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Abstract

Prevalent cohort studies involve screening a sample of individuals from a population for disease,
recruiting affected individuals, and prospectively following the cohort of individuals to record the
occurrence of disease-related complications or death. This design features a response-biased
sampling scheme since individuals living a long time with the disease are preferentially sampled,
so naive analysis of the time from disease onset to death will over-estimate survival probabilities.
Unconditional and conditional analyses of the resulting data can yield consistent estimates of the
survival distribution subject to the validity of their respective model assumptions. The time of
disease onset is retrospectively reported by sampled individuals, however, this is often associated
with measurement error. In this article we present a framework for studying the effect of mea-
surement error in disease onset times in prevalent cohort studies, report on empirical studies of
the effect in each framework of analysis, and describe likelihood-based methods to address such a
measurement error.
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1. Introduction

Prevalent cohort studies of chronic diseases involving screening populations and sampling individuals with the
condition of interest for prospective follow-up [1]. Examples of such studies include cancer screening trials [2],
studies of HIV prevalence [3] and studies of dementia [4] [5]. The prevalent cohort design is both more efficient
and more practical than the incident cohort design [6] in which a cohort of disease-free individuals are followed
for disease onset, and only the subset of individuals developing the disease yields information on the time from
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disease onset to death. The prevalent cohort design features a form of response-dependent sampling, however, in
the sense that diseased individuals with long survival times are preferentially selected for inclusion into the co-
hort [1] [2] [7]; some authors refer to the resulting data as “length-biased”. Valid statistical inference depends
critically on adequately addressing the sampling scheme in the likelihood construction, and there are two broad
frameworks for analysis, both of which make use of the retrospectively reported time of disease onset recorded
at the time of sampling.

Analysis in the conditional framework is based on the fact that individuals who died before the time of
screening cannot be sampled, and so the survival times among sampled individuals are left-truncated by the time
from disease onset to enrollment. The unconditional framework is based on the density of the survival times de-
rived under the prevalent cohort sampling scheme. That is, if the disease incidence is stationary, the onset times
follow a time homogeneous Poisson process, and the resulting left truncation times have a constant density. If
the probability that an individual is sampled is proportional to their survival time, the density of times subject to
this sampling scheme can be derived and used for likelihood construction.

For the conditional approach, parametric, nonparametric and semiparametric methods are relatively straight-
forward and have seen considerable application [3] [8] [11]. Wang [10] proposed a product-limit estimator for
left-truncated survival times which maximizes the conditional likelihood and loses no information when the dis-
tribution of the truncation time variable is unspecified. For semiparametric Cox models, the partial likelihood
approach can be adopted for left-truncated data but with an adjusted risk set [8] [11] [12]. Wang et al. [12] ar-
gued that the nonparametric and semiparametric estimators are efficient when the distribution of the truncation
time is unspecified but can be inefficient when the distribution of truncation time is parameterized.

Unconditional analyses [5] [13]-[16] are based on the joint distribution of the backward recurrence time (time
from disease onset to sampling) and the forward recurrence time (time from sampling to death). Vardi [13] [14]
and Asghrian et al. [5] developed the nonparametric maximum likelihood estimator (NPMLE) for right-cen-
sored length-biased survival times, but this NPMLE does not have closed form and its limiting distribution is in-
tractable [15] [16]. Huang and Qin [17] derived a new closed-form nonparametric estimator that incorporates the
information about the length-biased sampling. Wang [18] proposed pseudo-likelihood for length-biased failure
times under the Cox proportional hazards model, but this method cannot be applied to right-censored failure
times. Luo and Tsai [19] and Tsai [20] derived pseudo-partial-likelihood estimators for right-censored length-
biased data which have closed-form and retain high efficiency. Shen et al. [21] considered modeling covariate
effects for length-biased data under time transform and accelerated failure time models. Qin and Shen [22] re-
cently proposed two estimating equations for fitting the Cox proportional hazards model that are formulated
based on different weighted risk sets.

Both conditional and unconditional analyses make use of the retrospectively reported times of disease onset,
with the latter further based on the assumption of a stationary (Poisson) incidence process. However, there is of-
ten considerable error and uncertainty in the retrospectively reported onset times. This is particularly true for
onset times related to disease featuring cognitive impairment or mental health disorders. In some settings the
reported times may better represent times of symptom onset, rather than the actual start of the disease process
which may lead to underestimation of disease duration. In other settings the errors may lead to earlier or later
reported onset times.

The purpose of this article is to examine the impact of measurement error in the retrospectively reported onset
time for both the conditional and unconditional frameworks. The remainder of the paper is organized as follows.
In Section 2, we introduce notation and likelihood construction for prevalent cohort data. The impact of misspe-
cification of the disease onset time is explored in Section 3 by simulation for the unconditional and conditional
approaches, and methods for correcting for this measurement error are described in Section 4. General remarks
and topics for further research are given in Section 5.

2. Approaches to Statistical Analysis

2.1. Notation and Likelihood Construction

Consider a population and a chronic disease such that at any time an individual in the population is in one of
three states: alive and disease-free (D, ), alive with disease (D,), and dead (D, ). For individuals who de-
velop the disease, the path is D, —» D, - D, and interest often lies in the distribution of the survival time with
the disease, or equivalently the sojourn time distribution for state D, . For individual i, let V,, be the calendar
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time of disease onset and V;, be the calendar time of death (time of entry to state D,); then T, =V, -V,, de-
notes the time of interest.

Consider a study starting at calendar time R (recruitment time), when individuals in the population are
screened for the disease of interest and those who are diseased are to be recruited into the study. Figure 1 shows
a hypothetical situation in the prevalent cohort study, where calendar time is represented on the horizontal axis.
Individuals who are sampled must have developed the disease of interest at some point over the calendar time
interval [A,R], and be still alive at the recruitment time R. Those who develop the disease over [A,R] but die
before the recruitment time cannot, of course, be selected for inclusion in the sample. Those who develop the
disease after the recruitment time are also not eligible for recruitment. The times W, =R-V,, and S=V,,—R
are called the backward and forward recurrence times for individual i respectively, and T, =W, +S; is the sur-
vival time of interest. To accommodate incomplete follow-up, let C, denote the right censoring time for indi-
vidual i from disease onset, and X; =min(T;,C;) denote the survival time from disease onset; & =I(T, <C;)
is a indicator of whether death is observed.

Let f. (t;0) and F (t;6) be the so-called unbiased probability density and survivor functions for T;,
which characterize the distribution in the target population, where a px1 parameter vector 6 indexes the
distribution. The relevant density function for the observed left-truncated survival data for individual i is

f(t;60
f (V. T; >R—vi0;9):#. 1)
7 (R=Vi:0)
The conditional likelihood for right-censored left-truncated survival data is
n 7 (%:0) 7 (%:0)
0 f(x|v,, T >R-v,;0)=—— 2T 17/ 2
LC( )ch (|||O |> i0 ) -E—(R_Vio;g) ()

assuming v,, is recorded correctly. By conditioning on the observed truncation time, it is not necessary to
model the distribution of the onset times.

If the disease onset process is a stationary Poisson process, f, (vo)zl/(R— A) and the resulting sample is
right-censored length-biased sample. If the distribution of the onset time is known and can be parameterized, the
conditional approach may be inefficient and it is natural to want to make use of the information contained in the
onset process.

We now consider the distribution of the onset times over the interval [A, R] in the target population. Let
fo (V) dvy = P(Vy <V, <V, +dvy| A<V, <R) be the probability an onset time occurs in an interval [vy,V, +dv, |
given it happens over [A, R] .We assume T LV,, so that the distribution of the survival time since disease on-
set does not depend on onset time. We also define the sample onset time density for individuals who satisfy the
inclusion criterion,

fo (VO)‘FI' (R_Vo;g)

fo(v,;0)=f(v,|]A<V, <RV, >R)= )
o (4%:9) (0| ° ' ) j;fo(u)]-}(R—u;H)du

®)

When the onset process is stationary, as A — —o, the sample density function for the onset time (3) can be
simplified to be

T
W S
1 1
A V, R v,
DISEASE STUDY EVENT
ONSET RECRUITMENT TIME

Figure 1. Diagram of calendar times and study times of disease onset, left-truncation and survival.
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Fr (R Vo 9)
Hu
where u= E[T]_ tf (t;0)dt is the population mean survival time with disease.
From (3) and (4), ‘one can see that the onset time among sampled individuals contains information regarding

the survival distribution. The unconditional likelihood utilizing this information is based on the joint distribution
of (V,, X ), which can be written as

fo (vo:0) = @

Le (0) f[f (Vi %| A<V, <RV, 2 R; 6)
i=1

—Hf (v:0) T 507 (x:0) (5)

ﬁ (R VlO’e)
=Ly (Q)X L (9)

where Ly, (6)=]T.,f, (Vio:0). Thus the full likelihood is the product of the conditional likelihood and the
marginal likelihood of sample onset times, L,, (0) indexed by 4.

Under the assumption of a stationary disease process and based on (4), the unconditional likelihood for right-
censored length-biased sample can be written as

L, (9)=f[[ h (X‘;e)f [ﬁ (X‘;g)r . ©)

i=1 H H

Thus the unconditional approach exploits information in the disease onset times to improve efficiency over
the conditional approach, but it does so by making stationary assumption for the disease onset process, which
makes it less robust, R

The estimators 6, and & can be found by maximizing the conditional (2) or unconditional (5) likelihoods
respectively when parametric models are applied. Further, the resulting estimators have an asymptotic normal
distribution, so

Vn (8. —0)—L>N(0,75"), Vn(6: -0)—>N(0,Z"),
where Z. and Z. are the Fisher information matrices for conditional and unconditional likelihoods.

2.2. Nonparametric Estimation of the Survival Function Estimation

Nonparametric methods are often more appealing than parametric methods when there is limited knowledge re-
garding the distribution of survival times. Wang et al. [23] and Wang [10] derived the product-limit estimator
for left-truncated survival data. Let Y, (u)=1(L; <u<C;) indicate whether individual i has been recruited into
the study and under observation at time u, where L, =R—v,, is the left-truncation time, and let

Y (u)= I(u <T) be an indicator they are at risk of an event, Let dN, i(u)=1(T; =u) be the event indicator,
and N, ( j dN; (s). Then the logarithm of the likelihood for left- truncated data (2), can be rewritten as

I =§:{j:\7i(u)dNi (1)logdA (u)-[; ¥ (u)dA(u)|

where Y (u)=Y;(u)Y,"(u) and A(u) is the cumulative hazard function. The nonparametric maximum like-
lihood estimator (NPMLE) of the survivor function for right-censored left-truncated data is

ff(t):g{l_dﬁ(u)}, @
where dA (u (u)/Y (u) )= Yi(u),and dN (u)=3"Y;(u)dN,(u).

The condltlonal NPMLE is con3|stent, but a more efficient estimator can be obtained when the onset process
is stationary. Vardi [14] proposed a nonparametric maximum likelihood estimator for survival distribution func-
tion G(t) based on a length-biased sample under the multiplicative censoring. The NPMLE of G(t) is found
by an expectation-maximization algorithm which maximizes the likelihood function of the form
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1-5;

lij[dG(X‘ )T Umi x’ldG(x)} : @)

Vardi [14] also argued that, based on the renewal theory, the joint distribution of (T,VO) under length-biased
sampling is f (t)/,u . Hence the density function for the observed length-biased event time is
dG(t)=tdF (t)/x, and then the survivor function for event time in the population is ]—“(t):_[twu‘ludG(u).
The full likelihood (6) under length-biased sampling can be rewritten as

L =1iL!dF(Xi) i;:(xi) i
) ﬁ (a6 (x ))é (/{:U_l/ldG (U))Mi

<T[de(x )T’ ( j:uflde(u))lfsi ,

which is exactly the same as Vardi (8). The Vardi [14] algorithm can therefore be used to obtain the NPMLE of
dG(t), and by using the relationship between dF(t) and dG(t), the NPMLE of dF(t) can be easily ob-
tained by dF (t)=t"dG (t)/[tdG(t).

Qin et al. [24] developed an expectation-maximization algorithm for the analysis of length-based data by con-
structing a complete data likelihood using the Turnbull [9] approach and considering contributions from
“ghosts™; these are individuals not sampled into the cohort because they died before the screening assessment.
Unlike Vardi [14] method, their likelihood function is derived from the unbiased distribution of event time and

EM algorithm directly estimates dF (t) , which allows one to impose any model and parameter constraints for
this distribution function.

>

3. Error in the Reported Onset Time
3.1. Introduction

Both the conditional and unconditional analyses make use of the reported onset time, and the latter requires the
additional assumption of a stationary disease incidence process. For individuals determined to have the disease
at the time of assessment, the disease may have begun several years earlier, making accurate recall of the onset
time difficult. There may therefore be considerable uncertainty about the reported onset time and the difference
between the true onset time and the reported onset time represents recall, reporting, or measurement error; we
will henceforth use the term measurement error.

Both the conditional and unconditional approaches to the analysis of prevalent cohort data will in general lead
to biased estimators in the presence of measurement error. We therefore investigate the impact of this measure-
ment error in both the conditional and unconditional frameworks for parametric and nonparametric settings.

3.2. The Classical Measurement Error Model

In retrospective studies, selected patients need to recall their disease onset times. In this case, the recall times are
very likely different from the exact disease onset times, even though perhaps they are quite close. Consider dis-
ease incidence over [A, R], and a sample of the prevalent cohort is selected at recruitment time R. Let V, be
the exact disease onset time which is not observed and U, be the retrospectively reported disease onset time.
A classical error model Carroll et al. [25] leads to

U, =V, +e 9

where e~ N|(0, a? is random measurement error, and A<V, <R.
The data obtained in this case are {X;,U;y,5,,R;i=1---,n}, where X; is observed event time or censoring
time, and &, is a censoring indicator. Notice that diseased individuals who are still alive at the recruitment time

and selected into the study need to report their onset time retrospectively, and their reported onset time should
also satisfy the condition A<U,<R. In this case the sample distribution of U, given V, becomes a trun-
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cated normal distribution, with density function written as g (u0|v0;¢) , suppressing the condition A<U, <R,
fE (UO _VO’¢)
F (R-Vy;0)—F (A=Vy:9)

where f (;¢) and F.(-¢) are the density and cumulative distribution functions of e with parameter
¢=logo, where o is the standard deviation; we let y =(6',¢') denote the vector of all parameters.

9 (Up|Voi¢) = (10)

3.3. Empirical Study of Measurement Error

If we ignore the measurement error and treat U, as the true onset time, both the left-truncation time and sur-
vival time will be in error. Conditional and unconditional parametric analyses will lead to biased estimators for
parameters of interest. To examine this impact, we conduct the following simulation study which follows the
same strategy of Huang and Qin (2011) to generate length-biased data. We let the true disease onset time V, be
uniformly distributed over [A R]=[0,100], and the underlying survival time T be independently generated
from a Weibull distribution with survival function  (t;0)=exp(—(4t)"); #=(log,logx) , and consider
A=05 and x=2. Hence the event happens at V, =V, +T at the calender time scale which can be recorded.
Suppose the censoring time, measured from the time of recruitment, is independently and uniformly distributed
over [1,2], which leads to a 30% true censoring rate. To incorporate the measurement error in the onset time,
we adapt the classical measurement error model (9) and assume that ¢~ N (0,02 with o=0.5 or 1.0 to re-
flect mild and strong measurement error, respectively. In presence of measurement error, although the ascer-
tainment criteria is still V, >R to form a prevalent cohort sample, both the left truncation time and survival
time are affected by the random error and are recorded as R—-U, and V,-U,, respectively. We set the sample
size as n = 500 and simulation nsim = 1000 data sets. To examine the impact of measurement error in disease
onset time, naive, conditional and unconditional parametric and nonparametric approaches are applied to the re-
sulting data, all of which involved treating U, as the “true” onset time. Table 1 summarizes the average bias
(EBIAS), empirical standard error (ESE), average model-based standard error (ASE), and empirical 95% cov-
erage probability of estimators based on naive (NAIVE), conditional (COND) and unconditional (UNCOND)
likelihoods.

From Table 1, we see that all three likelihood methods lead to biased estimators, since they all ignore the
measurement error in the disease onset time. Although the ESE and ASE agree with each other, the empirical

Table 1. Empirical properties of estimators in presence of measurement error in disease onset time using Naive likelihood
(NAIVE), Conditional likelihood (COND) and Unconditional likelihood (UNCOND); n = 500, nsim = 1000.

log A log x
Method

EBIAS ESE ASE ECP EBIAS ESE ASE ECP

o=1
NAIVE -0.434 0.025 0.024 0.000 0.095 0.042 0.042 0.381
COND 0.033 0.053 0.055 0.937 -0.250 0.065 0.064 0.024
UNCOND -0.090 0.037 0.036 0.295 -0.145 0.050 0.049 0.177

o=05

NAIVE —0.316 0.022 0.022 0.000 0.174 0.041 0.041 0.013
COND 0.003 0.040 0.040 0.958 —0.085 0.060 0.059 0.702
UNCOND -0.026 0.031 0.031 0.843 —0.047 0.049 0.048 0.833

o=0
NAIVE -0.267 0.023 0.022 0.000 0.214 0.041 0.041 0.000
COND 0.001 0.036 0.034 0.943 0.001 0.054 0.055 0.958
UNCOND 0.001 0.030 0.029 0.946 0.001 0.048 0.047 0.950
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coverage probability is far away from the nominal value. Further, when the variance of the measurement error
becomes smaller, the biases of estimators reduce a lot and the empirical coverage probabilities become better.
This makes sense because the smaller the variance of measurement error, the closer of reported onset time to the
true onset time, which reduces the impact of using the reported onset time.

Table 2 and Table 3 summarize the nonparametric estimates of the survivor functions and percentiles based
on naive, conditional and unconditional approaches, along with the estimates based on parametric models for
comparison. Similar conclusions can be drawn about the effect of measurement error in disease onset time for
nonparametric analyses. One thing needs to mention is that even when the variance of measurement error be-
comes smaller, the biases are still quite large for the naive approach, under parametric and nonparametric ana-
lyses. This is because the naive approach treats the recruited sample as a representative sample of the population
and does not correct for the selection bias for left-truncated or length-biased data.

To clearly understand the importance of correcting for measurement error in disease onset time for prevalent
cohort samples, we plot the true survivor function versus estimated survivor functions based on the naive, condi-
tional and unconditional likelihoods without correcting for measurement error, both parametric and nonparame-
tric models are considered. Figure 2 shows that ignoring the measurement error in onset time, both conditional
and unconditional likelihoods lead to biased estimate of survivor function.

4. The Corrected Likelihood
4.1. Corrected Parametric Conditional Likelihood

A “correct” likelihood approach can be used to account for the measurement error in the onset time and will

Table 2. Empirical properties of nonparametric and parametric survivor estimators at certain time points based on naive
(NAIVE), conditional (COND) and unconditional (UNCOND) likelihoods; n = 500, nsim = 1000.

Nonparametric Parametric
t True NAIVE COND UNCOND NAIVE COND UNCOND

EST ESE EST ESE EST ESE EST ESE EST ESE EST ESE

2.537 0.2 0516 0.024 0216 0026 0273 0.024 0522 0019 0219 0021 0276 0.019
2.195 0.3 0.617 0022 0291 0032 0360 0030 0623 0018 0.298 0.026 0367 0.023
1.914 0.4 0699 0021 0362 0.039 0440 0035 0705 0.017 0376 0.031 0453 0.026
1.665 0.5 0770 0019 0435 0.045 0518 0039 0773 0.015 0455 0.034 0537 0.028
1.429 0.6 0.831 0017 0510 0.051 0595 0043 0832 0.013 0537 0036 0620 0.028
1.194 0.7 0.886 0.014 0592 0.056 0.674 0046 0.883 0.011 0.625 0037 0.704 0.027

0.945 0.8 0933 0011 0.683 0.062 0.757 0.049 0928 0.008 0721 0035 0.791 0.024

2.537 0.2 0.428 0024 0210 0.024 0.223 0.022 0436 0019 0.212 0.019 0224 0.015
2.195 0.3 0546 0023 0302 0.029 0319 0.027 0555 0.018 0305 0.024 0322 0.020
1.914 0.4 0645 0021 0389 0.034 0411 0031 0654 0.017 0397 0.028 0417 0.023
1.665 0.5 0.733 0.019 0477 0.040 0503 0.03 0.737 0.016 0489 0.031 0512 0.026
1.429 0.6 0.809 0.017 0565 0.046 0594 0.042 0809 0.014 0582 0.032 0.606 0.027
1.194 0.7 0875 0.015 0.654 0.051 0.685 0.046 0871 0.011 0.677 0.032 0.700 0.026

0.945 0.8 0930 0011 0.745 0.055 0.776 0.049 0924 0.008 0.776 0.028 0.796  0.022
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Table 3. Empirical properties of nonparametric and parametric percentile estimators based on naive (NAIVE), conditional
(COND) and unconditional (UNCOND) likelihoods; n = 500, nsim = 1000.

Nonparametric Parametric
t, True NAIVE COND UNCOND NAIVE COND UNCOND
EST ESE EST ESE EST ESE EST ESE EST ESE EST ESE
o=1
toos 0453 0823 0.068 0.175 0.143 0.240 0.154 0.800 0.048 0.291 0.049 0.395 0.046
9 0.649 1.118 0.064  0.317 0.174  0.433 0.173 1.110 0.054  0.460 0.064  0.598 0.058
toss 1.073 1.732 0.069 0.735 0.195 0.948 0.158 1.752 0.058 0.873 0.086 1.067 0.073
toso 1665 2590 0.084 1445  0.167 1710 0.133 2,613 0.066 1.532 0.101 1.772 0.081
toss 2355 3581 0.117 2360 0.141 2.632 0.126  3.582 0.093 2.390 0.103 2.646 0.079
too 3.035 4519 0.182 3296 0140 3.538 0.120 4513 0.136 3311 0.112 3.548 0.082
toos 3.462 5.056  0.247 3.877 0.156  4.087 0.132 5.087 0.169  3.921 0.132  4.132 0.094
o=05
toos 0453 0.824 0.064 0.248 0.157 0.303 0.159 0.788  0.043  0.398 0.051 0434 0.044
tomo 0.649 1.086  0.057 0.433 0.183 0.518 0.162 1.066 0.046  0.588 0.062 0.632 0.053
toos 1.073 1609 0.056 0914 0.162 1.006 0.130 1.625  0.049 1.014  0.075 1.069 0.063
toso 1665 2321  0.066 1.501 0.136 1664 0125 2.352 0.053 1.635 0.080 1.695 0.066
toos 2355 3139 0.093 2370 0.113 2424 0116 3.148 0.071 2.385 0.079 2.437 0.062
ths 3.035 3921 0146  3.117 0.117 3.158 0.137 3.898  0.103 3.144  0.087 3.180 0.064
toos 3462 4371  0.202 3.582 0.137 3.615 0.137 4355  0.127 3.630 0.103 3.651 0.074
1.0 . . 1.04 . .
— True Survivor Function — True Survivor Function
— Parametric Naive — Parametric Naive
----- Parametric Conditional - Parametric Conditional
081 A%\ N Parametric Unconditional 0.81 - Parametric Unconditional
o — Nonparametric Naive 5 — Nonparametric Naive
R N U Nonparametric Cond s\ N @ - Nonparametric Cond
g 0.6 - Nonparametric Uncond g 0.6 - Nonparametric Uncond
& =
= =}
=] 2 |
é 0.4 g 04
u:; n
0.2 0.2
0.04 0.0
0 2 4 6 8 0 2 3 4 5 6
Time Time
(@ (b)

Figure 2. Nonparametric and parametric estimates of survivor function based on the naive, conditional and unconditional
likelihoods in presence of measurement error in disease onset time when ignoring the measurement error; n = 5000. (a) ¢ =

1; (b) 0= 05.
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yield unbiased estimators of the parameters of interest if the component model assumptions are correctly speci-
fied. Such a likelihood should be based on the reported onset time and the (possibly censored) survival time,
which will require explicit modeling of the measurement error process. Let h(v1|u0) be the density function of
the calendar time of death given the reported onset time, i.e.

h(v,|ugiw) =P(v|uy, A<U,Vy <RV, 2 Riy)
_ j:fT (v, =Vo:0) g (Up| Vo 8) T (Vo) dvg (11)
I;ﬁ (R=Vg;0) g (Ug|Vo: ) o (V) AV,

The “correct” conditional likelihood for right-censored left-truncated data {uy,X,d;;i=1.---,n} is of the
form

()= 1 05 )0 (bl ) T (v

i=1 I:ﬁ(R—Vio;g)g(uio|Vio;¢) fo (Vio)dViO

) s (12)
x J.A}-T (% _Vio;'g)g(uio|Vio;¢) fo (Vig ) dVig
R
fA]:T (R=Vi0:0) 9 (Uio|Vio: #) fo (Vio ) dVig
Similarly, the joint density of the observed onset time and calendar time of death is
P(u,, A<V, <RV, >2R)h ;
h(Vy,Ugiw ) = P(Vy,Ug|up, A<U, Vy <RV, 2 R;) = (4 0 1> R)h(4|uiy)
P(A<U,<R,A<V <R\, >R)
R (13)
_ jA‘E (R—Vo;H)g(u0|V0;¢) f0 (VO)dVO h(v |u .l//)
= 1|Y0 :
_[;]-"T (R=v,;0) fy(vg)dv,
where the last equality is derived by (10).
The “correct” unconditional likelihood can then be constructed as follows,
Le () =L (W)xLe (), 14)
where
R
n | F (R=Vi0:0)9(Uio|Vig: @) To (Vio ) dv,
LT\/I(V/): HIA T( i0 )g( 0| 0¢) o( 0) 0 . (15)

R
i-1 J.A]-"T (R—Vio;ﬁ) f (Vio)dvio

Since L,, might contain the information about parameters we are interested in, the “correct” unconditional
likelihood might be more efficient than the “correct” conditional likelihood. Further, when the underlying onset
time is a stationary process, then we can let f,(v,)=(R—A)" andlet A—>—w to obtain both “correct” like-
lihoods for length-biased data. R R

The maximum likelihood estimators 6, and &; under (un)conditional likelihoods can be easily found by
maximizing (12) and (14) respectively and have asymptotic normal distribution,as n — oo,

In(ye -y )—">N(0,27),
Vn (i —w)—">N(0.Z7),

where Z: and Z; are information matrices based on conditional (L) and unconditional (L) likelih-
oods function.

4.2. Empirical Study of Corrected Likelihood

To examine the performance of “correct” likelihoods in the presence of measurement error in disease onset time,
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we use the same strategy to generate length-biased survival data with measurement error in disease onset times
as in Section 3.2. The “correct” likelihood is considered here in two scenarios: the variance of the measurement
error (¢ =log O') is known or unknown. Figure 3 shows the estimated survivor functions based on the condi-
tional and unconditional likelihood approaches which ignoring the measurement error and “correct” conditional
and unconditional likelihood approaches based on (12) and (14). From this figure, we can find that the proposed
“correct” likelihood approach adjusts the measurement error well and leads to better estimates of the survivor
functions. Table 4 summarizes the empirical properties of the estimates based on the naive parametric condi-
tional likelihood, the “correct” parametric conditional likelihood, the naive parametric unconditional likelihood,
and the “correct” parametric unconditional likelihood. For the corrected likelihood we maximize (12) and (14)
both with respect to  (i.e. when ¢ is treated as unknown) and with respect to & when ¢ is fixed at the
true value. Whether the variance of error (¢) is known or unknown, the “correct” likelihood approach reduces
the bias of estimates, and the resulting empirical coverage probabilities are all within the acceptable range.
These simulations therefore provide empirical support to the claim that the “correct” likelihood approach adjusts
for the measurement error and yields consistent estimators. Notable is the only modest increase in the empirical
or average standard errors of parameter estimates when the variance of the measurement error distribution is es-
timated, especially for the shape parameter . The “correct” likelihood approach also provides a good estima-
tor of ¢, and the empirical bias of estimator for ¢ is small at 0.03 with standard error 0.27 for the conditional
analysis and 0.01 with standard error 0.11 for the unconditional analysis, when ¢ =1logl=0, for example.

5. Discussion

Statistical models and methods for the analysis of prevalent cohort data have been reviewed here from both the
conditional and unconditional frameworks. It is well known that naive analyses which ignore the selection bias
lead to overestimation of the survivor probabilities. The conditional likelihood based on the density for left-
truncated event times can be used to correct for this selection bias. The unconditional likelihood approach is
based on the joint density of the backwards and forward recurrence times yield more efficient estimators by in-
corporating the information contained in the onset times. The typical assumption required to formulate the asso-
ciated model is of a stationary disease incidence process. Since both approaches make use of the onset time in-
formation to correct for selection effects, misspecification of the retrospectively reported disease onset time can
have serious implications on the estimation. We investigate the impact of measurement error in disease onset
time for prevalent cohort sample and propose “correct” conditional and unconditional likelihoods to account for
the measurement error.

The methods we proposed to correct for measurement error in this paper are based on the parametric model. It

1.0

— True
----- Cond
N Corr.cond
0.8 Yo e Uncond
Corr.uncond
=
h
S 0.6
=
S 9
S
= 0.4
3
w
0.2
0.0
0 1 2 3 4 5 6 7

Time

Figure 3. Comparison of the true survivor function with es-
timated survivor functions based on conditional likelihood
and “correct” conditional likelihood approach; o = 1, n = 500,

nsim = 1000.
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Table 4. Empirical properties of estimators based on the naive conditional likelihood (COND.NA), the corrected condition-
al likelihood (COND.C), the naive unconditional likelihood (UNCOND.NA), and the corrected unconditional likelihood
(UNCOND.C); n =500, nsim = 1000.

log 4 log x
EBIAS ESE ASE ECP EBIAS ESE ASE ECP
¢=logl
COND.NA 0.0329 0.0534 0.0551 0.937 —0.2496 0.0655 0.0645 0.024
COND.C? -0.0024 0.0498 0.0516 0.957 0.0316 0.1682 0.1663 0.931
COND.C? 0.0011 0.0489 0.0507 0.968 0.0059 0.1140 0.1150 0.958
UNCOND.NA -0.0903 0.0368 0.0356 0.295 -0.1451 0.0503 0.0493 0.177
UNCOND.C! -0.0006 0.0464 0.0471 0.958 0.0188 0.1246 0.1214 0.955
UNCOND.C? 0.0005 0.0463 0.0471 0.962 0.0103 0.0984 0.0986 0.961
¢ =10g0.5

COND.NA 0.0028 0.0389 0.0399 0.970 —0.0877 0.0595 0.0591 0.703
COND.C! —0.0037 0.0383 0.0396 0.960 0.0389 0.1282 0.1154 0.947
COND.C? 0.0007 0.0381 0.0398 0.969 0.0011 0.0701 0.0720 0.960
UNCOND.NA —0.0248 0.0309 0.0312 0.867 —0.0485 0.0483 0.0483 0.826
UNCOND.C! 0.0021 0.0344 0.0361 0.968 0.0086 0.0703 0.0714 0.971
UNCOND.C? 0.0011 0.0334 0.0350 0.959 0.0019 0.0600 0.0618 0.964

Denotes case of unknown ¢ ; “Denotes case of known ¢.

is of interest to investigate what the limiting value is of standard nonparametric estimators for both the condi-
tional and unconditional frameworks. The modest increase in the standard error of the Weibull shape and scale
parameters when ¢ is estimated, suggests that it is promising to consider nonparametric estimation in the cor-
rected conditional and unconditional settings. Extending the corrected likelihoods to accommodate misspecifica-
tion of the onset times is also of interest for both frameworks.

We focused on the classical error model in this study, but other measurement error models are also of interest;
often individuals will report later onset times since their views on disease onset may be more closely tied to the
onset of symptoms than the actual disease. Methods to correct for this kind of measurement error are also im-
portant and are under development.
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