Roots of Fermat Numbers 
As is well-known, a Fermat number nF  is defined as 

22 1
n

nF = +  

For computational purposes the following recursion formula is useful: 
Theorem 3.1. For 1n ≥ , 

2
1 12 2n n nF F F− −= − +  

Proof. Since 
22 1

n

nF = +  
and for 1n ≥ , 

12
1 2 1

n

nF
−

− = +  
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1 1 1 12 2 2 2
12 2 2 2

n n n n

nF
− − − −

− +⋅=  
Thus, 

1 12 2 2
12 2 2 1

n n n

n nF F
− −

− − = = −  
Thus, 

( )1 1 11 1 1n n n nF F F F− − −− = − − +  
and the formula follows. 

Inspection of the first few Fermat numbers F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 655373, F5 = 
4294967297…shows that for 1n ≥ , ( )nFρ  is 5 if n  is odd and 8 if n  is even. In fact, this is indeed true 
for all n : 

Theorem 3.1. Let nF  be the thn  Fermat number. Then, 

( ) 5 if  is odd
8 if  is evenn

n
F

n
ρ


= 


 

Proof. Proof is by induction. Clearly, the claim is true for 2n ≤ . Assume it is true for 1n − . Then, 

( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ( )( )

2
1 1

2
1 1

1 1 1

2 2

2 2

2 2

n n n

n n

n n n

F F F

F F

F F F

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

− −

− −

− − −

= − +

= − +

= − +

 

Suppose 1n −  is odd. Then 
( ) 25 2 5 2 8mod9nFρ = − × + =  

Suppose 1n −  is even. Then 
( ) 28 2 8 2 5mod9nFρ = − × + =  

4. Digital Roots of Star Numbers 
The thj  star number (so called because geometrically these numbers can be arranged to represent hexagrams) 
is denoted as js  and is of the form 

( )6 1 1js j j= − +  
for 1, 2,3,j =   

So, 1 1s = , 2 313, 37,s s= =   and so on. It is easy to show that 

1 12j js s j+ = +  

for 1, 2,3,j =   
Pictorially, 1s  can be represented as 

• 
and 2s  as 

• 
•••• 
••• 
•••• 

• 
depicting the six-cornered star shape. 

Clearly, ( ) ( ) ( )1 2 31, 4, 1.s s sρ ρ ρ= = =  In fact, 
Lemma 4.1. The digital root of a star number is always 1 or 4. In fact, the progression of digital roots of star 

numbers is 1, 4,1,1, 4,1,  
Proof. Since the digital root of any integer is one of 1, 2, ,9 , the digital root of a product of the form 
( )1j j −  is 9, 2,6,3, 2,3,6,2,or 9  (0 represented as 9). Consequently, the digital root of a product of the form 
( )6 1j j −  is one of 9,3,9,9,3,9,9,3,or 9 . Hence the digital roots of star numbers are 1, 4,1,1, 4,1,  
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5. An Application 
Here is a problem simple problem. 

Prove that 
3 3 31 2 50T = + + +  

is divisible by 9. 
Here we will apply Proposition 2.1. We write 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

50 49 48 47 46 45 8 7 6 5 4 3 2 1

50 49 48 47 46 45 8 7 6 5 4 3 9

T = + + + + + + + + + + + + + +

= + + + + + + + + + + + + +





 

But by Proposition 2.1 the sum in each parenthesis is divisible by 9, and hence so is their sum, and their sum 
plus 9. 

Here is another problem that can be solved using digital roots. Problems similar to this one can be found in 
Polya (1957) [9] and (Noller, et al. 1978) [10]. 

Suppose we have a five-digit number. We are given that this number is divisible by 72. Starting with the first 
one, how many digits of this number must be disclosed before we can uniquely determine it? 

Assume we are given the first digit, say 4. Obviously, more information will be needed before a unique solu-
tion is found. For example, 46,800 650 72= × , 48,600 675 72,= ×   all fit the bill. So, assume now the 
second digit is also given, say 8. Again, we cannot find a unique solution based on this information: 
48,321 671 72= × , 48,600 675 72,= ×   are all possible solutions. So, assume one more digit is given, say 9. 
We claim this would be enough to solve the problem. 

If a number is divisible by 72, it must be divisible by both 8 and 9. But a number is divisible by 8 only if one 
of the two conditions holds: The hundreds digit is even and the last two digits are a multiple of 8 or the hundreds 
digit is odd and the last two digits are a multiple of 4 but not 8. Since in our example the hundreds digit is odd, 
the last two digits of the number we are looking for must be a multiple of 4 but not 8, that is, the last two digits 
must be one of 04 12 20 28 36 44 52 60 68 76 84 92  

On the other hand, to be divisible by 9, the digital root of the number must be 9. 
Since 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
48,904 7, 48,912 6, 48,920 5, 48,928 4, 48,936 3, 48,944 2,

48,952 1, 48,960 9, 48,968 8, 48,976 7, 48,984 6, 48,992 5,

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

= = = = = =

= = = = = =
 

we know that the number must be 48,960 680 72= × . 
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