
Advances in Pure Mathematics, 2014, 4, 282-288 
Published Online June 2014 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2014.46037  

How to cite this paper: Hu, T.C. and Sun, Y.P. (2014) Existence and Uniqueness of Positive Solution for Third-Order Three- 
Point Boundary Value Problems. Advances in Pure Mathematics, 4, 282-288. http://dx.doi.org/10.4236/apm.2014.46037  

 
 

Existence and Uniqueness of Positive 
Solution for Third-Order Three-Point 
Boundary Value Problems 
Tongchun Hu1, Yongping Sun2* 
1Department of Public Teaching, Hangzhou Polytechnic, Hangzhou, China 
2College of Electron and Information, Zhejiang University of Media and Communications, Hangzhou, China 
Email: hutongchun888@126.com, sunyongping@126.com  
 
Received 22 March 2014; revised 14 April 2014; accepted 1 May 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper is devoted to the study of the existence and uniqueness of the positive solution for a 
type of the nonlinear third-order three-point boundary value problem. Our results are based on 
an iterative method and the Leray-Schauder fixed point theorem. 
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1. Introduction 
In this paper, we consider the uniqueness and existence of the positive solution for the following third-order dif-
ferential equation 

( ) ( )( ) ( ), 0,   0,1 ,u t f t u t t′′′ + = ∈                                (1) 

or 
( ) ( ) ( )( ) ( ), , 0,   0,1 ,u t g t u t u t t′′′ ′+ = ∈                             (2) 

with the following three-point boundary conditions  

( ) ( ) ( ) ( )0 0 0, 1u u u au η′ ′ ′= = = .                             (3) 

Throughout this paper, we assume that ( ) ( ) ( ) [ ) [ )( )0,1 , 0,1 , 0,1 0, , 0,a f Cη η∈ ∈ ∈ × ∞ ∞  may be singular 
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at 0t =  and/or 1t =  and [ ] [ ) [ ) [ )( )0,1 0, 0, , 0,g C∈ × ∞ × ∞ ∞ . Here, the solution ( )u t∗  of the BVP (1)-(3) 
(or the BVP (2)-(3)) is called positive if ( ) ( )0, 0,1u t t∗ > ∈ . 

In the past few years, because of the extensive applications in mechanics and engineering, the existence of 
solutions or positive solutions for nonlinear singular or nonsingular three-point boundary value problems for 
third-order ordinary differential equations has been studied extensively in the literature (see [1]-[13] and refer-
ences therein). For example, in the case of ( )1,1a η∈  and ( ),f t u  is nonsingular at 0t =  and 1t = , Guo et 
al. [1] [2] established some existence results of at least one and at least three positive solutions for the BVP (1)- 
(3) by using the well-known Krasnosel’skii fixed point theorem and the Leggett-Williams fixed point theorem, 
respectively. By using the upper and lower solutions and the maximum principle, Yao and Feng in [14] and 
Feng and Liu in [15] studied the existence of solutions for the BVP (1)-(3) and BVP (2)-(3) with 0a = , respec-
tively. 

Motivated mainly by the papers mentioned above, in this paper we will consider the uniqueness of the posi-
tive solution, the iteration and the rate of the convergence by the iteration for the nonlinear singular third-order 
three-point BVP (1)-(3). We study the existence of the positive solution for the nonlinear third-order three-point 
BVP (2)-(3) by using the Leray-Schauder fixed point theorem. 

The rest of this paper is organized as follows. After this section, we present some notations and lemmas that 
will be used to prove our main results in Section 2. We discuss the uniqueness in Section 3. Finally, we discuss 
the existence in Section 4. 

2. Preliminaries 
In this section, we introduce definitions and preliminary facts which are used throughout this paper. 

Definition 1 Let E  be a real Banach space. A nonempty closed convex set K E⊂  is called a cone of E  
if it satisfies the following two conditions: 

1) , 0x K λ∈ ≥  implies x Kλ ∈ ; 
2) ,x K x K∈ − ∈  implies 0x = . 
Definition 2 An operator is called completely continuous if it is continuous and maps bounded sets into pre-

compact sets. 
The following lemma plays a pivotal role in the forthcoming analysis. 
Lemma 3 [9] Suppose that 1aη ≠ , [ ]0,1h C∈ , then the unique solution of the following equation 

( ) ( ) ( )0, 0,1u t h t t′′′ + = ∈                                     (4) 

with boundary conditions (3) is given by 

( ) ( ) ( )1

0
, d ,u t G t s h s s= ∫                                        (5) 

where 

( ) ( ) ( ) ( )
2

1, , , ,
2 1

atG t s K t s K s
a

η
η

= +
−

                             (6) 

( )
( )
( )

2

2

2 , 0 1,1,
2 1 , 0 1,

t t s s s t
K t s

s t t s

 − − ≤ ≤ ≤= 
− ≤ ≤ ≤

                           (7) 

and 

( ) ( ) ( )
( )1

1 , 0 1,,
, :

1 , 0 1.

t s s tK t s
K t s

t s t t s

− ≤ ≤ ≤∂ = = 
∂ − ≤ ≤ ≤

 

We need some properties of functions ( ) ( )1, , ,K t s K t s  and ( ),G t s  in order to establish the existence and 
uniqueness of positive solutions. 

Lemma 4 For all ( ) [ ] [ ], 0,1 0,1t s ∈ × , we have 

( )10 , .K t s t≤ ≤  

Proof The conclusion is obvious. The proof is completed. 
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Lemma 5 For all ( ) [ ] [ ], 0,1 0,1t s ∈ × , we have 

( ) 20 , .K t s t≤ ≤                                         (8) 

Proof For all [ ], 0,1t s∈ , if s t≤ , it follows from (7) that 

( ) ( ) ( )2 2 21 1, 2 2 ,
2 2

K t s t t s s t t t t= − − ≤ − ≤  

and 

( ) ( ) ( ) ( )21 1, 2 1 0.
2 2

K t s t t s s t t t s s= − − = − + − ≥    

If t s≤ , then from (7) we have 

( ) ( )2 210 , 1 .
2

K t s t s t≤ = − ≤  

The proof is completed. 
Lemma 6 The Green’s function ( ),G t s  has the following properties: 

( ) ( )0 1

21

0

1 2 3max , d ,
12 1t

a aG t s s
a

η η
η≤ ≤

+ −
=

−∫                                      (9) 

( )
( ) ( )
( )

( ) ( )

2

1

00 1

1 1,  ,
4 1 2

max , d
1 1,

1
 .

2 2

t

a a
a

G t s s M
t a

a
a

η
η η η

η η
η η η

≤ ≤

 −
≤ − −∂ = = 

∂ − ≥ − −

∫                      (10) 

Proof After direct computations, we easily get 

( ) ( )
21 3 2

0

1 1, d ,
6 4 1

aG t s s t t
a
η
η

−
= − +

−∫                                (11) 

( ) ( )
21 2

0

1 1, d .
2 2 1

aG t s s t t
t a

η
η

∂ −
= − +

∂ −∫                               (12) 

From (11) and (12) we can get (9) and (10) respectively. The proof is completed.   

3. Uniqueness 
We shall consider the Banach space [ ]0,1E C=  equipped with norm ( )0 1max tu u t≤ ≤= . 

Theorem 7 Suppose that 
(H1) ( ) ( )1 2, ,f t u f t u≤  for any 1 20 1, 0t u u< < ≤ ≤ ; 
(H2) There exist ( )0,1q∈  such that 

( ) ( ) ( ) ( ) ( ) [ ), , ,   for any 0,1 , , 0,1 0, ;qf t rx r f t x r t x≥ ∈ ∈ × ∞  

(H3) ( )1 2
0

0 , d .f s s s< < ∞∫  

Then the BVP (1)-(3) has an unique positive, nondecreasing solution ( )3 0,1u D C∗ ∈  , here 

[ ] ( ) [ ]{ }2 20,1 0, such that , 0,1 .x x x xD x C M m m t x t M t t= ∈ ∃ ≥ ≥ ≤ ≤ ∈ .               (13) 

Constructing successively the sequence of functions 

( ) ( ) ( )( ) [ ]1
10

, , d ,   0,1 , 1, 2, ,n nh t G t s f s h s s t n−= ∈ =∫                         (14) 

for any initial function ( )0h t D∈ , then ( ){ }nh t  must converge to ( )u t∗  uniformly on [0, 1] and the rate of 
convergence is 
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[ ]
( ) ( ) ( )0,1

max 1 .
n

t

q
nh t u t O θ

∈

∗− = −                              (15) 

where 0 1θ< < , which depends on the initial function ( )0h t . 
Proof Obviously, from (H1) we obtain 

( ) ( ) ( ) ( ) [ )( ), , , 1, , 0,1 0, .qf t x f t x t xλ λ λ≤ ∀ > ∈ × ∞                       (16) 

Let 

[ ] ( ) [ ]{ }0,1 0, 0,1 .C u E u t t+ = ∈ ≥ ∈  

In view of Lemma 3, we define an operator T as 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
21 1

10 0
, , d , , d ,

2 1
tTu t K t s f s u s s K s f s u s s u Dα η
αη

= + ∈
−∫ ∫ .            (17) 

By (H1) it is easy to see that the operator [ ]: 0,1T D C+→  is increasing. Observe that the BVP (1)-(3) has a 
solution if and only if the operator T has a fixed point. 

In what follows, we first prove : .T D D→  In fact, for any ,u D∈  there exist positive numbers  
0 1u um M< < <  such that 

( ) [ ]2 2 , 0,1 .u um s u s M s s≤ ≤ ∈  

It follows from (H2) and (16) that 

( ) ( ) ( )( ) ( ) ( ) ( )2 2, , , , 0,1 .q q
u um f s s f s u s M f s s s≤ ≤ ∈                  (18) 

Using (17), (18), (8) and the condition (H1), we obtain 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) [ ]

21 1
10 0

21 12
10 0

21 12 2 2
10 0

1 12 2 2
10 0

, , d , , d
2 1

, d , , d
2 1

, d , , d
2 1

, d , , d , 0,1 ,
2 1

q q
u u

q
q u

u

tTu t K t s f s u s s K s f s u s s

tt f s u s s K s f s u s s

tt M f s s s K s M f s s s

M
M f s s s K s f s s s t t

α η
αη

α η
αη

α η
αη

α
η

αη

= +
−

≤ +
−

+
−

 
 = +
 −

≤

∈


 

∫ ∫

∫ ∫

∫ ∫

∫ ∫

           (19) 

and 

( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )

( )
( ) ( ) ( ) [ ]

21 1
10 0

2 1
10

2 1 2
10

1 2 2
10

, , d , , d
2 1

, , d
2 1

, , d
2 1

, , d , 0,1 .
2 1

q
u

q
u

tTu t K t s f s u s s K s f s u s s

t K s f s u s s

t K s m f s s s

m
K s f s s s t t

α η
αη

α η
αη

α η
αη

α
η

αη

= +
−

≥
−

≥
−

 
 = ∈
 − 

∫ ∫

∫

∫

∫

                   (20) 

Equations (19), (20) and (H5) imply that :T D D→ . 
For any 0h D∈ , we let 
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( ) ( )( ) [ ]{ }
( )( ) ( ) [ ]{ }

( ) ( )

0

0

0 0

0 0

0 0

1 1
1 1

sup 0 : , 0,1 ,

inf 0 : , 0,1 ,

min 1, , max 1, ,

h

h

q q
h h

l l lh t Th t t

L L Th t Lh t t

m l M L− −

= > ≤ ∈

= > ≤ ∈

      = =   
      

                           (21) 

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0

1 1

, ,

, , 0,1, 2, .n n n n

u t mh t v t Mh t

u t Tu t v t Tv t n− −

= =

= = = 

                        (22) 

Since the operator T  is increasing, (H1), (H2), (21) and (22) imply that 

( ) ( ) ( ) ( ) ( ) ( )0 1 1 0 , .n nu t u t u t v t v t v t t I≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∈                       (23) 

For m Mθ = , from (H1), (17) and (22), it can obtained by induction that 

( ) ( ) [ ], 0,1 , 0,1, 2, .
nq

n nu t v t t nθ≥ ∈ =                            (24) 

From (23) and (24) we know that 

( ) ( ) ( ) ( ) ( ) ( )00 1 ,   , ,
nq

n p n n nu t u t v t u t Mh t n pθ+≤ − ≤ − ≤ − ∀ ∈                  (25) 

so that there exists a function ( )u Dt∗ ∈  such that 

( ) ( ) ( ) ( ) [ ]( )uniformly on , 0, ,1 ,n nu t u t v t u t∗ ∗→ →                       (26) 

and 

( ) ( ) ( ) [ ], 0,1 , 0,1, 2, .n nu t u t v t t n∗≤ ≤ ∈ =                          (27) 

From (H1) and (22) we have 

( ) ( ) ( ) ( ) ( )1 1 , 0,1, 2, .n n n nu t Tu t Tu t Tv t v t n∗
+ += ≤ ≤ = =   

This together with (26) and uniqueness of the limit imply that u* satisfy u Tu∗ ∗= , thus [ ] ( )30,1 0,1u C C∗ ∈   
is a solution of the BVP (1)-(3). 

Form (22), (23) and (H1), we obtain 

( ) ( ) ( ) [ ], 0,1 , 0,1, 2, .n n nu t h t v t t n≤ ≤ ∈ =                           (28) 

It follows from (26), (27) and (28) that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )02& 2 1 .
nq

n n n n n nh t u t h t u t u t u t v t u t M h tθ∗ ∗− ≤ − + − ≤ − ≤ −  

Therefore, 

[ ] ( ) ( ) ( ) [ ] ( )00,1 0,1max 2 1 max .
nq

nt th t u t M h tθ∗
∈ ∈− ≤ −  

So that (15) holds. Since ( )0h t  is arbitrary in D we know that ( )u t∗  is the unique solution of the BVP 
(1)-(3) in D.  

Remark If ( ),f t u  is continuous on [ ] [ )0,1 0,× ∞ , then it is quite evident that the condition (H3) holds. 
Hence the unique solution ( )u t∗  is in [ ]3 0,1C . 

4. Existence 
Now we are ready to discuss the existence of positive solutions for the BVP (2)-(3). 

Theorem 8 Suppose that 
(H4) [ ] [ ) [ ) [ )( )0,1 0, 0, , 0,g C∈ × ∞ × ∞ ∞  and ( ) [ ],0,0 0, 0,1 ;g t t≡ ∈/  
(H5) There exists positive number 0d >  such that 
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( ) ( ) [ ] [ ] ( ) ( )
0 1 0 1 2 2

12 1 12 1
max , , : , , 0,1 0, 0, ,

1 2 3 1 2 3
a M a

g t u u t u u d d d
a a a a

η η
η η η η

 − −  ∈ × × ≤  + − + −   
           (29) 

where M is defined by (11).  
Then the BVP (2)-(3) has at least one positive solution ( )u t∗  such that 

( ) ( ) ( ) ( ) [ ]2

12 1
0 , 0 , 0,1 .

1 2 3
a M

u t d u t d t
a a

η
η η

∗ ∗ −′≤ ≤ ≤ ≤ ∈
+ −

                      (30) 

Proof We consider the Banach space [ ]1 0,1E C=  equipped with the norm 

( )
2

0 0

1 2 3max , ,
12 1

a au u u
a M

η η
η

 + − ′=  
−  

                                 (31) 

where ( )0 10 max tu u t≤ ≤= . 
For u E∈ , define the operator S by 

( )( ) ( ) ( ) ( )( ) [ ]1

0
, , , d , 0,1 .Su t G t s g s u s u s s t′= ∈∫                        (32) 

By Ascoli-Arzela Theorem, it is easy to known that the operator :S E E→  is a completely continuous op-
erator. The BVP (2)-(3) has a solution ( )u u t=  if and only if u  is a fixed point of operator S defined by (32). 
Let 

( ) ( ) [ ]{ }: , 0, 0, 0,1 ,d u E u d u t u t t′Ω = ∈ < ≥ ≥ ∈  

then dΩ  is a bounded closed convex set of E. We show that ( )d dT Ω ⊆ Ω . For du∈Ω , by (31) we have 

( )
20 0

12 1
, ,

1 2 3
a M

u d u d
a a

η
η η
−

′≤ ≤
+ −

 

which implies that 

( ) ( ) ( ) [ ]2

12 1
0 , 0 , 0,1 .

1 2 3
a M

u t d u t d t
a a

η
η η
−

′≤ ≤ ≤ ≤ ∈
+ −

 

Therefore, by (9), (10), (29) and (32) we get 

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

1
0 10 0

1
0 1 0

1
0 12 0

max , , , d

max , , , d

12 1
max , d ,

1 2 3

t

t

t

Su G t s g s u s u s s

G t s g s u s u s s

a
d G t s s d

a a
η

η η

≤ ≤

≤ ≤

≤ ≤

′=

′=

−
≤ =

+ −

∫

∫

∫

                          (33) 

and 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1
0 1 00

1
0 1 0

1
0 12 20

max , , , d

max , , , d

12 1121 max , d .
1 2 3 1 2 3

t

t

t

Su G t s g s u s u s s
t

G t s g s u s u s s
t

a Ma d G t s s d
ta a a a

ηη
η η η η

≤ ≤

≤ ≤

≤ ≤

∂′ ′=
∂
∂ ′=
∂

−− ∂
≤ =

∂+ − + −

∫

∫

∫

           (34) 

Then (33) and (34) show that 

( ) ( )
2

0
0

1 2 3max , .
12 1

a aSu Su Su d
a M

η η
η

 + − ′= ≤ 
−  

 

i.e., dSu∈Ω . Thus, by Leray-Schauder fixed point theorem, S has a fixed point du∗ ∈Ω , which implies that 
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BVP (2)-(3) has at least one positive solution u∗  satisfying (30). This completes the proof. 
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