
Int. J. Communications, Network and System Sciences, 2009, 3, 169-247
doi:10.4236/ijcns.2009.23023 Published Online June 2009 (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

Mobility Trigger Management: Implementation
and Evaluation

Jukka MÄKELÄ, Kostas PENTIKOUSIS, Vesa KYLLÖNEN
VTT Technical Research Centre of Finland, Oulu, Finland

Email: {jukka,makela, kostas.pentikousis, vesa.kyllonen}@vtt.fi
Received December 11, 2008; revised April 21, 2009; accepted April 23, 2009

ABSTRACT

Modern mobile devices have several network interfaces and can run various network applications. In order to
remain always best connected, events need to be communicated through the entire protocol stack in an effi-
cient manner. Current implementations can handle only a handful of low level events that may trigger actions
for mobility management, such as signal strength indicators and cell load. In this paper, we present a frame-
work for managing mobility triggers that can deal with a greater variety of triggering events, which may
originate from any component of the node’s protocol stack as well as mobility management entities within
the network. We explain the main concepts that govern our trigger management framework and discuss its
architecture which aims at operating in a richer mobility management framework, enabling the deployment
of new applications and services. We address several implementation issues, such as, event collection and
processing, storage, and trigger dissemination, and introduce a real implementation for commodity mobile
devices. We review our testbed environment and provide experimental results showcasing a lossless stream-
ing video session handover between a laptop and a PDA using mobility and sensor-driven orientation trig-
gers. Moreover, we empirically evaluate and analyze the performance of our prototype. We position our
work and implementation within the Ambient Networks architecture and common prototype, centring in par-
ticular on the use of policies to steer operation. Finally, we outline current and future work items.

Keywords: Triggering, Mobility Management, Mobile Networks, Handover, Cross-Layer Information

Management

1. Introduction

Modern mobile devices, such as smartphones, Internet
tablets and PDAs, have several network interfaces and
can run various network applications, like web browsers,
email clients, and media players. Indeed, it is becoming
common that said devices can take advantage of wireless
LAN, PAN and cellular connectivity, and we expect that
in the coming years mobile WiMAX will be supported as
well. In such a multiaccess environment, mobility man-
agement support for both horizontal and vertical hand-
overs should be one of the basic functionalities in future
devices. Moreover, in order to allow a mobile device to
remain always best connected, several events need to be
communicated through the entire protocol stack, as we
explain in the following section. Nevertheless, current
implementations of state-of-the-art mobility management

protocols, such as Mobile IP [1] or Host Identity Proto-
col [2]), can only handle a small set of event notifications
that may lead to mobility management actions, including
handover execution.

In this paper, we argue for a novel mobility trigger
management framework that can handle a much larger
set of notifications related to events originating not only
from the lower layers of the protocol stack (physical,
data link, and network), but also from the upper layers
enabling the efficient use of cross-layer information for
mobility management. This framework needs to be open,
flexible, with low overhead, and incrementally deploy-
able. After describing the main parts of the architecture,
we present the implementation of such a framework,
which allows mobile devices to manage, on the one hand,
conventional mobility events, such as the availability of a
new network access, received signal strength indications

212 J. MÄKELÄ ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

(RSSI), network capacity load and, on the other hand,
higher level events, such as security alerts, policy viola-
tions, end-to-end quality of service deterioration, and
network access cost changes. In our framework, event
sources can deliver notifications to interested applica-
tions and other system entities used in a standardized
manner. We will refer to these standardized notifications
as triggers in the remainder.

The main elements of our trigger management
framework are detailed in [3,4], and include the entities
which generate the events (producers) and entities that
use the trigger information (consumers). Our trigger
management framework is capable of collecting event
information from various producers through a specific
collection interface. The collected events are then
processed and converted into a unified trigger format,
described in Section 5, and distributed to interested
consumer entities. A trigger consumer can be any entity
implementing the collection interface and can be lo-
cated in the same or in different node in the network. It
should be noted also that a same entity can act both as a
producer and a consumer.

In this paper we concentrate on the evaluation of the
implementation of our framework in the VTT Converg-
ing Networks Laboratory. Indeed this paper demonstrates
the feasibility of our designed framework over a real
testbed network. The concept and architecture behind our
framework with some analysis to the similar existing
concepts are also summarized below.

The rest of this paper is organized as follows. Section 2
introduces the fundamental elements of our framework
for managing triggers, reviews the related work in this
area and motivates our evaluation. Section 3 presents our
implementation of the triggering framework and Section
4 discusses the role of policies and rules in the system
design. Results from our experimental lab evaluation are
presented in Section 5. Related work is discussed in Sec-
tion 6, and Section 7 concludes the paper.

2. A Framework for Managing Mobility
Triggers

After surveying the relevant literature (see, for example,
[5,6-10]), and based on our own expertise, we identified
more than one hundred different types of network events
related to mobility management. We cluster triggers,
regardless of the underlying communication technology,
based on groups of events related to changes in network
topology and routing, available access media, radio link
conditions, user actions and preferences, context infor-
mation, operator policies, quality of service (QoS) pa-
rameters, network composition [11], and security alerts.

Figure 1 illustrates six different trigger groups as
boxes. The “offshoots” on top point to example triggers
belonging to each group. The rightmost group includes
representative link layer “up/down” triggers (irrespective
of the radio access technology). The leftmost group in-
cludes triggers originating from the application layer. In
this example, certain triggers originate from the node
(“System Resources”) while others originate from the
network (“Macro Mobility”). The “origin” corresponds
to the entity that produces the trigger, for example, the
radio access component. An advantage of our grouping
approach is that it allows us to detect relations between
otherwise disparate triggers. This prevents the generation
of excessive transient triggers based on, for example, the
same root-cause event, such as a link outage, and reduces
the number of events that need to be processed.

Event sources need to be able to deliver notifications
to interested applications and other system entities in a
uniform, concise, and standardized manner. This
approach simplifies notification handling considerably,
while guaranteeing sufficient diversity for event
separation and classification. In order to manage and
efficiently propagate triggers originating from a variety

Figure 1. An example of trigger groups.

MOBILITY TRIGGER MANAGEMENT: IMPLEMENTATION AND EVALUATION 213

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

of sources we developed a trigger management frame-
work, which we call TRG. TRG lays the foundation upon
which sophisticated handover (HO) operations can be per-
formed. We aim at establishing an extensible frame- work
where new sources of triggers can be defined and included
in a system implementation as necessary. Note that this is
quite different from other, in our opinion, more closed and
specific approaches, such as the one followed in the IEEE
802.21 [12] working group. On the surface, both TRG and
the IEEE 802.21 Media Independent Handover Services
standard seem quite similar, aiming to improve mobility
management performance. However as we argue in [13]
the mechanisms and services introduced by the IEEE stan-
dard do not include dynamic information elements and any
extensions will have to be introduced with lengthy stan-
dardization procedures in the future. Moreover, triggers
cannot originate from the higher layers of the protocol
stack, and system level events are simply out of scope of
IEEE 802.21. Finally, 802.21 provides services to com-
mand and use the lower layer information to enable seam-
less handovers and multiaccess, which is not in the domain
of TRG, but of the mobility management protocol. Last but
not least, TRG is designed to handle much more event
sources than MIHF. It is important to highlight that TRG
provides the means to disseminate and filter mobil-
ity-related information between one or more event sources
and several trigger consumers but that HO decisions are
still the responsibility of the mobility management protocol,
say, Mobile IP [1] or HIP [2]. TRG can also provide hints
about moving the communication endpoint from one de-
vice to another, as explained in Section 5.

A central part of the design is designating different
system entities as producers and consumers of triggers.
Policies, described in Section 4, are handled by the Pol-
icy Manager. For communicating with different entities,
TRG exposes three service access points (SAP). Event
sources use the Producer SAP, to register events and
emit notifications to TRG when changes occur. Con-
sumers use another SAP, to subscribe with TRG and
receive triggers in a single format when they become
available. Finally, the Policy Manager uses another SAP
to inform TRG about policies. Internally, TRG imple-
ments a local trigger repository and functional blocks for
processing triggers.

Consumers must state their need to receive triggers
and can choose to stop receiving them anytime. For ex-
ample, the Mobile IP daemon can receive all triggers
related to link layer events, but opt to receive only the
upper-layer triggers associated with security or policy
violations. In the former case, such a consumer takes
advantage of the trigger grouping functionality; in the
latter, it additionally requests trigger filtering. Consum-
ers can use these triggers to generate their own and, thus,
serve as an event producer for other entities. We expect

that TRG will be used to guide HO decision making and
execution. In particular, consumers can use triggers to
derive whether the mobile device is moving within a
single network or it is crossing different access technol-
ogy boundaries, and whether the addressing scheme,
trust and provider domains should be changed accord-
ingly.

3. Architecture and Implementation

The core implementation of TRG has three major
components: triggering event collection, trigger proc-
essing, and the trigger repository [3,4]. Triggering
events collection receives events from various sources
in the network system via the trigger collection inter-
face. New triggers can be introduced in a straightfor-
ward manner by implementing the trigger event collec-
tion functionality and supporting the trigger collection
interface. The latter allows sources to register their
triggers and to make them available to consumers. A
specific TRG implementation may contain several
event collectors, which may be distributed, and are re-
sponsible for collecting different types of events. The
trigger repository is designed to meet the stringent re-
quirements placed by mobility management, but can be
used to store non-mobility triggers as well. The basic
primitives include adding, removing, updating, and
disseminating triggers in a standardized format. Each
stored trigger has an associated lifetime and is removed
automatically once its time-to-live (TTL) expires.

The need for different event collectors arises from
the fact that the origin of an event source can be a
hardware device, a system component implemented in
kernel space, or an application implemented in user
space. For example, each device driver could imple-
ment its own event collection functionality, which
would be capable of handling triggering events pro-
duced by the specific device only. Moreover, sources
can also be located in the network such as at active
network elements or at the user’s home network. Fi-
nally, a particular TRG implementation can act as a
consumer to another TRG located in a different node.
Thus, orchestrating the collaboration of, perhaps, sev-
eral collection entities is needed in order to efficiently
gather a larger amount of events.

Having dedicated collectors for different event sources
enables the use of TRG in different operating systems as
well. The collector can format the events to the format
that TRG understands and there is no need to modify the
core of TRG functionality; instead the collector can be
modified as necessary. This is also one of the key points
in the architectural design of TRG that enables it to han-
dle cross-layer information by having a collector at dif-
ferent layers as needed. For example TRG can get simi-

214 J. MÄKELÄ ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

lar information considering the connectivity in FreeBSD
through a collector that uses Route Socket and in Linux
through a similar collector using RTnetlink socket but
obviously these collectors need to have their own im-
plementation. The core of TRG could be implemented in
kernel space for performance reasons and allowing for
direct access to lower layer information. On the other
hand, TRG can be implemented in application space al-
lowing for greater flexibility and easing implementation
and code evolution. The prototype described in this paper
follows the latter approach. Of course, certain event col-
lectors will have to be implemented closer to the lower
layers in the future.

The event sources are connected with TRG via pro-
ducer SAP, as described also in section 2. The perform-
ance of the event collectors is obviously very important.
They need to be fast enough to react to all different
events, but the collector implementation itself is not part
of the TRG framework architecture. TRG provides the
interfaces to connect different event producers with the
possible consumers by defining the SAP’s between TRG
and them. TRG core functionality per se provides the
mechanisms for distributing, filtering and handling the
policies for the whole system of the mobility event han-
dling, but the collectors are out of scope of this paper.
Figure 2 illustrates the TRG framework with the differ-
ent event producers and consumers.

After events are collected from the producers, they are
handed over to the trigger processing engine which is
responsible for time-stamping and reformatting triggers
(if necessary), and assigning them to the appropriate
group. Consumers can subscribe by specifying a set of
triggers (and, optionally, filtering rules) and are expected
to unsubscribe when they do not wish to receive them
any longer. For each consumer subscription, TRG makes
sure that filters are grammatically and syntactically cor-
rect, and accepts or rejects the subscription. Basic rules

can also be used as building blocks for crafting more
sophisticated rules.

4. Policies and Rules in TRG

TRG supports the application of different triggering
policies, defined as a set of classification, filtering, trust,
and authorization criteria/rules. This allows our imple-
mentation to enforce a different policy at different times
or wh en the node operates in different contexts. The
availability of a system-wide policy and consumer- sup-
plied filters lies at the centre of our TRG design. These
two are orthogonal, providing flexibility and adaptabil-
ity.

System policies ensure that only designated consumers
can receive certain groups or types of triggers. For ex-
ample, a node may operate under different policies re-
garding network attachment depending on whether the
user is on a business or a leisure trip. Policies can also
establish different trigger classification and groupings in
different contexts and are typically stored in a separate
repository, accessible to the TRG implementation. Filters
allow a consumer to focus a trigger subscription. For
example, a monitoring application may be interested in
receiving all network utilization measurements, while a
VoIP application may be interested in receiving a trigger
only when utilization exceeds a certain threshold and the
user is in a call. In fact, a VoIP application can even opt
to be an intermittent trigger consumer, subscribing and
unsubscribing to receive certain triggers solely when
needed.

Our TRG implementation uses access control policies
to define:
·Which producers are allowed to register and send

triggers to TRG. Producers are identified by the trig-
ger IDs they register, and can be chosen on a system
basis. For example, a policy allows only specific
producers to register with TRG.

Figure 2. TRG architecture.

MOBILITY TRIGGER MANAGEMENT: IMPLEMENTATION AND EVALUATION 215

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

·Which consumers are allowed to subscribe to triggers.

Policies can be very specific, prescribing which con-
sumers can receive certain triggers and from which
producers. Consumers are identified by their locator
(typically a host address). For example, in our proof
of concept implementation described in Section 5, we
can enforce a policy that dictates that triggers from
producer with ID=50 are allowed to be subscribed
only from “localhost” entities.

The Policy Manager applies access control using poli-
cies described in XACML (OASIS eXtensible Access
Control Markup Language) [14]. Figure 3 illustrates
which Policy Manager functions are called when a pro-
ducer registers or a consumer subscribes. Typically the
decision on whether to allow producer registrations and
consumer subscriptions is made immediately based on
the system policies and the result is returned to the initi-
ating entity. In the case where a consumer attempts to
subscribe to all triggers, the decision may be deferred for
when triggers become available. That is, the subscription
for “all triggers” effectively becomes a subscription for
“all triggers allowed”, when system policies dictate so.
In our current prototype implementation, policies are
described using access control lists read from a configu-
ration file. Policies also define which consumers are al-
lowed to subscribe and for which trigger.

5. Results

We tested our user-space C++ implementation of TRG
on laptops running FreeBSD release 6.1, Linux Fedora
Core 3 with kernel 2.6.12 and Windows XP, and on a
PDA running Linux Familiar v.0.8.4 with kernel 2.4.19.
Architecture design with the possibility to use separate
event collectors in different environment, as discussed in
Section 3, makes our TRG implementation portable and

is currently being integrated in several prototypes, in-
cluding the Ambient Networks [15] prototype [16-18].
For communication between producer, TRG and con-
sumer a Web Service XML-based communication on top
of HTTP was used. In this integrated prototype, TRG
takes care of the delivery of all mobility-related events.
Events were formatted according to the unified trigger
format shown in Table 1.

In previous work we presented a proof-of-concept test-
bed and demonstrated the feasibility of the concepts gov-
erning our TRG implementation. These preliminary vali-
dation results are summarized briefly in Subsection 5.1;
further details are available in [4]. Subsection 5.2 pre-
sents the first detailed results of our stress-test empirical
evaluation of TRG in the lab.

5.1. Proof of Concept Validation

In [4,19], TRG was employed to enable streaming video
session handovers between different mobile devices. In
the scenario, the user starts watching a video streamed
to his laptop. His GNU/Linux PDA is nearby and the
user decides to move to another room but would like to
keep watching the video on the way. The commercial,
off-the- shelf (COTS) PDA is augmented with a
multi-sensor device (detailed in [20]), which was ex-
tended to provide “device orientation” triggers. For ex-
ample, when the user picks up the PDA, a “vertical ori-
entation” trigger is produced, initiating a session HO
from the laptop to the PDA. The two devices have to
coordinate and arrange for the transfer of the video
streaming session. A successful session handover allows
the user to receive the streaming video on the PDA over
the WLAN seamlessly. The user can also explicitly ini-
tiate a session HO by pressing a PDA button. In this
example, TRG handles triggers associated with mobility,

Figure 3. TRG-policy manager message sequence diagram.

216 J. MÄKELÄ ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

Table 1. Trigger format.

Trigger data member Type Description

id integer Trigger identifier, same as producer identifier. Maps producer name to identifier.

type integer Specific to the trigger identifier. Mapping producer information to type.

value std:string Specific to trigger type.

timestamp time_t Time that a trigger enters the TRG repository.

orientation, and user preferences, keeping the video
flowing smoothly while changing the communication
end-point. Two logical topologies were evaluated in our
lab. First, all devices are connected using IEEE 802.11 in
ad-hoc mode, as if the user streamed a video from his
digital collection at home. Second, the video streaming
server is located in a different network, as would be the
case when watching a video from a service provider over
the Internet. For both setups in our lab proof-of-concept
validation, we stream a 10-minute video encoded at 576
kb/s over UDP. At t = 3 min, a session HO from the lap-
top to the PDA is triggered, and at t = 7 min, the session
is “moved” back to the laptop.

We captured all traffic traces during the experi-
ments using tcpdump and cross-checked all packet IDs
sent by the video server with the packet IDs received
at the laptop and PDA video clients to confirm that no
packet losses occurred. Moreover, the effect of TRG
signalling and the actual session handover on packet
delay is negligible, compared to packet delays before
and after the session handover. Figure 4 illustrates the
packet inter- transmission times as recorded by
tcpdump at the streaming server and the packet in-
ter-arrival times at (a) the receiving laptop and (b) the
receiving PDA. On the left-hand side, the packet in-
ter-arrival time measured at the streaming server, lap-
top and the PDA during the delivery of the 10-min
video stream are shown. The band around 50 ms indi-
cates that the packets are sent and received in an or-
derly manner. We note a small number of inter-arrival
times outside this band. The vast majority of in-
ter-arrival times do not exceed 150 ms; only a handful
of packets out of more than 12000 exceed this thresh-

old. On the right-hand side of Figure 4, we zoom in at
around t=3 min when the first session HO is triggered
from the laptop to the PDA. As the figure illustrates,
only a few packets had >0.1 s inter-arrival time. These
results are very promising, despite the fact that this is
a prototype implementation, especially when taking
into consideration that the PDA was running the video
client and captured packets using tcpdump throughout
the experiment leaving few spare system resources
available.

This paper focuses on the empirical validation and
evaluation of TRG. The theoretical aspects (scalability,
security, reliability) have been partly addressed else-
where [21] and further analysis is also part of our future
work agenda. It is important to note that these set of ex-
periments go beyond showcasing the concept of TRG-
assisted session HOs. This is simply a particular applica-
tion of triggers leading to a HO. Instead, we emphasize
that these experiments aim at assessing the feasibility of
introducing a TRG implementation in small COTS
handheld devices, a result which was not warranted when
we embarked in developing TRG.

5.2. Experimental Evaluation

Since we conducted the experiments presented in the
previous subsection, we continued the development and
evaluation of TRG and used an updated implementation
of TRG enhanced with web service interfaces and ran
tests where we submitted 100000 triggers from several
sources to TRG and delivered those to different consum-
ers. We consider two test cases, with the aim of quan-

Figure 4. Experimental results when triggering a session HO.

MOBILITY TRIGGER MANAGEMENT: IMPLEMENTATION AND EVALUATION 217

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

tifying TRG performance under stress (and perhaps
clearly unrealistic) conditions. Test Case 1 employs n
producers connected with m consumers via TRG. During
the test, each producer sends 100000 back-to-back trig-
gers and all triggers are distributed to all m consumers.

This means that TRG needs to process triggers

and deliver triggers. On the left-hand side of
Figure 5, we illustrate an example case where n=3 pro-
ducers A, B and C each send 100000 triggers, with trig-
ger IDs 51, 52 and 53, respectively, to m=4 consumers
(labelled I, II, III, IV). That is, in this particular scenario,
each of the four consumers will receive 300000 triggers
from TRG.

510n
510mn

Table 2 shows the number of delivered triggers with
average processing times in milliseconds for each
trigger received by TRG from the producers in Test
Case 1. In this case, only the number of consumers has
a significant effect on the processing time of each
trigger. This indicates that TRG can cope with several
registered producers even when there is no subscribed
consumer from certain producers. Moreover, the aver-
age trigger processing time is only few milliseconds
per subscribed consumer in this stress test of the pro-
totype implementation.

Since there are several possible scenarios about how
triggers are distributed between producers and consum-
ers we made also a Test Case 2 setup, illustrated in the
right-hand side of Fig. 5, where each consumer has only
one dedicated producer. This means that TRG needs to

process triggers and deliver triggers.
If there are more producers than consumers, triggers will
be distributed evenly between the available consumers.
As mentioned above, all tests were made using a C++
implementation of TRG with a web service interface
towards producers and consumers. We used a laptop with
an Intel Pentium M 1.70 GHz PC with 1 GB RAM, run-
ning FreeBSD release 6.1 in the tests reported in this
subsection.

510n 510m

Figure 6 shows the total processing time of Test Case
1, with and without employing the TRG filtering mecha-
nism. It can be seen that when the number of the con-
sumers and producers increases, so does the total proc-
essing time. This is expected since the number of proc-
essed triggers is increasing when adding more consumers
and producers. The costs of adding consumers and produc-
ers are both linear. But the cost of adding consumers is
greater than the cost of adding producers. For example
when comparing the calculated slope k = ∆y/∆x of the
curves of total processing time, with and without filtering,
we see that the processing time increases faster the more
consumers are introduced (slope of the curve with one
consumer k = 177,6 and with 5 consumer k = 454,9 in Test
Case 1 without filtering), this can be explained as a cost of
the duplication of triggers because the number of triggers
that have to be duplicated and delivered to consumers in-
creases when adding more consumers. Anyhow this does
not increase the average processing time of one trigger.
The number of producers has also effect to the total proc-
essing time, but not as much as the number of consumers.

Figure 5. Triggers in Test Cases 1 (left) & 2 (right).

Table 2. Total number of delivered triggers and average processing time (in ms) per trigger in Test Case 1.

 Number of Producers

Number of Consumers 1 2 3 4 5

1 100k, 1.7 ms 200k, 1.7 ms 300k ,1.8 ms 400k, 1.7 ms 500k, 1.8 ms

2 200k, 2.3 ms 400k, 2.5 ms 600k, 2.4 ms 800k, 2.5 ms 1000k, 2.4 ms

3 300k, 3.2 ms 600k, 3.2 ms 900k, 3.2 ms 1 200k, 3.1 ms 1500k, 3.3 ms

4 400k, 3.7 ms 800k, 3.8 ms 1200k, 3.8 ms 1600k, 3.8 ms 2000k, 3.8 ms

5 500k, 4.5 ms 1000k,4.6 ms 1500k, 4.7 ms 2000k, 4.7 ms 2500k, 4.5 ms

218 J. MÄKELÄ ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

0

500

1000

1500

2000

2500

1 2 3 4 5

0

500

1000

1500

2000

2500

1 2 3 4
Number of Producers

T
ot

al
 p

ro
ce

ss
in

g
tim

e
(s

)

Number of Producers

T
o

ta
l P

ro
ce

ss
in

g
 ti

m
e

 (
s)

5

1 Consumer
2 Consumers
3 Consumers
4 Consumers
5 Consumers

1 Consumer

2 Consumers

3 Consumers

4 Consumers

5 Consumers

Figure 6. Total processing time in Test Case 1 without (left) and with (right) filter processing.

We also evaluated the cost of using the filtering func-
tion of TRG. With Test Case 1 we had all five producers
registered and each one was sending 100000 triggers. It
follows that TRG was receiving total of 500000 triggers
during the test. The right-hand of Figure 6 shows the
total processing times when the filtering mechanism was
used. When there is one producer, the triggers from the
other four producers are filtered away, and the triggers
from the sole producer are duplicated and delivered to all
four consumers. In the case with two producers the trig-
gers from three producers are filtered away, and so on.
The results show that it takes more time to process all
triggers but this is not caused by the filtering mechanism
itself. When comparing the total processing times, in the
case where triggers from 1 producer are delivered to
consumers in Figure 6, the total processing time is in-
creased when the filtering mechanism is used, but this is
because now there are five times more triggers received
by TRG than in the case without the filtering mechanism,
since all five producers are sending 100000 triggers all
the time during the test. When the filtering mechanism is
not used, the number of producers is controlled by mak-
ing a new registration per producer.

To further quantify system behaviour when filtering is
employed, we consider Test Case 2. When evaluating the
filtering function in Test Case 2, each consumer had a
filtering rule that was true for all triggers, allowing the
distribution of all triggers to the subscribed consumers.
By having this “receive all triggers” rule we were able to
test the effect of the filtering mechanism, since every
time a trigger is produced, TRG needs to run the filtering
code before disseminating the trigger to consumers even
though none of the triggers are in practice going to be
filtered away. The purpose was to test the effect and cost
of running the filtering function. The TRG filtering
mechanism per se does not have a significant effect on
the overall processing time, especially when compared to
the effect of increasing the number of consumers. When
comparing the processing times in Test Cases 1 (Table 2)
and Test Case 2 (Figure 7) we see that the duplication of
each trigger to every consumer, needed in Test Case 1,
increases processing times. In Test Case 2, when the
number of producers and consumers are equal, the dif-
ference of the processing times can be measured in mi-
croseconds, since now there is no need to duplicate trig-
gers.

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4

Number of Producers

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

pe

Number of Producers

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

pe

1 Consumer

5

r
tr

ig
ge

r
(m

s)

1 Consumer
2 Consumers
3 Consumers
4 Consumers
5 Consumers

r

2 Consumers
3 Consumers

4 Consumers

tr
ig

ge
r

(m
s)

5 Consumers

Figure 7. Average processing time in Test Case2 per trigger without (left) and with (right) filtering.

MOBILITY TRIGGER MANAGEMENT: IMPLEMENTATION AND EVALUATION 219

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

The test and evaluation cases presented in this Section

showed that it is in fact the duplication of triggers and
nu

as
sh

the benefits of
sing event information, for example, to proactively

 an infor-

mation service that will facilitate media independent
handovers. The scope of the IEEE 802.21 standard is to
pr

e a HO.

ork for man-
r

i-

mber of messages that have a biggest effect on the
processing time of triggers. It can be seen in Figure 7, for
n = 5 producers and m = 5 consumers, that the process-
ing time does not depend on the number of consumers.
There is no duplication of triggers in this case either.

The feasibility of using TRG to process, filter and dis-
seminate a very large amount of triggering events w

own in practice. Each case showed that the processing
time of one trigger does not increase, even when proc-
essing a huge amount of triggers. Although the stress-test
cases are clearly unrealistic, they demonstrate that using
TRG does not cause any major delays to handover times.
On the contrary, TRG enables handover decision making
mechanisms to react more rapidly and to larger set of
events. It is also important to note that the TRG filtering
mechanism does not have a major effect to processing
times and this allows the handover decision making
mechanisms to react faster to relevant events. Although
the filtering mechanism can be used for the pre-decision
about which events are to be collected, the handover de-
cision per se is left to separate mechanisms with the de-
cision algorithm. It was also shown that the cost of add-
ing more consumers and producers increase processing
times linearly and the cost of using filtering has only a
marginal effect on the processing times. Of course the
more triggers there are, the more total processing time is
needed for processing and disseminating all triggers.
However, by implementing grouping and classification
of triggers [4] and having mechanism, e.g. in the TRG
source for prioritizing trigger delivery which allows
critical triggers to be processed and distributed faster,
TRG is ready to process the triggering events.

6. Related work and Discussion

P
u

reviously published work [7-9] shows

perform a handover in order to maintain QoS levels. Our
goal is to define a framework that supports the event
collection and processing, and trigger distribution possi-
bly from hundreds of different sources. We concur with
Vidales et al. [7] that in heterogeneous network envi-
ronments several sources of events and context informa-
tion should be consulted in order to achieve seamless
connectivity and develop swift mobility management
mechanisms. Furthermore, earlier work in other event/
notification systems [22,23], which introduces mecha-
nisms on how to implement such systems, along with the
evaluated event generation cases is very encouraging and
complimentary to our effort in defining TRG as a spe-
cialized notification system for mobility-related events
which originate from the entire protocol stack.

The IEEE 802.21 Media Independent Handover (MIH)
Services [12] working group is standardizing

ovide a mechanism that provides link layer intelligence
and other related network information to upper layers to
optimize handovers between heterogeneous IEEE 802
systems and facilitates HOs between IEEE 802 and cel-
lular systems. IEEE 802.21 assists in HO Initiation,
Network Selection and Interface Activation. The purpose
is to enhance the experience of mobile device users. The
standard supports HOs for both stationary and mobile
users. For mobile users, HOs are usually needed when
the wireless link conditions change. For stationary users,
HOs are needed when the surrounding environment
changes. Both mobile node and network may make deci-
sions about connectivity. The HO may be conditioned by
measurements and triggers supplied by the link layers on
the mobile node. The IEEE 802.21 standard defines ser-
vices that enhance HO between heterogeneous access
links. Event service, Command service and Information
service can be used to determine, manage and control the
state of the underlying multiple interfaces. By using the
services provided by MIH Function users, like Mobile IP,
are able to better maintain service continuity, service
adaptation, battery life conservation, networks discovery
and link discovery. MIH Function also facilitates seam-
less handovers between heterogeneous networks.

The IEEE 802.21 Event Service has common charac-
teristics with our TRG design but does not prescribe a
particular implementation and stops short of allowing
upper-layer entities to provide events that can driv
It was also impossible to compare the performance of the
implementations since no MIH implementation was
available when these tests were performed. Our approach
emphasized standardized ways for consumers to receive
trigger from a variety of sources. TRG framework is also
fully implemented and tested in a laboratory environment
with several operating systems. Easy application regis-
tration to TRG permits them to get the information they
want from different sources. Event generation, on the
other hand, is by its very nature a distributed process and,
without a central agent, all sources and consumers are
forced to create a fully meshed topology. By introducing
TRG, event collection becomes straightforward and
trigger distribution standardized. That is why we propose
that instead of using only the services provided by the
IEEE 802.21 MIH functionality future mobile systems
should use also TRG alongside 802.21 services. IEEE
802.21 can be, for example, the source entity that pro-
vides the lower layer information to TRG.

7. Concluding Remarks and Future Work

his paper presented a novel TRG framewT
aging mobility-related triggers and its functionalities fo
collecting information from various event sources orig

220 J. MÄKELÄ ET AL.

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

ating not only from the lower layers of the protocol

imited
pr

in

Tests will benefit of the cascaded func
al

 we will also map the trigger
m

ility support
in IPv6,” Series Request for Comments, No. 3775. IETF,
June 2004.

n
stack (physical, data link, and network), but also from
the upper layers and processing the collected events in a
standardized trigger format. By using the defined
mechanism, TRG framework enables easy and efficient
use of cross-layer and cross-domain information. This
framework was implemented and evaluated by perform-
ing tests in a real environment with several operating
systems (Linux, FreeBSD, Windows, Linux Familiar for
the PDA and Maemo Linux for the Nokia tablet) to
prove its robustness and measure its performance.

The TRG framework experimentations with the per-
formance test and evaluations showed that the imple-
mented TRG functionalities are very promising. TRG
can run efficiently in small device with very l

ocessing power and can enable lossless session hand-
overs between devices. Stress tests showed that the TRG
filtering mechanism does not cause delay for processing
time and TRG can be used to filter and disseminate large
numbers of triggers from several information sources.

Our Triggering management framework is currently
integrated with Mobile IP [1] and HIP [2] protocols and
is also a part of the Ambient Networks Architecture [15]
and prototype as discussed in [16-18]. TRG and MIP

tegration with the use of network information a.k.a
cascaded triggering presented in [24] showed the benefits
of using TRG for the Mobile IP in the case when net-
works will be congested. HIP integration with TRG and
test evaluations presented in [25] showed as well that
TRG processing have only a small factor (less than 9%)
to the total; trigger collection, processing and dissemina-
tion process.

Next steps will be to run a complete test with these in-
tegrated mobility protocols in real heterogeneous envi-
ronments with the WLAN, 3G/HSDPA, WiMAX access
technologies. tion-

ity of TRG when TRG can be located both at the ter-

minal and network side as discussed in [24]. For example,
TRG sources at the network side can monitor the net-
work capacity load and other QoS metrics in overlapping
networks and based on this information, the network side
TRG can send triggers to the terminal initiating or even
forcing a vertical handover.

While the tests and evaluations are made in a real test-
bed environment, a simulation environment will be built to
fulfil the tests and analysis of the performance and scal-
ability. In a forthcoming study

anagement framework with the recently finalized stan-
dard by the IEEE 802.21 working group [12].

8. References

1] D. Johnson, C. Perkins, and J. Arkko, “Mob[

[2] A. Gurtov, “Host Identity Protocol (HIP): Towards the se-
cure mobile Internet,” Wiley and Sons, pp. 328, June 2008.

r, “Third generation

[16] P. Pääkkönen, P. Salmela, R. Aguero, and J. Choque, “An
integrated ambient networks prototype,” Proceedings

[3] J. Mäkelä, K. Pentikousis, M. Majanen, and J. Huusko,
“Trigger management and mobile node cooperation,” in
M. Katz and F. H. P Fitzek (Editors), Cognitive wireless
networks: Concepts, methodologies and visions inspiring
the age of enlightenment of wireless communications,
Springer-Verlag, pp. 199-211, 2007.

[4] J. Mäkelä and K. Pentikousis, “Trigger management
mechanisms,” Proceedings of the Second International
Symposium on Wireless Pervasive Computing, San Juan,
Puerto Rico, pp. 378-383, February 2007.

[5] P. Prasad, W. Mohr, and W. Konhuse
mobile communication systems,” Boston, MA, Artech
House Publishers, 2005.

[6] J. Eisl (Editor), “Ambient networks D4.2: Mobility ar-
chitecture & framework,” EU-project IST-2002-507134-
AN/WP4/D4.2, 2005.

[7] P. Vidales, J. Baliosian, J. Serrat, G. Mapp, F. Stajano,
and A. Hopper, “Autonomic system for mobility support
in 4G networks,” IEEE JSAC, Vol. 423, No. 12, pp.
2288-2304.

[8] S. Ishihara, K. Koyama, G. Miyamoto, and M. Kuroda,
“Predictive rate control for realtime video streaming with
network triggered handover,” IEEE WCNC, Vol. 3 No.
13-17, Las Vegas, Nevada, USA, pp. 1335-1340, 2005.

[9] H. Chaouchi and P. Antunes, “Pre-handover signalling
for QoS aware mobility management,” International
Journal of Network Management, Vol. 14, No. 6, pp.
367-374, 2005.

[10] E. Casalicchio, V. Cardellini, and S. Tucci, “A layer-2 trig-
ger to improve QoS in content and session-oriented mobile
services,” Proceedings of 8th ACM international Sympo-
sium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, Montral, Quebec, Canada, pp. 95–102,
2005.

[11] C. Kappler, P. Mendes, C. Prehofer, P. Pöyhönen, and D.
Zhou, “A framework for self-organized network compo-
sition,” Lecture Notes in Computer Science, No. 3457,
Springer, pp. 139-151, 2005.

[12] IEEE Std 802.21™-2008, IEEE standard for local and
metropolitan area networks-Part 21: Media independent
handover services, IEEE, January 2009.

[13] R. Giaffreda, K. Pentikousis, E. Hepworth, R. Agüero,
and A. Galis, “An information service infrastructure for
Ambient Networks”, Proc. 25th International Conference
on Parallel and Distributed Computing and Networks
(PDCN), Innsbruck, Austria, February 2007, pp. 21-27.

[14] OASIS eXtensible Access Control Markup Language,
OASIS specification, Available: http://www.oasis-open.
org/committees/xacml/.

[15] N. Niebert, A. Schieder, J. Zander, and R. Hancock (Eds.),
“Ambient networks; co-operative mobile networking for
the wireless world,” Wiley & Sons, 2007.

MOBILITY TRIGGER MANAGEMENT: IMPLEMENTATION AND EVALUATION 221

Copyright © 2009 SciRes. Int. J. Communications, Network and System Sciences, 2009, 3, 169-247

P. Pääkkönen, et al., “Ambient

mbient Networks Workshop on Mobility, Mul-

ing the way for future mo-

 and applications,”

on Next Generation Internet Networks (NGI),

uting (ITCC),

ts,” Proceedings of International Workshop

less Mobile and Multimedia Networks,

SoftCOM 2007, Split, Croatia, pp. 27-29, September
2007.

[17] C. Simon, R. Rembarz,
networks integrated prototype design and implementa-
tion,” Proceedings 16th IST Mobile Summit, Budapest,
Hungary, pp. 1-5, July 2005.

[18] K. Pentikousis, R. Agüero, J. Gebert, J. A. Galache, O.
Blume, and P Pääkkönen, “The ambient networks het-
erogeneous access selection architecture,” Proceedings
First A
tiaccess, and Network Management (M2NM), Sydney,
Australia, pp. 49-54, October 2007.

[19] J. Makela, R. Aguero, J. Tenhunen, V. Kyllönen, J.
Choque, and L. Munoz, “Pav
bility mechanisms: A testbed for mobility triggering &
moving network support,” Proceedings 2nd Interna-
tional IEEE/Create-Net Tridentcom, Barcelona, Spain,
March 2006.

[20] E. Tuulari and A. Ylisaukko-oja, “SoapBox: A platform
for ubiquitous computing research

Obje

Lecture Notes in Computer Science 2414, Pervasive
Computing, Zurich, CH: Springer, pp. 125-138, August
2002.

[21] C. Pinho, J. Ruela, K. Pentikousis, and C. Kappler, “A
protocol for event distribution in next-generation dy-

namic networks,” Proceedings Fourth EURO-NGI Con-
ference

Krakow, Poland, pp. 123-130, April 2008.

[22] C. H. Lwi, H. Mohanty, and R. K. Ghosh, “Causal
ordering in event notification service systems for mobile
users,” Proceedings of International Conference on
Information Technology: Coding and Comp
Vol. 2, pp. 735-740, 2004. Conference Distributed
Computing Systems Workshops (ICDCS 02), pp. 639-
644, 2002.

[23] H. A. Duran-Limon, G. S. Blair, A. Friday, T. Sivaharan,
and G. Samartzidis, “A resource and QoS management
framework for a real-time event system in mobile ad hoc
environmen

ct-Oriented Real-Time Dependable Systems (WORDS),
pp. 217-224, 2003.

[24] M. Luoto and T. Sutinen, “Cross-layer enhanced mobility
management in heterogeneous networks,” Proceedings of
International Conference on Communications, Beijing,
China, May 2008.

[25] P. Pääkkönen, P. Salmela, R. Aguero, and J. Choque,
“Performance analysis of HIP-based mobility and trig-
gering,” Proceedings of IEEE International Symposium
on a World of Wire
2008.

