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Abstract 
This paper is concerned with the classic topic of intertemporal resource economics: the optimal 
harvesting of renewable natural resources over time by one and several resource extractors with 
conflicting interests. The traditional management model, dating back to Plourde [1], is overlooked 
both in the simple case for which the resource stock is treated as a state variable and in the im-
proved case for which the harvesting equipment is treated as a stock variable. As a result in the 
extended case, the equilibrium richer than the saddle point, with bifurcations and limit cycles, is 
possible. While the results of the enriched management case are consistent with the concept of the 
pulse fishing, as this concept is introduced by Clark [2]-[4], in the conflicting case the conditions, 
under which the richer limit cycle equilibrium occurs, are not enough investigated. Therefore, we 
discuss conflicts as a game with two types of players involved: the traditional fishermen armed 
with the basic equipment and the heavy equipment users. Both players have a common depletion 
function, considered as harvesting, which is dependent together on personal effort and on inten-
sity of equipment’s usage. 
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1. Introduction 
In environmental economics’ vast literature, one given important meaning is connected with the exploitation of 
natural resources. According to this literature strand, a regeneration function is involved, which is necessary to 
model the interactions between the nature and the human activities. In an important paper, Strobele [5] considers 
the whole environment as renewable natural resource and the damage done to nature is described by a down-
ward shift in the regeneration function due to the industrial waste emission. In the same, but more restrictive, 
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way, Hannesson [6] compares the optimality of the monopolistic and social planning extractions, finding that the 
monopolistic standing optimal stock of the resource (say the nature) may be either larger or smaller than that 
under the social planning. 

Strobele and Wacker [7] extend the one species exploitation to multiple species in a predator prey model. 
They derive a modified golden rule of harvesting, applying optimal control theory. Their conclusions about the 
modified golden rule in the steady state are related with the additional productivity effects. Farmer [8], reconsi-
dering Mourmouras’ type overlapping generations’ model with renewable natural resources, shows that there 
exists a non-trivial stationary state which exhibits, by definition, intergenerational natural capital equality. 

Natural resources harvesting differs from production. Economic literature of renewable resources, based on 
the foundations of Gordon [9], Scott [10] and Smith [11], suggests particular properties of the open-access natu-
ral resources which require tools of analysis beyond those supplied by elementary economic theory. Such an ap-
propriate tool is the optimal control theory and the use of differential equations in dynamic systems (either in a 
continuous or in a discrete framework), which are of common use in most models that explain the optimal man-
agement of natural resources extraction. These systems depend on more than one parameter that measures dif-
ferent economic and biological characteristics of the exploited resource. So the structural stability is a key point 
to study in order to explore whether the qualitative dynamical properties of the system persist when its structure 
is perturbed. In this context, the study of the structural stability is the first step to follow the analysis of the sys-
tem. 

On the other hand, it is reasonable to consider the stock of any renewable resource as a capital stock and treat 
the exploitation of that resource in much the same way as one would treat accumulation of a capital stock. This 
has been done to some extent by Clark and Munro [3], and Clark [4], whose papers contain a discussion of this 
point of view. However, the analysis is much simpler than it appears in the literature especially since the interac-
tion between markets and the natural biology dynamics has not been made clear. Furthermore renewable re-
sources are commonly analyzed in the context of models where the growth of the renewable resource examined 
is affected by two factors: the size of the resource itself and the harvesting rate. This specification does not take 
into account that human activities other than harvesting may have an impact on the growth of the natural re-
source (Levhari and Withagen [12]). 

Some externalities may arise in maximum sustained yield programs of replenishable natural resource exploi-
tation followed by two fundamental problems. The first is that the existence of a social discount factor (or inter-
est rate) may cause the maximum sustained yield program to be non-optimal (Plourde [1]). The second problem 
relates to many externalities which may be present in harvesting resources. The most significant of these exter-
nalities is the stock externality in production. That is, there is a potential misallocation of inputs in the produc-
tion of natural resource product due to the fact that one input, the natural resource, contributes to production but 
may not receive payment, as nobody owns the resource. 

An analysis of the biomass harvesting (like fisheries) must take into account the biological nature of funda-
mental capital, the renewable resource, and must recognize the common property feature of land or sea, so it 
must allow that the fundamental capital is the subject of exploitation. The problem of fishing industry has been 
tackled by economists giving attention to the common property characteristics associated with both the open 
access and the lack of proper property rights to the fishery industry (Gordon [9], Bjrndal [13]). A number of ex-
isting studies on fishery economics have paid attention to the form of properties: full rights or no rights at all 
(Smith [11], Plourde [14]). Both cases lead to unique Nash non-cooperative outcomes with the social planner’s 
outcome in the case of full rights and the open access in the case of no rights. The latter is the result of the tra-
gedy of commons (for discussion see Clark and Munro [3]). 

The fishery model with adjustment costs, arisen from changes in control variable, has been solved by Liski et 
al. [15], thus providing a link between stable limit cycle policies and increasing returns in harvesting. 

The management model, presented here, is close to a Wirl’s [16] paper which analyses the stability of optimal 
renewable resource extraction programs. In the complementary Wirl’s paper the second state variable is the cap-
ital, while the harvesting function is thought as a function of effort, capital and resource stock. Choosing the cost 
parameter as a bifurcation variable he shows that the cyclical exploitation of renewable resources may be optim-
al. The crucial condition that drives this result is the possibility of growth of the biomass, which implies that the 
stock falls below the level that maximizes the sustainable yield. 

The rest of the paper is organized as follows. Section 2 comments about cyclical strategies on renewable re-
sources. Section 3 provides the commercial management model with some improvements. Section 4 introduces 
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the game model with a common harvesting function and Section 5 concludes. 

2. Cyclical Strategies in Harvesting Management 
In the renewable resources management literature two possible optimal strategies are considered under statio-
nary conditions (e.g. Plourde [14], Clark [4]). The first ones are the continuous time strategies, whereby the re-
newable resource is exploited at all times. Following this type of strategy, the resource stock is considered de-
pendent on both economic and social conditions as regards the resource, the discount rate and finally the initial 
resource stock size. The implications of that strategy depend on the stationary size of the resource, for which the 
harvesting rate is decided (Lewis and Schmalensee [17]). As it becomes clear―and as it is well known―the 
above strategy does not take into account (or neglects) the role of capital inflows taking place in the harvesting 
industry. 

As already mentioned, one can consider as capital inflows the available fleets and the human capital em-
ployed, but a more interesting aspect is the ability to modify all the above capital factors involved in the har-
vesting. Another important reason to deviate from the original continuous time strategy is the argument raised 
by some authors (e.g. Clark [4], Dawid and Kopel [18]), which states that harvesting strategies that stabilize the 
stock of the renewable resource to a usual steady state level may be replaced by policies involving the aban-
donment or cyclical utilization of the resource (Liski et al. [15]). 

This second strategy, already discussed in harvesting management literature, involves extinction or abandon-
ment policies, implying that, after a finite time, harvesting is abandoned forever (Lewis and Schmalensee [17]). 
A first valuable insight for this type of optimal strategy is the fact that cyclical fishing policies are observed in 
practice. Moreover, Bjrndal [13] uses data covering years 1952-1972 to show a relatively regular cyclical pattern 
for harvesting. In harvesting management, one possible optimal cyclical harvest policy, well known as chatter-
ing strategies or pulse fishing (Liski et al. [15]), is incorporated with the fleets’ withdrawal and reentry as well 
as by hiring and firing workers, thus implying cost fluctuations. 

Chattering strategies, in fishery management, are also subject to adjustment costs since the harvest rate and 
the costs incurred (startup and reentry costs) are independent of each other. The size of adjustment costs plays a 
crucial role in the optimal harvesting policies. Especially in the case of relatively modest adjustment costs, it has 
been shown that all conceivable policies will exhibit a limit cycle policy over time, which not only exists but it 
is also stable. One important result obtained from the above chattering policy is the fact that the cyclical utiliza-
tion of the resource is related to smooth fluctuations and not to complete shutdowns of the fishery management. 
The economic implication of the cyclical harvesting policy existence is summarized as the profitable advantage 
of increasing returns by temporarily harvesting excessive quantities and stabilizing the stock of fish over time by 
cutting the harvest rate back after each period of excessive harvesting (Liski et al. [15]). 

It is also worth noting that the above given implication is valid only for low adjustment costs; otherwise, for 
high adjustment costs, it is preferable to follow the saddle point stability with a constant harvest rate. The im-
portance of cyclical policies in harvesting, also known as pulse fishing policies, is confirmed by Wirl’s model 
[16], whereby the resulting cyclical strategy is related to the positive externality of the stock. Moreover, in the 
same paper, Wirl obtains saddle point stability for low adjustment costs contrary to the results obtained by Liski 
et al. [15]. 

While the importance of pulse fishing policies is well understood in the management context, the possibility 
of limit cycle policies in the conflicting approach has not been previously addressed, at least to our knowledge. 
Therefore, in order to achieve realism, we suggest a simple game model between two types of players: the 
crowd of the negligible capital investment fishermen, using a single boat for their fishing effort, and the heavily 
equipped players, using a fleet of vessels, hence facing adjustment costs. As it becomes clear, the crowd of the 
first type, thought as one player, has all the prerequisites (i.e. negligible adjustment costs and increasing returns) 
to follow the profitable cyclical patterns as identified in the management case, but it is not certain that their costs 
remain negligible due to the presence of the heavily equipped rivals in the same harvesting arena. Supposing 
that they adhere to the cyclical fishing policy, as the proven profitable solution for them, they take the corres-
ponding substantial risk. 

On the other side, the heavily equipped players, using fleets and workingmen and therefore facing adjustment 
costs, decide to follow the same profitable cyclical pattern, lowering their adjustment costs as much as possible. 
Since the low adjustment cost is the basic prerequisite to follow a cyclical pattern it is reasonable to internalize 
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the above cost inside the intensity of their fleet usage. In the suggested conflict between the two types of players, 
the basic supposition is that the players adhere to the cyclical patterns, as they are considered the only profitable 
policies that stabilize the resource stock. In this way, the suggested model contributes to the existing harvesting 
management literature in the conflicting sense, clarifying the conditions under which the desired cyclical poli-
cies are obtained. 

3. The Management of Commercial Harvesting 
In the traditional case model, also studied for instance by Clark and which goes back to the very simple Gordon 
Schaeffer model, ( )x t  is the resource stock at time t , ( )tφ  the resource’s harvesting function and ( )( )g x t  
the regeneration function of the natural resource. With these functions in the model one obtain the system dy-
namics, as  

( ) ( )( ) ( )= ,x t g x t tφ−                                (3.1) 

The goal of the decision maker is to maximize the discounted utility derived over the infinite planning interval 
[ )0,∞ . That is, the objective functional is given as:  

( )( )
0

d ,te U t tρ φ
∞

−∫                                  (3.2) 

where [ ): 0,U R∞ →  is the utility function. Concerning equilibrium, in this reference one state model, it has 
been shown that the optimal management admits a unique equilibrium path which converges to the saddle point 
(see for example Dockner et al. [19]). 

On the other hand, commercial extraction of natural resources in an intensive rate requires sometimes im-
provements on the harvesting equipment in order to be efficient. In this improved case one can treat the harvest-
ing effort not as an instantaneous control but rather as a stock variable. Integrating over past adjustments the 
new control variable ( )E t  enters into the model, describing the evolution of the harvesting effort. 

Considering harvesting as a stock variable, some modifications are necessary to made in the objective func-
tional, that is the introduction of the adjustment costs ( )( )C E t , for the new stock. In this subsection, as the 
analysis it is well known e.g. Liski et al. [15], we briefly discuss a concave natural resources regeneration func-
tion ( )g x . The concavity of the function ( )g x  states that the law of diminishing returns applies here too. 
Moreover the utility enjoyed by the representative agent is a function depending on the harvest ( )tφ  and on 
the existing resource stock, as well. With these modifications the optimal management problem becomes  

( )
( ) ( )( ) ( )( )

0

max , d ,t

E t
e U t x t C E t tρ φ

∞
−  − ∫                          (3.3) 

subject to  

( ) ( )( ) ( ) ( ) 0= , 0 = ,x t g x t t x xφ−                               (3.4) 

( ) ( ) ( ) 0= , 0 = .t E tφ φ φ                                  (3.5) 

Model (3.4)-(3.5) is an optimal control with two state and one control variable and with a quadratic cost func-
tion. In the solution process the possibility of limit cycles appearance in such models with two state variables 
was established by Dockner and Feichtinger [20]. 

Using the quadratic cost function ( ) 21=
2

C E Eγ  with 0>γ , finally the conditions that determine the op- 

timal plan of a central decision maker, after the appropriate substitutions, are (time is neglected to avoid nota-
tional overburdening):  

( ) ( ) 0= , 0 = ,x g x x xφ−                               (3.6) 

( ) ( )1 0= , 0 = .tφ λ γ φ φ                                (3.7) 

( )1 1 ,xg Uλ ρ λ′= − −                                 (3.8) 
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2 2 1.Uφλ ρλ λ= − +                                   (3.9) 
The study of the dynamic properties of system (3.6)-(3.9) includes stability of the system which is restricted 

to saddle point stability, i.e. to a two dimensional manifold in the four dimensional space of state and costates. 
According to Dockner’s explicit formula (Dockner [21]) the four eigenvalues ir , = 1, , 4i   of the linearized 
dynamics of the canonical equations are given by:  

2
2

1,2,3,4
1= 4det

2 4 2 2
r Jρ ρ Ψ

± − ± Ψ −                         (3.10) 

and the magnitude Ψ  is the sum of determinants of submatrices of the Jacobian J  expressed as:  

1 22

1 1 1 12 2

1 22

= 2 .

x x x x
x

x

φ φ
λ φ λφ λ

λ λ λ λλ λ
λ φ λφ λ

∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂∂ ∂

Ψ + +
∂ ∂ ∂ ∂∂ ∂
∂ ∂ ∂ ∂∂ ∂

 

   

   
 

                      (3.11) 

From Dockner’s formula (3.10), it is well known that sufficient conditions for the saddle point are first the 
positive determinant of the Jacobian matrix and secondly the negativity of the coefficient Ψ  given by (3.11). 
A positive determinant of the Jacobian is crucial for stability, because a negative determinant restricts the stabil-
ity to a one dimensional manifold of initial conditions (with one negative eigenvalue, the other three are positive 
or have positive real parts) and the generic solution is unstable. Figure 1, also published by Dockner and Feich-
tinger [20], classifies the eigenvalues depending on the determinant of ( )detJ J  and Ψ . 

Considering the discount rate ρ  as a parameter, the values of ρ  for which the conditions are met, are 
possible Hopf bifurcations1 (Kuznetsov, [22]) and a limit cycle will emerge if the complex eigenvalues 3,4r  
cross the imaginary axis with non-zero velocity at  

( )
0

0 3,4
=

d= , . . Re 0.
d

i e
ρ ρ

ρ ρ ρ
ρ

≠  

Hence, in the case of growth > 0g ′ , the suppositions of the logistic growth ( )= 2g ′′ − , = = 0xU Uϕϕ ϕ  and 
> > 0g ρ′  are sufficient to ensure saddle point stability, ( det > 0, < 0J Ψ ), but the local monotonicity is not 

implied. 

3.1. The Incentive for Fleet Modifications 
As a continuation of the known previous discussion about commercial harvesting, the basic two dimensional 
management problem consisting of Equations (3.3)-(3.5), can also be modified more in the case the available 
equipment is subject to expansions or reductions. As harvesting equipment, can be considered the available fleet, 
electronic machines, boats, nets, workmen hiring and so forth. Equipment’s modifications are also highly de-
pendent on the existing renewable resource stock and it can be seen as a stock as well, which affects directly the 
harvesting function φ . 

Therefore one can treat the harvesting function ( )tφ  as a function of the accumulated equipment, ( )Eφ . 
The accumulated equipment E , does not, however, remain at a fixed level, but is also subject to depreciation, 
which entails at a simple depreciation rate and moreover it is reasonable to argue that the renewable resource 
extractor enjoys utility from the decision to modify the equipment. The modifications that are possible to make 
in the original model are first, in the objective functional which enters in an additively separable utility form and, 
second in the two equations of motion. Setting harvesting equipment as a state variable, the decision to expand 
(or to reduce) would be now the new control which enters into the system. 

After all the simplified assumptions, the original optimal control problem (3.3)-(3.5) now becomes  

( ) ( )1 2
0

max d ,t

u
e U x U u tρ

∞
− +  ∫                             (3.12) 

subject to  

 

 

1Hopf bifurcations occur when there are two pure imaginary eigenvalues of the Jacobian matrix. Hopf bifurcations, so called bifurcations of 
codimension one, are related to the existence of a simple real eigenvalue of Jacobian matrix equal to zero. The dynamic change produced by 
values of the parameter higher than the bifurcation value has the result of closed trajectories (limit cycles). The equilibrium point for which 
there exist any of these two types of eigenvalues is known as non hyperbolic equilibrium point. 
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( ) ( )( ) ( ) ( ) 0= , 0 = ,x t g x t E x xφ−                            (3.13) 

( ) ( ) 0= , 0 = .E t u E E Eδ−                               (3.14) 

( )1U x , ( )2U u  represent utility in separable form, consisting of the utility derived from the existing renew-
able resource stock and from agent’s decision u  to modify his equipment. The harvesting function ( )Eφ  is 
denoted as a function of the available equipment, while δ  is the equipment’s depreciation rate. The control u  
influences directly equipment’s changes, but also has an indirect effect on the renewable resource stock via the 
harvesting ( )Eφ . 

Moreover the representative agent faces an intertemporal trade off between the benefits associated with the 
stock ( )1U x  and the benefits resulting from fleet’s expansion or reduction ( )2U u . It is worth noting that the 
second part of utility ( )2U u  is the net value, which captures all the costs associated with the expansion or re-
duction. Finally, the decision to modify equipment, u , is maybe positive in the case of expansion or negative in 
the case of reduction, which also means that the depreciation parameter δ  can be set to zero at the steady state 
equilibrium implying 0=∞u , i.e. no equipment’s modification made in equilibrium. 

In the solution process, the following two equations determine the evolution of the costates 1λ , 2λ ,  

( )( ) ( )1 1 1 ,g x U xλ ρ λ′ ′= − −                            (3.15) 

( ) ( )2 2 1 .Eλ ρ δ λ λ φ′= + +                             (3.16) 

Equations (3.15)-(3.16) together with the two equations of motion (3.13)-(3.14) constitutes the following ca-
nonical system of necessary conditions  

( ) ( )( ) ( ) ,x t g x t Eφ= −                             (3.17) 

( ) ( )2 ,E t h Eλ δ= −                               (3.18) 

( )( ) ( )1 1 1 ,g x U xλ ρ λ′ ′= − −                           (3.19) 

( ) ( )2 2 1= ,Eλ ρ δ λ λ φ′+ +                            (3.20) 

 

 
Figure 1. Classification of the eigenvalues depending on detJ and Ψ.             
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and the corresponding Jacobian becomes  

( ) ( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

2

1
1

1

0 0
10 0

= .0 0

0

g x E

u
U

g x U xJ U x g x
g x

E U x
E

g x

φ

δ

ρ
ρ

φ
φ ρ δ

ρ

′ ′− 
 
 − −
 ′′
 

′′ ′ ′′ ′− − − ′− 
 ′′ ′

′ +  ′− 

 

Again we may apply Formula (3.10) to compute the four eigenvalues of the above Jacobian, which are crucial 
to characterize the local dynamics of the linear ODE that approximates the canonical Equations (3.17)-(3.20). 
But now Formula’s (3.10) coefficient Ψ  reduces to  

( ) ( )( ) ( ) ( ) ( )
( ) ( )( )

1

2

= ,
E U x

g x g x
U u g x

φ
ρ δ ρ δ

ρ
′′ ′

′ ′Ψ − − + +
′′ ′−

                 (3.21) 

and the determinant of the Jacobian evaluated at the equilibrium is given by  

( )( ) ( )
2 2

1 1 1

2 2 2

det = .
g U U g UJ g g

U g U U
φ φ φ

δ ρ ρ δ
ρ
′′ ′ ′ ′ ′′ ′ ′ ′

′ ′− − + + + +
′′ ′ ′′ ′′−

               (3.22) 

The stability properties of this optimally controlled system depends on the sign of the growth’s function rate 
of change g ′  (evaluated at the steady state) and on the other model characteristics in the following way.  

Case 1: 0≤′g  and the long-run equilibrium is a saddle point. The result follows directly from (3.22), since 
0≤′g  implies 0>det J  and 0<Ψ . Therefore, two eigenvalues must have negative real parts.  

Case 2: ( )0 < <g x ρ′ , the long-run equilibrium is characterized by all different cases, i.e. saddle point sta-
bility, locally unstable spirals and instability such that convergence to the equilibrium is restricted to a one di-
mensional set of initial conditions. According to Poincare-Andronov-Hopf (PAH) theorem, the transition from a 
domain of stable to locally unstable may give rise to limit cycles.  

Under the supposition of growth, 0>g ′  (Case 2), and a diffusion process with one and only one point x~  
such that ( ) = 0g x′  , it is well known that the time path of the renewable resource level consists of a convex 
segment (if <x x ) and a concave segment (if xx ~> ). In other words, the domain of the low level )~<( xx  
exhibits increasing returns and the domain of high level is characterized by diminishing returns. It is plausible 
that diminishing returns lead to stable equilibrium, whereas increasing returns favour complexities, i.e. limit 
cycles. The reason is that a low level of resource may increase to a certain threshold so it may be rational for the 
agent to expand his equipment to gain future benefits. 

3.2. Specifications 
We assume benefits stemming from the existing renewable resource stock to be proportional to its current level. 
Moreover the growth of benefits associated with the current accumulated level of equipment’s expansion is, 
however, not unrestricted but rather reaches a maximum level. After all we specify the functional forms as follows:  

( )1 1 1= , > 0,U x a x a                                 (3.23) 

( ) 2
2 1 2 1 2

1= , > 0, 0,
2

U u u uβ β β β− ≥                           (3.24) 

( ) ( )= 1 ,g x x x−                                    (3.25) 

( ) = , > 0.E Eφ γ γ                                   (3.26) 

The last two equations represent the fact that a maximum level of the resource exists towards which x  
grows in the absence of harvesting, while the decline of the resource’s level is proportional to the accumulated 
level of equipment E . But, in the long run, the decision for modifications has a relative small meaning due to 
the high depreciation that has been made on to the past accumulated equipment. That is, at the steady state, the 
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decision, *u , tends to zero and this result is attained only setting the depreciation rate very close to zero, 0≈δ . 
With the last supposition and under specifications (3.23)-(3.26) the determinant of the Jacobian (3.22) and coef-
ficient Ψ  (3.21) reduces to  

( ) ( ) ( )
( ) ( )( )

2
1 1

*
22

2
det = = ,

g x U x x
J

U u g x
φ ρβ γ

βρ

′′ ′ ′

′′ ′−
                         (3.27) 

( ) ( )( ) ( )2
1 1 1

2 2
1

= = .
a a

g x g x
γ ρ β γ

ρ
β ρ

−
′ ′Ψ −                        (3.28) 

Having the set of necessary requisites for a pair of purely imaginary eigenvalues existence, i.e.  

( )
2 2

det = 0
2 2

J ρΨ Ψ − − 
 

, 0>Ψ  and 0>)(det J , we continue choosing 1a  as the bifurcation point for the  

certain parameter values 1== 21 ββ , 1=ρ , 0.071=γ . Considering the dynamical system, it can be shown 
numerically (Grass et al. [23]), for the above values of parameters, the conditions for complex eigenvalues with 
positive real parts are met for ( )1 6.69, 7.595a ∈ , and moreover stable limit cycles exist, at least in the 
right-hand vicinity of 6.69=1a . Figure 2 shows the phase portrait in the modification stock plane that corres-
ponds to the above values of 1a . In Figure 2 the four phases I-IV characterize the cycle as optimal strategy in 
the management problem. That is:  

0>x  and 0>u .  
0>x  and 0<u .  
0<x  and 0<u .  
0<x  and 0>u .  

Starting with a minimum level of renewable resource stock, Phase I is characterized by reduction in equip-
ment 0<u  but at a diminishing rate 0>u . This process implies that, in the same Phase I, decision u  be-
comes positive at some time instant and continues to grow for sufficient level of the resource stock. In Phase II 
equipment expands yet when resource stock is still rising to its peak. In Phase III since the renewable resource 
stock peaks its maximum value the agent exploits the large stock, but equipment’s high expansion now affects 
the resource stock which declines, so a decision to reduce equipment is taken. Finally, in Phase IV, decision u  
becomes negative, meaning equipment’s reduction, and the resource stock stops the downward fall. 
 

 
Figure 2. Phase portrait of the example of a cyclical strategy in a 
decision-stock plane.                                             
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4. Conflicts with a Common Harvesting Function 
Let us, as before, denote by ( )x t  the instantaneous renewable resource which is in common access at time t . 
Without any harvesting taking place the stock of resources grows according to the function ( )g x , obviously 
depending on the resource itself, satisfying the conditions ( )0 = 0g , ( ) > 0g x  for all ( )0,x K∈ , ( ) < 0g x′  
for all ( ),x K∈ ∞ , ( ) 0g x′′ ≤ . In the game that follows we assume that two types of players are involved. First 
is the renewable resource extractors (players) acting with the traditional mode in the sense of Clark [4], with the 
latter implying that they are armed with the basic equipment, usually harvests only personally, but there is a 
crowd of this type of players. Second are the commercial heavy equipment users with a lot of vessels usually 
acting as factories. Carrying out harvesting is costly for the second type of players, e.g. damages in the available 
equipment, payroll for workingmen, also reducing its financial capital. 

Considering now the depletion of the renewable resource stock (the harvesting function), one can think that 
however, does not only depend on the intensive usage ( )tν  of the heavy equipped player, but is also influ-
enced by the other players’ overall effort ( )u t  which act traditionally. We set as instrument variables the in-
tensity of equipment and the personal harvesting effort respectively i.e. for the heavy equipped player (player 
type 2), the intensity of the harvesting equipment’s usage ( )tν , and the for traditional fishermen (players of 
kind 1), its personal effort )(tui , both assumed non-negatives ( ) 0tν ≥ , ( ) 0iu t ≥ . 

We denote the overall harvesting function by ( ),uφ ν , also depending on both overall effort ( ) ( )= i
i

u t u t∑  
and on intensity. Combining the growth ( )g x  with the harvesting function ( ),uφ ν  the state dynamics can be 
written as  

( ) ( ) ( ) 0= , , 0 = > 0.x g x u x xφ ν−                             (4.1) 

Along a trajectory the non-negativity constraint is imposed, that is  

( ) 0, for all 0.x t t≥ ≥                                 (4.2) 

A higher intensity of harvesting equipment usage (for player 2) and also the effort of the crowd of traditional-
ly acting fishermen (player 1) certainly leads to stronger depletion of the renewable resource, so it is enough 
reasonable to assume that the partial derivatives of the harvesting function to be positive with respect to the pa-
rameters, i.e. 0>uφ , 0>νφ . Moreover the law of diminishing returns is applied only for the type 1 player’s 
effort undertaken, that is 0<uφ  and for simplicity we assume 0=ννφ . Additionally, we assume that the In-
ada conditions, which guarantee that the optimal strategies are nonnegative, holds true, i.e.  

( ) ( )
( ) ( )

0

0

lim , , lim , 0,

lim , 0, lim , .

u uu u
u u

u uν νν ν

φ ν φ ν

φ ν φ ν
→ →∞

→ →∞

= ∞ =

= = ∞
                          (4.3) 

The utility functions the two players want to maximize are defined as follows: player 1, the representative tra-
ditional fisherman, derives instantaneous utility, on one hand from its own harvesting product, but its personal 
effort ( )u t  gives rise to increasing and convex costs ( )a u , and on the other hand from the high stock of re-
newable resource also denoted by the increasing function ( )xϕ . After all the present value of player’s 1 utility 
is described by the following functional  

( ) ( ) ( )1
1

0

= , d .tJ e u x a u tρ φ ν ϕ
∞

− + −  ∫                          (4.4) 

Player 2, the heavy equipped, enjoys utility ( )xυ  from the renewable resource stock ( )x t , but also from 
their equipment’s intensity of use ν , which is described by the function ( )β ν . For the utilities ( )xυ  and 
( )β ν  we assume that they are monotonically increasing functions with decreasing marginal returns, that is 
( ) > 0xυ′ , ( ) > 0β ν′  and ( ) < 0xυ′′ , ( ) < 0β ν′′ . We also assume that the individually acting players’ over-

all effort u  has no impact on player’s 2 utility. So, player’s 2 utility function is defined, in additively separable 
form, as:  

( ) ( )2
2

0

= d .
t

J e x t
ρ

υ β ν
∞

−
+  ∫                              (4.5) 
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4.1. Periodic Solutions 
Let us now explore whether periodic solutions are possible, starting with steady state and stability analysis of 
necessary conditions. As it is clear the problem can be treated as a differential game with two controls and one 
state. Corresponding Hamiltonians, optimality conditions and adjoint variables for the problem under considera-
tion are respectively:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

2 2

= , , ,

= , ,

H u x a u g x u

H x g x u

φ ν ϕ λ φ ν

υ β ν λ φ ν

+ − + −

+ + −
 

( ) ( ) ( )1
1= 1 , = 0,u

H u a u
u

λ ι ν
∂ ′− −
∂

                             (4.6) 

( ) ( )2
2= , = 0,

H uνβ ν λ φ ν
ν

∂ ′ −
∂

                             (4.7) 

( ) ( )1
1 1 1 1 1= = ,

H g x x
x

λ ρ λ λ ρ ϕ
∂ ′ ′− − −  ∂

                         (4.8) 

( ) ( )2
2 2 2 2 2= = ,

H g x x
x

λ ρ λ λ ρ υ
∂ ′ ′− − −  ∂

                         (4.9) 

where subscripts denote player 1 and player 2 respectively for Hamiltonias iH  and adjoints iλ , 1,2=i . 
Steady state solutions for the state, adjoints and controls are solutions of the system of equations:  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2= , , = 0, = 0,g x u g x x g x xφ ν λ ρ ϕ λ ρ υ′ ′ ′ ′− − − −        

( ) ( ) ( ) ( ) ( )1 , = 0, , = 0.u u a u uνλ φ ν β ν µφ ν′ ′− − −  

The Jacobian matrix of the system of optimality conditions is the following  

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 2
1 2

1 1 1
1 1

1 2
2 2

2 2 2

1 2

, ,
'

= = ' ' ' 0 ,
' ' 0

x x x
u u

x g x

J g x x g x
x

g x x g x

x

φ ν φ ν
λ λ

λ λ
λ λ λ

λ ϕ ρ
λ λ

λ υ ρ
λ λ λ

λ λ

 ∂ ∂ ∂
∂ ∂  ∂ ∂ ∂ − −   ∂ ∂  ∂ ∂ ∂    ′ ′− − −

 ∂ ∂ ∂  ′ ′ ′− − −  
∂ ∂ ∂      ∂ ∂ ∂ 

  

  

  

 

which also gives: ( ) ( )1 2tr = 'J g xρ ρ+ −  and  

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

1 2 1 2
1

2 1
2

,
det = ' ' ' ' ' '

,
' ' ' .

u
J g x g x g x g x x g x

u
g x x g x

φ ν
ρ ρ λ ϕ ρ

λ
φ ν

λ υ ρ
λ

∂
′ ′− − − + −

∂

∂
′ ′− + −

∂

 

According to Wirl [24] (proposition 4) the existence of a pair of purely imaginary eigenvalues requires that 
the following conditions are satisfied:  

( ) ( ) ( ) ( )tr > 0, det > 0, > 0, det = tr ,J J w J w J  

where coefficient w  is the result of the sum of the following determinants  

( ) ( )

( ) ( ) ( )

( )
( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
1 2

2
1 1 2 2

2
1 2 1 2

1 2

, ,
' '' 0

= +
0 '

' ' ' ' ' '

, ,
= ' ' ' ' ' .

u u
g x g xg x

w
g x

g x x g x g x x g x

u u
g x g x x g x x

φ ν φ ν
ρ

λ λ
ρ

λ ϕ ρ λ υ ρ

φ ν φ ν
ρ ρ λ ϕ λ υ

λ λ

∂ ∂
− −−

+∂ ∂
−

′ ′ ′ ′− − − − − −

∂ ∂
′ ′ ′ ′− − + − +          ∂ ∂
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From now on the crucial condition for cyclical strategies (precisely for Hopf bifurcations to occur) is that 
0>w , ( ) ( )= det trw J J , which after simple algebraic calculations reduces to  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2
1 2

, ,
2 ' == ' ' ' ' .

u u
g x g x x g x x

φ ν φ ν
ρ ρ ρ ρ λ ϕ ρ λ υ ρ

λ λ
∂ ∂

′ ′ ′ ′+ − + + +          ∂ ∂
      (4.10) 

4.2. Specifications for the Game 
We specify the functions of the game as follows: a diffusion process for the renewable resource growth function, 
that is ( ) ( )= 1g x rx x− , a Cobb Douglas type function for the harvesting ( ) ννφ γuu =,  and the utility func-
tion stemming from equipment’s intensive use of player 2 in the form ( ) ( ) ( )ξννβ ξ −− − 1/= 1A . Note that the 
utility function ( )νβ  with 0>A  and ( )0,1∈ξ  exhibits constant relative risk aversion in the sense of Ar-
row-Pratt measure of risk aversion. All the other functions are left in a linear form, i.e. both utilities stemming 
from the existing renewable resource stock are for player 1 ( ) xx ϕϕ =  and for player 2 ( ) xx υυ = , while the 
player’s 1 effort cost in the linear fashion ( ) auua = , as well. Note that all the involved coefficients, i.e. the 
intrinsic growth rate r  and the slopes υϕ   ,  and a  are positive real numbers, but ( )0,1∈γ  and 0>A  and 

( )0,1ξ ∈ , as already mentioned. With the above specifications the following result holds true.  
Proposition 4.1. A necessary condition for cyclical strategies in the game between traditionally acting and 

heavy equipped players, as described above, is the heavy equipped players are more impatient than the simple 
traditionally acting.  

Proof. See in the Appendix. □ 
The intuition behind proposition 4.1 is straightforward. We start with a rather low and increasing intensity of 

equipment usage on behalf of the heavy equipped players. The traditionally acting players operate at a low effort, 
as well, because the increasing effort incurs costs, but they are worrying about the renewable resource level, 
consequently for their jobs, by reason of the player 2 presence. Now suppose that the heavy equipped react as a 
farsighted, he would increase the equipment’s intensity only moderately and the dynamical system would ap-
proach a stable steady state. But, due to their impatience they behave myopically and react by strongly increas-
ing the intensity of their machines. At this time the crowd of the traditionally acting players, has only two 
choices: to loose their jobs or to increase their overall effort. Suppose that they stay in the harvesting increasing 
their overall effort, but the latter means that the combination of high intensity on behalf of the heavy equipped 
and the higher effort on behalf of the crowd leads to a strong reduction of the renewable resource stock. 

But the low level of the resource stock is unprofitable for the heavy equipped to work at a high intensity, 
therefore they have to decrease intensity and the cycle is closed. A new cycle starts again, possibly in another 
place because of the stock’s reduction, but with the same results also described. In our opinion the crucial point 
of this intuitive explanation is that player’s 1 strategic variable u  lags behind player’s 2 strategic variable ν  
and both are lagged behind the state variable, the renewable resource’s stock x . 

5. Conclusions 
In environmental economics the exploitation of renewable resources is a well overlooked field since the original 
model, dated back to Schafer [25]. As it is well known that the analysis concentrates on the two basic factors 
that affect the fishing industry, namely the size of the resource itself and the rate of human harvesting. The 
above specification does not take into account any other human activities which affect biomass, for example 
coastlines pollution. Concerning longrun equilibrium, as it is well known, the simplest case of the saddle-point 
type stability requires only one characteristic of the renewable resource’s growth function, which is the negative 
growth. But even the supposition of negative growth is sufficient for the saddle-point stability, the local mono-
tonicity is not implied i.e. transient cycles may occur. 

On the other hand, harvesting management is not restricted in the traditional way of the renewable resource 
extraction in the sense of one-man show. Commercial harvesting often requires investment and disinvestment in 
equipment, and the undertaken decision to expand or to reduce equipment obeys onto the state variable which is 
the existing renewable resource stock. Therefore, concerning harvesting, as a stock variable, equilibrium dy-
namics become more complex, and much richer, also including saddle point stability. The dynamics of such 
equilibrium reveal cyclical policies as optimal strategies. 

The emphasis given in the paper is not restricted on the stability properties of the optimal management pro-
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gram, but we also focus on the stability properties of the induced nonzero sum game between two types of play-
ers which share a common depletion function thought as a harvesting. Precisely, the game set up between a 
crowd of weakly armed and a strongly armed player with a common depletion function yields an economic re-
sult, for which the discount rate plays the crucial role for periodic solutions. That is, the condition for periodic 
solutions is that the strong equipped player is more impatient than the weak. 

Acknowledgements 
An earlier version of this paper was presented in Thales Research Workshop entitled “Optimal Management of 
Dynamic Systems of the Economy and the Environment” that took place in September 28, 2012 in Kostis Pala-
mas building of the National and Kapodestrian University of Athens. Thanks are due to Professor A. Xepapa-
deas and the participants in the workshop for helpful comments and discussions. Any remaining errors are solely 
the authors responsibility. 

References 
[1] Plourde, C.G. (1970) A Simple Model of Replenishable Natural Resource Exploitation. American Economic Review, 

62, 518-521. 
[2] Clark, C. (1973) Profit Maximization and the Extinction of Animal Species. Journal of Political Economy, 81, 950- 

961. http://dx.doi.org/10.1086/260090 
[3] Clark, C.W. and Munro, G.R. (1975) Economics of Fishing and Modern Capital Theory: A Simplified Approach. 

Journal of Environmental Economics and Management, 2, 92-106. http://dx.doi.org/10.1016/0095-0696(75)90002-9 
[4] Clark, C. (1990) Mathematical Bioeconomics. 2nd Edition, Wiley Interscience, Hoboken. 
[5] Strobele, W. (1988) The Optimal Intertemporal Decision in Industrial Production and Harvesting a Renewable Natural 

Resource. Journal of Economics, 48, 375-388. http://dx.doi.org/10.1007/BF01227543 
[6] Hannesson, R. (1983) A Note on Socially Optimum versus Monopolistic Exploitation of a Renewable Resource. Jour-

nal of Economics, 43, 63-70. http://dx.doi.org/10.1007/BF01283884 
[7] Strobele, W. and Wacker, H. (1995) The Economics of Harvesting Predator-Prey Systems. Journal of Economic, 61, 

65-81. http://dx.doi.org/10.1007/BF01231484 
[8] Farmer, K. (2000) Intergenerational Natural Capital Equality in an Overlapping Generations Model with Logistic Re-

generation. Journal of Economics, 72, 129-152. http://dx.doi.org/10.1007/BF01676980 
[9] Gordon, H.S. (1954) The Economic Theory of a Common Property Resource. Journal of Political Economics, 62, 124- 

142. http://dx.doi.org/10.1086/257497 
[10] Scott, A. (1955) Natural Resources: The Economics of Conservation. University of Toronto Press, Toronto. 
[11] Smith, V.L. (1969) On Models of Commercial Fishing. Journal Political Economy, 77, 181-198. 

http://dx.doi.org/10.1086/259507 
[12] Levhari, D. and Withagen, C. (1992) Optimal Management of the Growth Potential of Renewable Resources. Journal 

of Economics, 3, 297-309. http://dx.doi.org/10.1007/BF01237184 
[13] Bjrndal, T. (1987) Production Economics and Optimal Stock Size in a North Atlantic Fishery. Scandinavian Journal of 

Economics, 89, 145-164. http://dx.doi.org/10.2307/3440061 
[14] Plourde, C.G. (1971) Exploitation of Common Property Replenishable Resources. Western Economic Journal, 9, 256- 

266. 
[15] Liski, M., Kort, P. and Novak, A. (2001) Increasing Returns and Cycles in Fishing. Resource and Energy Economics, 

23, 241-258. http://dx.doi.org/10.1016/S0928-7655(01)00038-0 
[16] Wirl, F. (1995) The Cyclical Exploitation of Renewable Resource Stock May Be Optimal. Journal of Environmental 

Economics and Management, 29, 252-261. http://dx.doi.org/10.1006/jeem.1995.1045 
[17] Lewis, T. and Schmalensee, R. (1979) Non-Convexity and Optimal Harvesting Strategies for Renewable Resources. 

Canadian Journal of Economics, 12, 677-691. http://dx.doi.org/10.2307/134873 
[18] Dawid, H. and Kopel, M. (1997) On the Economically Optimal Exploitation of a Renewable Resource: The Case of a 

Convex Environment and a Convex Return Function. Journal of Economic Theory, 76, 272-297. 
http://dx.doi.org/10.1006/jeth.1997.2305 

[19] Dockner, E., Jorgensen, S., Long, N.V. and Sorger, G. (2000) Differential Games in Economics and Management 
Science. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511805127 

http://dx.doi.org/10.1086/260090
http://dx.doi.org/10.1016/0095-0696(75)90002-9
http://dx.doi.org/10.1007/BF01227543
http://dx.doi.org/10.1007/BF01283884
http://dx.doi.org/10.1007/BF01231484
http://dx.doi.org/10.1007/BF01676980
http://dx.doi.org/10.1086/257497
http://dx.doi.org/10.1086/259507
http://dx.doi.org/10.1007/BF01237184
http://dx.doi.org/10.2307/3440061
http://dx.doi.org/10.1016/S0928-7655(01)00038-0
http://dx.doi.org/10.1006/jeem.1995.1045
http://dx.doi.org/10.2307/134873
http://dx.doi.org/10.1006/jeth.1997.2305
http://dx.doi.org/10.1017/CBO9780511805127


G. E. Halkos, G. J. Papageorgiou 
 

 
803 

[20] Dockner, E. and Feichtinger F. (1991) On the Optimality of Limit Cycles in Dynamic Economic Systems. Journal of 
Economics, 53, 31-50. http://dx.doi.org/10.1007/BF01227014 

[21] Dockner, E. (1985) Local Stability Analysis in Optimal Control Problems with Two State Variables. In: Feichtinger, G., 
Ed., Optimal Control Theory and Economic Analysis, 2, North Holland, Amsterdam, 89-113. 

[22] Kuznetsov, Y. (1997) Elements of Applied Bifurcation Theory. Springer, Berlin. 
[23] Grass, D., Caulkins, J., Feichtinger, G., Trangler, G. and Behrens, D. (2008) Optimal Control of Nonlinear Processes. 

Springer, Berlin. http://dx.doi.org/10.1007/978-3-540-77647-5 
[24] Wirl, F. (1997) Stability and Limit Cycles in One-Dimensional Dynamic Optimizations of Competitive Agents with a 

Market Externality. Journal of Evolutionary Economics, 7, 73-89. http://dx.doi.org/10.1007/s001910050035 
[25] Schafer, M. (1994) Exploitation of Natural Resources and Pollution. Some Differential Game Models. Annals of Oper-

ations Research, 54, 237-262. http://dx.doi.org/10.1007/BF02031736 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1007/BF01227014
http://dx.doi.org/10.1007/978-3-540-77647-5
http://dx.doi.org/10.1007/s001910050035
http://dx.doi.org/10.1007/BF02031736


G. E. Halkos, G. J. Papageorgiou 
 

 
804 

Appendix 
Proof of Proposition 4.1: With the specifications, given in subsection 4.2, one can compute  

( ) ( ) ( ) ( ) ( )1' = 1 2 , ' = 2 , , = , , =ug x r x g x r u u u uγ γ
νφ ν γ φ ν−′− −  

( ) ( ) ( ) ( )2' = , ' = , ' = , ' = ,a u a x xξβ ν ν ϕ ϕ υ υ−  

( ) ( ) ( ) ( ) 11
1 1= 0 1 , = ' 1 = ,u

H u a u u a
u

γλ φ ν λ γ ν−
∂

⇔ − ⇔ −
∂

                 (5.1) 

( ) ( ) 22
2 2= 0 ' = , = .

H u uγ ξ
νβ ν λ φ ν λ ν

ν
−∂

⇔ ⇔
∂

                     (5.2) 

Combining (5.1) and (5.2) the optimal strategies take the following forms  

( )( )

( )

( ) ( )( )2 1 1 1
1 1 1 1*

2
1

= ,
1

au
ξ ξ γ

γ ξλ
γ λ

− + − −  
− + − −  

 
 

−  
                      (5.3) 

( ) ( )( )

( )

( )( )1 1 1
1 1 1 1*

2
1

= ,
1

a
γ γ ξ

γ γ ξν λ
γ λ

+ − −  
− + − −  

 
 

−  
                      (5.4) 

and the optimal harvesting becomes  

( ) ( )( )

( )

( ) ( )( )1 1 1 1
1 1 1 1* *

2
1

, = ,
1

au
γ ξ γ ξ

γ ξφ ν λ
γ λ

− + − −  
− + − −  

 
 

−  
                 (5.5) 

with the following partial derivatives  

( )( )

( )

( ) ( )( )

( )
( )

( )( )
( )
( )

( )
( )( )

1 1 1 1
1 1 1 1

* *2
1

1 1 1

,1 1 1
,

1 1 1 1 1 1 1 1

a
u

γ ξ γ ξ
γ ξλ

ϕ νγ λ γ ξ γ ξφ
λ λ ξ γ λ ξ γ

− + − −  
− + − −  

 
 − − −∂  = × = ×

∂ − + − − − + − −
   (5.6) 

( )( )

( )

( ) ( )( )

( )( )
( )

( )( )

1 1 1 1
1 1 1 1

* *2
1

2 2 2

,1 1 1 .
1 1 1 1 1 1

a
u

γ ξ γ ξ
γ ξλ

ϕ νγ λφ
λ λ ξ γ λ ξ γ

− + − −  
− + − −  

 
 −∂ − − = × = ×

∂ + − − + − −
    (5.7) 

Both derivatives (5.6), (5.7) are negatives due to the assumptions on the parameters γ , ( )0,1ξ ∈  and on the 
signs of derivatives, that is 0>uφ , 0>νφ , ( ) 0>' xυ , ( ) 0>' xϕ , which ensures the positive sign of the 
adjoints 1λ , 2λ . Condition ( ) ( )= det trw J J  now becomes  

( ) ( ) ( )1 2 1 2 1 1 2 2
1 2

2 ' = ' ' ,g x g x g xφ φρ ρ ρ ρ λ ρ λ ρ
λ λ
∂ ∂′ ′+ − +   ∂ ∂

 

which after substituting the values from (5.6), (5.7) and making the rest of algebraic manipulations, finally 
yields (at the steady states)  

( ) ( )
( )( ) ( ) ( ) ( )1 2 1 2 1 2

1

, '
1 2 ' = 0,

1 1 1 '
u g x

g x
g x

φ ν ϕρ γ ξ ρ ρ ρ ρ ρ
ξ γ ϕ ρ

∞ ∞ ′  
− − − + −    + − − + −  

          (5.8) 

where we have set ( ) ( )( )1 1 11 = 'g xλ λ ϕ ρ ϕ− − −  stemming from the adjoint equation  
( )( ) ( )1 1 1= ' 'g x xλ λ ρ ϕ− − , which at the steady states reduces into ( ) ( )( )1 1= ' 'x g xλ φ ρ − . 

Condition 0>w  after substitution the values from (5.6), (5.7) becomes  

( ) ( ) ( )
( )( ) ( ) ( )

2
1 2

1

, '
= ' 1 1 > 0,

1 1 1 '
u g x

w g x
g x

φ ν ϕρ ρ γ ξ
ξ γ ϕ ρ

′  −
− + − +     + − − + −  

             (5.9) 
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The division (5.8) by 1ρ  yields  

( ) ( )
( )( ) ( ) ( ) ( )2

2 1 2
1 1

, '
1 2 ' = 0.

1 1 1 '
u g x

g x
g x

φ ν ρϕγ ξ ρ ρ ρ
ξ γ ϕ ρ ρ

∞ ∞ ′  
− − − + −    + − − + −  

           (5.10) 

The sum (5.9) plus (5.10) must be positive, thus after simplifications and taking into account that ( ), =uφ ν∞ ∞  
( )g x , we have:  

( ) ( )
( )( )

( ) 21 2
2

1

' > ' ,
1 1 1

g x g x g xρ ρ
ρ

ρ ξ γ
−′ −  + − −  

 

and the result 2 1>ρ ρ  follows from the strict concavity of the logistic growth ' < 0g ′ . □ 


	Dynamic Modeling of the Harvesting Function: The Conflicting Case
	Abstract
	Keywords
	1. Introduction
	2. Cyclical Strategies in Harvesting Management
	3. The Management of Commercial Harvesting
	3.1. The Incentive for Fleet Modifications
	3.2. Specifications

	4. Conflicts with a Common Harvesting Function
	4.1. Periodic Solutions
	4.2. Specifications for the Game

	5. Conclusions
	Acknowledgements
	References
	Appendix

