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Abstract 
This works aims to give an answer to the problem P = NP? The result is positive with the criteria 
that solve the Traveling Salesman Problem in polynomial cost of the input size and a proof is given. 
This problem gets a solution because a polyhedron, with a cut flower looking, is introduced in- 
stead of graph (e.g. tree). 
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1. Introduction 
The traveling salesman problem (TSP) has origin in 1832 in a hand book of Hamilton. It is a NP-complete 
problem and NP-hard problem and till now only some special cases are found to be polynomially executable 
with a reducible Turing machine. I propose a method which solves the general case in polynomial cost of the 
input size. To today I read [1], an annealing algorithm about TSP [2], and about the bottleneck TSP but I have 
also the opportunity to read [3] about another NP-complete problem, the job shop scheduling, with which I 
measure the size of NP problem. This problem and consequent solution are really important for industry. 

Problem Definition and Notations 
The TSP can be definined like the problem for salesman to go throught each cities a, b, c, ∙∙∙, v, z passing once 
on them and returning the shortest travel distance 1 nS w w= + +  as the sum of the weight of the arcs joining 
cities that are visited. 

2. Method 
Consider a polyhedron. Cities are disposed on the axis, so a, b, c, ∙∙∙, z are positions on the axis of the cities from 
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a common origin in the space (a center) and therefore cities are on vertex of polyedron (the limit of 26 letter 
doesn’t mean limit of 26 cities, that’s valid to all functions involved). The distance beetween two cities is the 
weight of the arc joining them. A cycle on the polyhedron that pass once on each city is a flower with the corolla 
as origin (center) and the coordinate axis of cities petals. To find a, b, ∙∙∙, x, z we must solve the linear system for 
each variable that define the position on axis:  
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The equation for node a is ( )2 2 2 2 2 2 21a ab ac azW w w w N a b c z= + + + = − ⋅ + + + +  . We compute kW ;  

a k z≤ ≤  having N variable in N equations and obtain 2a  will give easy access to a . 

2.1. Theorem 

Be O  the set of petals. Be x  the minimum and { }1O O x=   then mink km O= ; { }min ;k k kM O m=    

{ }1 ,k k k kO O m M+ =  . The optimal sequence for petals is given by  

3 2 1 1 2 3, , , , , , , , .m m m x M M M                               (1) 

2.2. Proof 

In this section we will consider the petals a, b, c, ∙∙∙ as variables 1 2, , , nx x x . 

{ }
( ) ( ) ( ) ( ){ }

2 2 2 2 2 2 2 2
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= + + + + + + + +

= + + + + = ∑


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           (A) 

Consider an inequality on functions for the swap of two elements  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,a b c d e f a c b d e ff x x f x x f x x f x x f x x f x x+ + + < + + + 
           (B) 

( ) ( ) ( ) ( ), , , , 0a b a c c d b df x x f x x f x x f x x− + − <  with ( )
( )

, 2
,

f x y x
x f x y

∂
=

∂
 so with equality of x∆  the df   

is higher at lower y , therefore if a dx x<  with b cx x< . Further consider that ( ) ( ), ,a b c df x x f x x+  must be  
soddisfied from one value of ,a bx x  to one value of ,c dx x  and therefore a cx x<  and b dx x<  is a stronger  
relation togheter with a dx x<  and b cx x< . So ,a bx x  minimum with ,c dx x  maximum with a complete  
satisfy condition is the lowest: { } { }

1 2
, ,i j h k ff

x x x x
∈∈

< . This condition can be extended to more than two  

elements so for example ( ) ( ) ( ), , ,a b c d e ff x x f x x f x x+ +  minimum if { } { } { }
2 31

, , ,i j h k m nf ff
x x x x x x

∈ ∈∈
< <   

(Optimality Condition OC 1).  

2.2.1. Case of Four Dimensions 
So if we have { } { } { } { }1 2 2 3 3 4 4 1, , , , , , ,x x x x x x x x  we start from the maximum 4 1,2,3jx x =>  so that for condition  
OC 1 3 1,2i jx x= =>  and 1 2,3i jx x= => . The swap of 1x  with 3x  is indifferent because we have not prevalent  
constrains so solutions are 2 1 3 4x x x x< < <  and 2 3 1 4x x x x< < < . Those are symmetric respect to the minimum. 
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2.2.2. Case of More Dimensions 
So if we have { } { } { } { } { } { }1 1 2 2 3 3 4 4 5 5 6 6 1: , , , , , , , , , , ,A x x x x x x x x x x x x= . In such sets we start from the maximum  

6 1,2, ,5jx x =>


 so that, for condition OC 1, elements 5 1, ,4jx x =>


 and 1 2, ,4,5ix x =>


 are maximum. Here we  
will find only a symmetric solution considering 5 1x x> . Further 5 1,2,3,4jx x =>  therefore, for condition OC 1,  

4 1,2,3ix x =>  from the confront of others elements not sequenced; so we have to choose the order for 4 1,x x , but  

4 1x x<  because notice that we have an even number of elements, two at high adjacent values { } { }4 5 6 1, , ,x x x x   

and two at lower adjacent values { } { }3 4 1 2, , ,x x x x ; the behaviour of down level { } { } { }1 2 2 3 3 4, , , , ,x x x x x x  is  
symmetric and specular of the choice of up level; the down level can have a good move symmetrically equiva- 
lent from uplevel choice whereas the uplevel depends on the choice, and so is convinient to have a good choice  
at up level (Optimality Condition OC 2). Further 1 2,3,4jx x =>  and therefore, for condition OC 1, 2 3,4x x>  but,  

for condition OC 2, 4 2x x> . So the sequence became 3 2 4 1 5 6x x x x x x< < < < < , with { }2 3,x x  minimum. 
So the order is the best solution. Therefore the solution with elements at right and left of the minimum in n-di- 

mensions case is 1 1 2 2 3 3x m M m M m M< < < < < <   that for simmetry is the same than  

1 1 2 2 3 3x M m M m M m< < < < < < < . Then (1) is true. 

2.3. Algorithm 
Node: a list of nodes  

:w NXN R→   
Solve the linear system for a, b, ∙∙∙, z obtain node 
While ( )result.size < N  do 

minimum = ∞ ; 
for 0i i N= → <   

if [ ]node minimum resulti i< ∧ ∉  then  

[ ]minimum node i= ;  
 next i= ;  

end if 
end for 
if ( )mod 2result.size 0≡  then 

result.add (position(last),next);  
else if ( )mod 2result.size 1≡  then  

result.add (position(init),next); 
else if 

end while 

Test 
The algorithm has been tested on several instances 9 × 9 and in all of them the best solution is found in few 
seconds.  

3. Complexity 
The linear system can be found in ( )3O N  with Gauss method [4] wheras the cycle is ( )2O N  so the method  

is of ( )3O N . Then P = NP.  

4. Discussion 
The complexity can be reduced also changing the criteria to achieve an objective.  
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Appendix 
Method to Solve the Linear System, Jacobi 
Ax b=  with x vector of solution and b vector of costant terms. Choose A P N= −  so that P easy to invert.  

With ( ) ( )1 1 1k kx P Nx P b+ − −= +  and stop condition dependent from τ  that must be tunned depending for  
example from the minimum x: ( ) ( ) ( )1k k kx x xτ−− <  [5]. 
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