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Abstract 
Through straightforward deduction procedure, we explicitly show analytical solutions for both 
Fukui-Ishibashi (FI) model and Quick-Start (QS) model, which are fundamental deterministic Cel- 
lular Automaton (CA), applied to traffic flow. 
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1. Introduction 
For recent years, simulation study on traffic flow has been attracted much attention of physicists. Among wide 
variety of approaches, Cellular Automaton (CA), where vehicles are treated as discrete self-drive particles in an 
entirely discrete spatiotemporal system, are most heavily used because of its flexibility as well as robustness to 
apply various practical problems. 

There have been proposed many traffic CA models so far. For example, Rule-184 [1], which was originally 
presented by Wolfram as a part of 256 elementary CA archetypes for general discussion, has been regarded as 
the simplest traffic model. Fukui-Ishibashi (FI) model [2] extended vehicle’s speed v more variable;  

{ }max0,1, ,v V∈   instead of { }0,1v∈ . Nagel-Schreckenberg (NS) model [3], which has been most heavily  
applied as a fundamental template model by many studies, considers random braking effect on the basis of FI 
model. Quick-start (QS) model [4] takes account of driver’s anticipation effect. Slow-to-start (SlS) model [5] 
can consider inertia effect of vehicles. Base on NS model, Stochastic Nishinari-Fukui-Schadshneider (S-NFS) 
model [6] takes account of all those effects; random braking, quick-start as well as slow-to-start. Revised S-NFS 
model [7] improves random braking effect in order to reproduce synchronized flow depicted in Kerner’s three 
phase theory [8]. Asymmetric Simple Exclusion Process (ASEP) [9] and Zero Range Process (ZRP) [10] are 
simpler CA models, thus have been used by some theoretical studies. 
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By previous works, analytical solutions of Rule-184, ASEP and ZRP have been derived, since flux—density 
relation can be fixed deterministically [11] [12]. Although both FI model and QS model never contain stochastic 
elements, analytical solutions for those two have not been known ever. This paper reports the result of it, which 
we are successfully able to deduce this time. . 

2. Analytical Solution of FI Model 
The update rule of FI model is as follows; 

( ) ( )max maxif  then igap V v V≥ = , 

( ) ( )maxif  then igap V v gap< = , 

where gap  means the number of unoccupied sites in front of vehicle i , maxV  means the maximum velocity  
and iv  means the velocity of vehicle i . It is obvious from Figure 1 that the critical density, making traffic  

flux maximum, is 
max

1
1crik

V
=

+
.Thus, the maximum flux is drawn by max

max
max 1
V

Q
V

=
+

.  

Let us prove that the fundamental diagrams by FI model can be described as an asymmetrical tent-type poly- 
gonal line functions as below. 

Proposition 1 
When crik k≤ , it is trivial that the relation between density and flux must be a linear function originated from  

( ) ( ), 0,0k Q =  with slope maxV . 
When crik k≥ , let us evaluate the relation between density and flux as follows. Figure 2 shows an example  

of flow state when crik k≥ . Schematic implication and definition of average velocity, we know; 

( ) ( ) ( )averagevelocity total sum of all vehicles velocity number of veh’ icles=  

and it is also trivial; 

( ) ( )totalsum of all vehicles velocity’ , 1 k L= −  

where L is system length. Hence, 

( ) ( ) ( )average velocity 1L k L k= − ⋅  

Therefore, flux ( )Q k  is; 

( ) 1Q k k= − , 

which explicitly implies a linear function of k . This negative slope line obviously crosses both critical state and  

complete jam state; max

max max

1 ,
1 1

V
V V
 
 + + 

and ( )1,0 . 

(QED) 
According to Proposition 1, the fundamental diagram can be described as an asymmetric tent-type function, 

consisting of two liner functions. The above-deduced critical density and maximum flux is the vertex of this 
asymmetric tent-type function. 

As the next step, we should discuss whether the function consisting of two linear lines can be expressed by a 
single expression 

Proposition 2 
What we expect is that the function consisting of two linear lines can be expressed by a single expression;  

( ):f Q f k=  (Figure 3(a))．Shifting the function in the direction of k  by – p , we obtain ( ):f Q f k p′ = +   
(Figure 3(b))． 

Meanwhile, two equations to touch at ( ) ( ), 0,k Q q= ; 1f  and 2f  , shown in Figure 3(b) can be expressed  
as below; 
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             Figure 1. Flow states explaining for FI model.                                       
 

 
             Figure 2. Flow states explaining for FI model in case if crik k≥ .                        
 

 
(a)                                            (b) 

            Figure 3. Asymmetric tent-type function.                                            
 

2
1 :f Q a k q= + .                                    (1) 

2 :f Q bk q= + .                                     (2) 

The expression of 1f  is determined because it must be symmetric against Q  axis. By superposing those 
two liner functions, we obtain the asymmetric tent-type functionas below; 

( ) 1 2:f Q f k p f f q′ = + ≡ + − , 

By substituting Equations (1) & (2), we obtain: 

( ) 2f k p a k bk q+ = + + .                               (3) 

When the branch of square root is taken into consideration, it is as follows; 
if 0k <  then, 

( ) ( ) 1f k p a b k q D k q+ = − + + ≡ + ,                           (4) 

if 0k >  then, 
( ) ( ) 2f k p a b k q D k q+ = + + ≡ + .                           (5) 

(QED) 

We know; ( ) max

max max

1, ,
1 1

V
p q

V V
 

=  + + 
 and 1 max 2, 1D V D= = − . 



S. Kukida et al. 
 

 
694 

By substituting above conditions into Equations (4) & (5), we get; 

max max1 1
,

2 2
V V

a b
+ −

= − = .                                (6) 

By substituting these into Equation (2), we obtain the following. 

( ) 2max max1 1
2 2

V V
f k p k k q

+ −
+ = − + + .                         (7) 

As consequence, ( )f k  is; 

( ) ( ) ( )2max max1 1
2 2

V V
f k k p k p q

+ −
= − − + − + . 

Namely; we obtain; 
2

max max max

max max max

1 11 1
2 1 2 1 1

V V V
Q k k

V V V
   + −

∴ = − − + − +   + + +   
                (8) 

By rearranging, analytical solution of FI model can be derived as follows; 
2

max max max

max max max

1 11 1
1 2 1 2 1

V V V
Q k k

V V V

    + − = − − + −    + + +     

,               (9) 

where Q  means the flux and k  means density, respectively.  
Figure 4 shows the fundamental diagrams by Equation (10) when max 1 2 3 4V = , , , . 

3. Analytical Solution of QS Model 
The update rule of QS model is as follows; 

If there is an empty site in forward S-sites then the focal vehicle moves. 
Where S means the number of sites that a vehicle foresees for quick-start. It is obvious from Figure 5 that the  

critical density is 
1cri

Sk
S

=
+

. Thus, the maximum flux is drawn by max 1
SQ

S
=

+
, because 1v = . Like FI  

model, Let us prove that the fundamental diagrams by QS model can be described as an asymmetrical tent-type 
poly-gonal line functions as below. 

Proposition 3 
When crik k≤ , it is trivial that the relation between density and flux must be a linear function originated from  

( ) ( ), 0,0k Q =  with slope max 1V = . 
When crik k≥ , let us evaluate the relation between density and flux as follows. Figure 6 shows an example of  

flow state when crik k≥ . Schematic implication and definition of average velocity, we know;  

( ) ( ) ( )
( ) ( )

averagevelocity total sum of all vehicles velocity number of vehicles

number of vehicles that can move number of vehi es

’ 

cl

=

=
 

Observing Figure 6, we notice that vehicles staying in S sites behind each empty site can move. Thus; 

( ) ( )number of vehicles that can move 1 ,L k S= −  

and; 

( ) ( ) ( )averagevelocity 1 ,L k S L k= − ⋅  

Therefore, flux ( )Q k  is; 

( ) ( )1Q k k S= − , 

which explicitly implies a linear function of k . This negative slope line obviously crosses both critical state and  



S. Kukida et al. 
 

 
695 

 
                              Figure 4. The fundamental diagram by Equation (9). 
 

 
             Figure 5. Flow states explaining for QS.                                            
 

 
             Figure 6. Flow states explaining for QS model l in case if crik k≥ .                       
 

complete jam state; ,
1 1

S S
S S

 
 + + 

 and ( )1,0 . 

(QED) 
Proposition 3 enables us to draw that the fundamental diagram can be described as an asymmetric tent-type 

function, consisting of two liner functions. The above-deduced critical density and maximum flux is the vertex of 
this asymmetric tent-type function. 

Like the case of FI model, as the next step for the discussion, we should note how Proposition 2 leads that the 
function consisting of two linear lines can be expressed by a single expression 

Namely, we know; ( ), ,
1 1

S Sp q
S S

 =  + +   
and 1 21,D D S= = − . 

By substituting above conditions into Equations (4) & (5), we get; 

1 1,
2 2

S Sa b+ −
= − = −                                  (10) 

By substituting these into Equation (2), we obtain the following. 

( ) 21 1
2 2

S Sf k p k k q+ −
+ = − − +                            (11) 

Therefore, ( )f k  is; 
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                              Figure 7. The fundamental diagram by Equation (13). 
 

( ) ( ) ( )21 1
2 2

S Sf k k p k p q+ −
= − − − − + . 

Finally, we get; 
21 1

2 1 2 1 1
S S S S SQ k k

S S S
+ −   ∴ = − − − − +   + + +   

                   (12) 

By rearranging, analytical solution of QS model is derived as follows; 
21 1

1 2 1 2 1
S S S S SQ k k

S S S

 + −    = − − + −    + + +     
                   (13) 

Figure 7 shows the fundamental diagrams by Equation (13) when 1,2S = . 

4. Conclusions 
We explicitly reported analytical solutions fort FI model and QS model. 

Although the two are important models for depicting basic traffic features, analytical solutions for those two 
have not been known ever. 

Helped by the fact that FI model and QS model never contain stochastic elements, our process to deduce was 
simple and straightforward. 
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