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Abstract 
We observe the gravity discharge of liquid through the short cylindrical tube of diameter of 2 mm 
and aspect ratio 2.5 and 10 attached to the underside of Mariotte bottle. When the hydrostatic 
head is reduced and approaches to a certain value, a laminar jet escaped from the nozzle is inter-
rupted and the discharge is drop wise. The plot of the discharge rate as a function of hydrostatic 
head does not pass through the origin as predicted by Torricelli law for an ideal liquid. We 
attribute this feature to the energy losses related with creating a new free surface area of the jet. 
The measurements for water and aqueous ethanol solution are compared with theoretical predic-
tions based on the modified Bernoulli equation with the interfacial energy density correction and 
good agreement is observed. 
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1. Introduction 
The simplest example of the use of Bernoulli’s equation in introductory physics course [1] is Torricelli’s law, 
which relates the velocity of efflux of a liquid issuing from the small orifice in a tank υ  to the hydrostatic head 
h  of the liquid: 

2ghυ =                                           (1) 

where g  is the acceleration due to gravity. This result was recently questioned [2] [3] in the light of experi-
mental evidence that at any nonzero h  the average discharge velocity is zero. The reason is that Bernoulli’s 
equation, which is a macroscopic mechanical balance of energy of an ideal, non-viscous liquid, cannot strictly 
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be applied in the case of real flow due to the various dissipation effects [4] [5], which Equation (1) does not in-
clude. Nevertheless, taking into account the energy losses, Bernoulli’s equation was used [3] to modified Equa-
tion (1) as follows: 

( )2
1

g h Z
k

υ = −∆
+

                                    (2) 

where k  and Z∆  are empirical constants related, respectively, with the losses due to the losses proportional 
to the fluid velocity squared and the losses independent of the fluid velocity. While the presence of the constant 
k  in Equation (2) is somehow justified, there is no physical explanation for the constant Z∆ . The interpreta-
tion proposed in [6] associates Z∆  with capillary pressure, which hold up the liquid from coming out of the 
hole. 

To give further understanding to this problem, we use the Bernoulli equation modified by the surface energy 
density and viscosity effect [5] to explain the physical meaning of the correction term Z∆ . The validity of this 
approach is demonstrated by measuring the discharge velocity of Newtonian liquids with different surface ten-
sion and viscosity using discharge tubes of different aspect ratio. 

2. Theoretical Background 
Consider a Newtonian liquid of density ρ , viscosity η  and surface tension γ  discharged under gravity 
through the short tube of radius r  and length L  attached at the side of a large tank. A volume flux from the 
tube generates the axisymmetrical cylindrical jet of radius r . We apply the modified Bernoulli equation [5] 
with the interfacial energy density along the streamline as is schematically shown in Figure 1: 

2
los

1 constant
2

Ap gz w
V

ρυ ρ γ ∂ + + + + = ∂ 
                           (3) 

where p  is the mechanical pressure, υ  is the velocity at any point, z  is the height of the liquid above a ref-
erence level, all measured at the same point inside the liquid. The term ( )A Vγ ∂ ∂  represents the interfacial 
energy density required to create a unit of free surface area of the jet, and losw  is the pressure head loss along 
the streamline due to various dissipative effects. 

Let us apply Equation (3) for two points 1 and 2 of Figure 1, i.e. at the free liquid surface in the vessel and 
inside the jet. Since 1 2 atmp p p= = , 1 0υ ≈ , 2υ υ=  and 1 2z z h− = , we get 

2
los

1
2

Agh w
V

ρ ρυ γ ∂ = + + ∂ 
                                  (4) 

The derivative ( )A V∂ ∂  in Equation (4) consists of two components, one being tangential and the other 
normal to the jet surface: 
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Figure 1. Schematic illustration of the discharge of Newtonian 
liquid from the tank. 
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Tangential Normal

A A l A r
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 

                              (5) 

For an ideal cylindrical jet of length l , volume 2V r lπ=  and surface area 2A rlπ= , we have: 
( )( ) 2A l l V A V r∂ ∂ ∂ ∂ = =  and ( )( ) 1A r r V r∂ ∂ ∂ ∂ = , where 2 r  is due to formation of a fluid-air inter-
face and 1 r  due to its curvature. The physical meaning of these two effects can be clarified by considering the 
corresponding values of free energies. Whereas ( )( ) 2V A l l V r lγ π γ∂ ∂ ∂ ∂ =  is the interfacial surface energy, 
the value ( )( )V A r r Vγ ∂ ∂ ∂ ∂  gives ( )V P P rγ∆ ∆ = , the excess free energy due to the pressure jump across 
the interface. These two effects have to be considered together, therefore we have ( ) 3A V rγ γ∂ ∂ = . However, 
since the shape of the jet is not a perfect cylinder, we introduce in this expression the shape factor 1β ≤  to get 

3A
V r

γγ β∂
=

∂
                                        (6) 

Dissipation term losw  can be expressed [7]-[10] as the sum of the head loss at orifice entry of the tube and 
losses due to the skin friction within the tube orifice:  

2 2

loss 2 2 2
Lw k f
r

ρυ ρυ
= +                                  (7) 

Here, k  is the coefficient of entry pressure loss, and f  is the skin friction coefficient, which depends on  

Reynolds number 2Re rρυ
η

=  as 

Ren
Cf =                                        (8) 

where C  and n  are constants. 
Combining Equation (4) with Equations (6) - (8), we obtain the sought equation for the average discharge ve-

locity as a function of the pressure head: 

2 21 3
2 4 2

n
nk CL h

g rg r gr
η βγυ υ
ρ ρ

− +
+ = − 

 
                          (9) 

where constants n  and C  are typically, 1n =  and 64C =  for laminar flow, 0.25n =  and 0.3164C =  
for turbulent flow [10]. For laminar flow, Equation (9) reduces to the quadratic equation for υ  with the solu-
tion: 

( ) ( ) ( )

2

2 2
8 2 3 8

11 1
L g Lh h

k grr k r k
η βγ ηυ

ρρ ρ
   

= + − −     ++ +  
                  (10) 

which involves the effects of viscous resistance and surface tension showing that at 3h grβγ ρ→  the dis-
charge velocity approaches to zero. We refer to this phenomenon as capillary interruption of a liquid jet. When 
the viscosity term ( )28 1L r kη ρ +  becomes negligible, Equation (10) reduces to Equation (2):  

( ) 2 3
1

gh h
k gr

βγυ
ρ

 
= − +  

                               (11) 

with 3Z grβγ ρ∆ = . Equations (10) and (11) for the discharge velocity υ  versus the pressure head h  of real 
liquids are the main result of present paper. 

3. Experiment 
To check the validity of the above theoretical approach we quantify the energy losses during the discharge of a 
real Newtonian fluid from the Mariotte bottle [11]-[13] (see Figure 2). We design a Mariotte bottle from the  
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Figure 2. Experimental set up for the measuring the discharge rate 
as a function of the pressure head υ(h). 

 
plastic cylinder of diameter 78 mm and height 40 cm with the opening in the lower part of the wall. Plexiglas’s 
flange with O-ring at the top of the cylinder provides a seal. 

An air intake tube of diameter 8 mm and length 50 cm was inserted through the flange using a compression 
fitting that seals with an o-ring. Glass capillary tubes with i.d. 2 mm=  and different lengths were separated 
inserted in the opening of the cylinder. As a liquid flows out of the bottle it is replaced by air, which enters 
through the air intake tube and bubbles up through the liquid level to provide a constant flow. The head, equal to 
the vertical distance from the bottom of the air-inlet tube to the outlet tube, was varied by raising or lowering the 
inserted tube. The discharge speed of liquid versus the pressure head was determined as follows. The force sen-
sor, connected through a data logger to a computer, continuously recorded the fluid weight ( )m t g  escaped 
from the bottle as a function of time. The average discharge velocity was calculated from the slope ( )d dm t  as 

2
1 d

d
m
tr

υ
π ρ

=                                       (12) 

Then, using the nonlinear curve fitting procedure available in MATHEMATICA (see Ref. 24 in [5]), Equa-
tion (10) was fitted to measured discharge rate versus the pressure head ( )hυ  taking k  and β  to be fitting 
parameters. 

4. Results 
To clarify the influence of surface tension and viscosity on the discharge rate of real liquids we used ordinary 
tap water with a density of 3997.7 kg mρ −≈ ⋅ , viscosity 0.8914 mPa sη ≈ ⋅  and surface 10.072 mN mγ −⋅ , 
and also 30% aqueous ethanol of density 3957.7 kg mρ −≈ ⋅ , viscosity 2.014 mPa sη ≈ ⋅  and surface tension 

10.037 mN mγ −⋅ . Two tubes of diameter 2 mm and aspect ratio ( )2L r = 2.5  and 10 were separate inserts 
in the opening of Mariotte bottle. To determine the effusion velocity υ  versus the pressure head, h , the liquid 
of the bottle was poured out into a plastic capacity mounted on the force sensor with the precision of 0.005 N, so 
that the measurement error over three trial experiments didn’t exceed 1%. Typical results of the discharge rate 
υ  versus the pressure head h  are shown in Figure 3 and Figure 4 for two test liquids discharged through  
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Figure 3. Discharge rate υ versus the pressure head h of tap water. Symbols 
denote experimental results. Solid lines are predicted by the present theory. 

 

 
Figure 4. Discharge rate υ versus pressure head h of aqueous ethanol. Sym- 
bols denote experimental results. Solid lines are predicted by the present 
theory. 

 
glass tubes with aspect ration 2 2.5L r =  and 10 at temperature 25 C . It is seen that the discharge rate 
strongly depends on the fluid properties and the geometry of the outlet orifice. The range of the average dis-
charge velocity, ( )hυ , Reynolds number, Re and fitting parameters k and β are presented in Table 1. 

As expected, in the case of the discharge through the tube with 2 10,L r =  the viscous resistance plays a 
prominent role and the rate of discharge as function of the pressure head is better described by Equation (10), 
whereas Equation (11) provides the best fitting of experimental data ( )hυ  of the same liquids discharged  
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Table 1. The range of experimental data represented in Figure 3 and Figure 4. 

Test liquid L/2r Range of υ (m/s) Range of Re k β 

Water 
2.5 0.4 to 1.54 900 to 3450 0.338 ± 0.007 0.693 ± 0.030 

10 0.55 to 1.8 1230 to 4000 0.602 ± 0.005 0.727 ± 0.017 

Aqueous Ethanol 
2.5 0.32 to 1.63 304 to 1550 0.727 ± 0.016 1.005 ± 0.108 

10 0.25 to 1.36 240 to 1300 0.955 ± 0.013 0.998 ± 0.058 

 
through the orifice with 2 2.5L r = , despite the fact that initially, in the case of water, the Reynolds number 
was slightly higher than its limit value 3000 for the laminar flow. 

It can be seen also from Figure 3 and Figure 4, that over the range of the pressure head under operation, the 
rate of discharge of both liquids through the orifice with the aspect ratio 2 10L r =  is considerably less than the 
rate discharge through the orifice with 2 2.5L r = , as attributed to the viscosity resistance. If the point 

3jeth grβγ ρ= , at which the rate of the discharge υ  decays to zero, is added to Figure 3 and Figure 4, it can 
be seen that the fit is quite reasonable. That the plot of ( )hυ  in Figure 3 and Figure 4, intersects the horizon-
tal axis at the same point 3jeth grβγ ρ=  for each liquid independently of the tube aspect ratio, 2L r , is in-
deed related to the fact that fluid flow losses energy in creating the free surface area of the jet as predicted by the 
theoretical model. 

5. Summary 
Subject of the discharge of Newtonian liquids from the container through the orifice of small diameter is an in-
teresting topic in science education. One of the most important aspects that students can learn from these studies 
is the concepts of capillary pressure, interfacial energy and viscous. The use of the modified Bernoulli equation 
for the liquid jet, involving the interfacial energy density, is very useful for teaching the fundamentals of fluid 
flow. Students have the opportunity to study the effect of surface tension and viscosity on the fluid flow.  
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