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Abstract 
For a class of (1 + 2)-dimensional nonlinear Schrödinger equations, classical symmetry algebra is 
found and 1-dimensional optimal system, up to conjugacy, is constructed. Its symmetry reductions 
are performed for each class, and someexamples of exact invainvariant solutions are given. 
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1. Introduction 
Inspired by Galois’ theory, Sophus Lie developed an analogous theory of symmetry for differential equations. 
Lie’s theory led to an algorithmic way to find special explicit solutions to differential equation with its admitted 
symmetry. These special solutions are called group invariant solutions and they constitute practically every 
known explicit solution to the systems of non-linear partial differential equations (PDEs) arising in mathematic- 
cal physics, differential geometry and other areas. These group-invariant solutions are found by solving a re- 
duced system of differential equations involving fewer independent variables than the original system. The re- 
duced system is obtained through reducing the underline system by using its admitted Lie symmetry. Hence, it is 
critical to solve the invariant solutions that one finds all the symmetries of the original system. On the other 
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hand, the algebra properties of the Lie algebra corresponding to the Lie symmetry group of a PDE show some 
essential nature of the solutions of the PDE. For example, from the optimal structure of the Lie algebra, one can 
solve optimal set of invariant solution to the PDE, which is critical to distinguish different classes of invariant 
solutions of the PDE. 

Generally, an optimal system of s-parameter subgroups of a Lie algebra is a list of conjugacyin equivalent 
s-parameter subgroups with the property that any other subgroup is conjugate to precisely one subgroup in the 
list. Correspondingly, a list of s-parameter subalgebras forms an optimal system if every s-parameter subalgebra 
of the Lie algebra is equivalent to unique member of the list under some element of the adjoint representation set. 
The optimal system of a Lie algebra provide the optimal classification of various different dimensional subalge- 
bras. For a PDE, the optimal system of the Lie algebra admitted by the PDE provides the optimal classification 
of invariant solutions of the PDE under its Lie symmetry group. 

In this paper, we plan to consider the (1 + 2)-dimensional nonlinear Schrödinger equation (NLSE) with cubic 
nonlinearity [1] 

2
xx yy tu u r u u iu+ + =                                  (1) 

where ( ), ,u u t x y=  is a complex function and r  is a non-zero real parameter. This equation occurs in vari- 
ous chapters of physics, including nonlinear optics, superconductivity, quantum mechanics and plasma physics 
[2]. The cubic nonlinearity is the most common nonlinearity in applications. It arises as a simplified model for 
studying Bose-Einstein condensates, Kerr mediain nonlinear optics freak waves in the ocean (see [3] and refer- 
ences therein). 

For the NLSE (1), many researchers’ work mostly concentrated on obtaining exact or approximate solutions. 
The classical symmetry reductions and some similarity solutions of the (1) are given in [1] by Lie symmetry 
method. Its some approximate solutions are obtained in [3] with applying the differential transform method. The 
1-soliton solution of (1) has been obtained in [4]. Reliable analysis for the (1 + 1)-dimensional NLSE with pow- 
er law nonlinearity has been investigated by Wazwaz in [5]. Some soliton and periodic solutions of (1 + 2)-di- 
mensional NLSE (1) are constructed in [6]. However, the algebra properties of the Lie algebra admitted by the 
NLSE (1) such as optimal system of the Lie algebra, have not been studied so far. 

We will construct optimal systems of the Lie algebra of the both NLSE (1) and its first reduction systems un- 
der their admitted Lie symmetry groups respectively. Furthermore, we derive twice reductions of NLSE (1) with 
respect to the obtained optimal system. Consequently, we show the NLSE (1) can be reduced to ordinary differ- 
ential equations which yields exact solutions of the equation. The outline of the article is following. In Section 2, 
the 9-dimensional classical Lie algebra 9L  of (1) is given by characteristic set algorithm proposed in In Section 
3, 1-dimensional optimal system of the Lie algebra derived by using the algorithm given in [7]. In Section 4, the 
first reductions with respect to the obtained optimal system of the equation are studied by means of Lie’s me- 
thod of infinitesimal transformation. In Section 5, the optimal system of 6-dimensional Lie algebra 6L  of a first 
reduced equations of the NLSE (1) obtained in Section 4 are given. Consequently, we obtain a twice reduction 
of the original Equation (1). In Section 6, some exact invariant solutions of the NLSE (1) are obtained by com- 
bining the twice reductions procedure using invariant method given in [8]. Concluding remarks are given in 
Section 7. 

2. Lie Symmetry of the Equation (1) 
In this section we present the generators of the Lie algebra corresponding to classical symmetries of the NLSE 
(1). Let theone parameter Lie group of infinitesimal transformations in ( ), , ,t x y u  given by 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

2

2

2

, , ,

, , ,

, , ,

, , ,

t t t x y u O

x x t x y u O

y y t x y u O

u u t x y u O

ετ ε

εξ ε

ες ε

εη ε

∗

∗

∗

∗

= + +

= + +

= + +

= + +

                             (2) 

where ε  is the group parameter. The corresponding generator of the Lie algebra is 
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( ) ( ) ( ) ( ), , , , , , , , , , , ,t x y uX t x y u t x y u t x y u t x y uτ ξ ς η= ∂ + ∂ + ∂ + ∂              (3) 
For fitting the algorithm and software in [9], transform the NLSE (1) to real case by transforming u u iv→ + , 

where u  and v  are real function. For this transformed system, using characteristic set algorithm given in [9], 
we find the simplified determining equations for generator 

( ) ( ) ( ) ( ), , , , , , , , , , , ,t x y uX t x y u t x y u t x y u t x y uτ ξ ς η= ∂ + ∂ + ∂ + ∂  

are as follows 

0t tu vϕ η− = , ( )2 2 0vu v u vϕ η η+ + − = , ( )2 2 0uu v v uη ϕ η+ − + = , 

( )2 2 0vu v v uη ϕ ϕ+ − + = , ( )2 2 0uu v v uϕ η ϕ− − + = , 0vξ = , 0uξ = , 

2 0t xuξ ϕ+ = , 2 0x tvη ξ− = , 0ttξ = , 0ytξ = , 0yyξ = , 2 0t yuς ϕ+ = , 

( )2 2 0xu v v uη ϕ ξ+ + + = , 0vς = , 0uς = , 2 0y tvη ς− = , 0x yς ξ+ = , 

( )2 2 0yu v v uη ϕ ς+ + + = , 0vτ = , 0uτ = , ( ) ( )2 22 0tu v v uη ϕ τ+ + + = , 

0xτ = , 0yτ = , 0ttη = , 0ttς = . 
Solving the above system of PDEs, we obtain: 

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
8 4 3

4 5 6 8 1

4 5 7 8 2

2 2
8 6 7 4 8 9

2 2
8 6 7 4 8 9

, , , , 2

, , , ,

, , , ,
1 1 1, , , ,
4 2 2

1 1 1, , , ,
4 2 2

t x y u v c t c t c

t x y u v c x c y c c x t c

t x y u v c y c x c c y t c

t x y u v c x y v c x c y v c c t u c v

t x y u v c x y u c x c y u c c t v c u

τ

ξ

ς

η

ϕ

= + +

= + + + +

= − + + +

= + + + − + +

= − + − + − + −

 

where ( )1,2, ,9ic i =   are arbitrary constants. 
Therefore the infinitesimal generators of the transformed real form equations are given by 

1 xX = ∂ , 2 yX = ∂ , 3 tX = ∂ , 4 2x y t u vX x y t u v= ∂ + ∂ + ∂ − ∂ − ∂ , 

5 x yX y x= ∂ − ∂ , 6
1 1
2 2x u vX t vx ux= ∂ + ∂ − ∂ , 7

1 1
2 2y u vX t vy uy= ∂ + ∂ − ∂ , 

( ) ( )2 2 2 2 2
8

1 1
4 4x y t u vX tx ty t v x y ut u x y vt   = ∂ + ∂ + ∂ + + − ∂ − + + ∂      

, 

9
1 1
2 2u vX v u= ∂ − ∂ . 

These are equivalent to generators for Lie algebra of NLSE (1) obtained by transforming u iv u+ → , 
u u∂ → ∂ , v i u∂ → ∂  It spans 9-dimensional Lie algebra 9L  of admitted by NLSE (1). The commutation rela- 

tions of (4) are given in the following Table 1. It is fundamental to constructing the optimal system of 9L  span- 
ned by (4). 

1 xX = ∂ , 2 yX = ∂ , 3 tX = ∂ , 4 2x y t uX x y t u= ∂ + ∂ + ∂ − ∂ , 

5 x yX y x= ∂ − ∂ , 6 2x u
iX t xu= ∂ − ∂ , 7 2y u

iX t yu= ∂ − ∂ ,                   (4) 

( )2 2 2
8 4x y t u

iX tx ty t x y t u = ∂ + ∂ + ∂ − + + ∂  
, 9 2 u

iX u= − ∂ . 
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The commutation relations of the basis is given in the following Table 1. 

3. 1-Dimensional Optimal System of L9  
In this section we present a 1-dimensional optimal system of the algebra 9L  obtained in Section 2 spanned by 
(4). 

The problem of finding an optimal system of subalgebra of a Lie algebra is a subalgebraclassification problem. 
Unfortunately,this problem can still be quite complicated and has no efficient method to use. For 1-dimensional 
subalgebras, this classification problem is essentially the same as the problem of classifying the orbits of the ad- 
joint representation, since each 1-dimensionalsubalgebra is determined by a nonzero vector in the algebra. Essen- 
tially, this problem is attacked by the naive approach of taking a general element X  in the algebra and subject- 
ing it to various adjoint transformations so as to “simplify” it as much as possible. 

Now, in our case, given a nonzero vector 1 2 9
1 2 9X k X k X k X= + + +  in algebra spanned by (4). The vec- 

tor corresponds to the vector ( )1 2 9, , ,k k k k=  . Our task is to simplify as many of the coefficients ik  being  

zero as possible through applicationof adjoint maps on X  and find its equivalent one. 
Here we use the matrix method given in [7] to determine an optimal system of 1-dimmensional subalgebra of 

9L . Thealgorithm is given by following steps. 
Step 1. Determine structure constants matrix ( )C j  by formula 

( )( )k k
iji

C j c=
 

where k
ijc  is structure constants given in commutator Table 1. 

Step 2. Calculate adjoint matrix ( ),A j ε  by definition. 

( ) ( )( ) ( )
0

, exp
!

n
n

n
A j C j C j

n
εε ε

∞

=

= = ∑  

Step 3. Simplify the vector ( )1 2 9, , ,k k k k=   as much as possible by applying ( ),A j ε  on k and obtain  

equivalent one of X . 
In the Following, we construct the optimal system of 9L  by following above the steps. 
As the commutator table 1 showing, we have the structure constants matrices for the 9L  areas follows 
 

Table 1. Commutation table for the generators of the Lie algebra 9L .                     

[ ] 1X 2X 3X 4X 5X 6X 7X 8X 9X  

1X 000 1X － 2X 9X 0 6X 0 

2X 000 2X 1X 0 9X 7X 0 

3X 0002 3X 0 1X 2X 4X 0 

4X — 1X — 2X —2 3X 00 6X 7X 2 8X 0 

5X 2X — 1X 000 7X — 6X 00 

6X — 9X 0— 1X — 6X — 7X 0000 

7X 0— 9X — 2X — 7X 6X 0000 

8X — 6X — 7X — 4X —2 8X 00000 

9X 000000000 
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( )

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
− 
 =
 

− 
 
 
 −
 
 

 ( )

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 

− 
 = −
 
 
 − 
 −
 
 

 

( )

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 

− 
 =
 
− 
 − 
 −
 
 

 ( )

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 =
 

− 
 − 
 −
 
 

 

( )

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

− 
 
 
 
 
 
 =
 

− 
 
 
 
 
 

 ( )

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

6 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

( )

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 = −
 
 
 
 
 
 
 

 ( )

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 2 0

8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

and 
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( )

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

The exponentiation of the matrices ( )C jε  leads to adjoin matrix ( ),A j ε  which are as follows 

( )

2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 01,
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0

10 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1

A

ε
εε

ε

ε ε

 
 
 
 
 
− 
 

=  
− 

 
 
 

− 
  
 

 ( )

2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 02,
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

10 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1

A

ε
εε

ε

ε ε

 
 
 
 
 

− 
 −=  
 
 − 
 

− 
  
 

 

( )

2 2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0
0 0 0 0 1 0 0 0 03,

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

10 0 0 0 0 1
2

0 0 0 0 0 0 0 0 1

A

ε

ε
ε

ε

ε ε ε

 
 
 
 
 

− 
 

=  
− 
 − 
 

− 
  
 

 ( )

2

2

e 0 0 0 0 0 0 0 0
0 e 0 0 0 0 0 0 0
0 0 e 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

4, 0 0 0 0 1 0 0 0 0
0 0 0 0 0 e 0 0 0
0 0 0 0 0 0 e 0 0
0 0 0 0 0 0 0 e 0
0 0 0 0 0 0 0 0 1

A

ε

ε

ε

ε

ε

ε

ε
−

−

−

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

( )

cos sin 0 0 0 0 0 0 0
sin cos 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

5, 0 0 0 0 1 0 0 0 0
0 0 0 0 0 cos sin 0 0
0 0 0 0 0 sin cos 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

A

ε ε
ε ε

ε
ε ε
ε ε

− 
 
 
 
 
 
 =
 

− 
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( )

2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

10 1 0 0 0 0 0
2

0 0 0 1 0 0 0 0
6, 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

A

ε

ε ε

ε
ε ε

 
 
 
 
 
 
 

=  
 
 
 
 
 
  
 

 ( )

2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

10 1 0 0 0 0 0
2

0 0 0 1 0 0 0 0
7, 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

A

ε

ε ε

ε
ε ε

 
 
 
 
 
 
 

=  − 
 
 
 
 
  
 

 

( )

2

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0 2 0

8, 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

A

ε
ε

ε ε
ε

ε

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 ( )

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

9, 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

A ε

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

Hence, the vector ( )1 2 9, , ,k k k k=   is transformed by the matrices ( ),A j ε  is as follows 

( ) 1 4 2 5 3 4 5 6 8 7 8 9 6 2 811, , , , , , , , ,
2

kA k k k k k k k k k k k k k kε ε ε ε ε ε = − + − − + 
 

, 

( ) 1 5 2 4 3 4 5 6 7 8 8 9 7 2 812, , , , , , , , ,
2

kA k k k k k k k k k k k k k kε ε ε ε ε ε = − − − − + 
 

, 

( ) ( )1 6 2 7 3 4 2 8 4 8 5 6 7 8 93, , , 2 , , , , , ,kA k k k k k k k k k k k k k kε ε ε ε ε ε= − − − + − , 

( ) ( )1 2 2 3 4 5 6 7 2 8 94, e ,e ,e , , , e ,e ,e ,kA k k k k k k k k kε ε ε ε ε εε − − −= , 

( ) ( )1 2 1 2 3 4 5 6 7 6 7 8 95, cos sin , sin cos , , , , cos sin , sin cos , ,kA k k k k k k k k k k k k kε ε ε ε ε ε ε ε ε= + − + + − +

( ) 1 3 2 3 4 5 6 4 7 5 8 9 1 2 316, , , , , , , , ,
2

kA k k k k k k k k k k k k k kε ε ε ε ε ε = + + + + + 
 

, 

( ) 1 2 3 3 4 5 6 5 7 4 8 9 2 2 317, , , , , , , , ,
2

kA k k k k k k k k k k k k k kε ε ε ε ε ε = + − + + + 
 

, 

( ) ( )1 2 3 4 3 5 6 1 7 2 8 4 2 3 98, , , , , , , , 2 ,kA k k k k k k k k k k k k k kε ε ε ε ε ε= + + + + + , 

( ) ( )1 2 3 4 5 6 7 8 99, , , , , , , , ,kA k k k k k k k k kε = . 

In order to obtain the optimal system, we solve k  as simple as possible from the above transformations. 

If 5 0k ≠ , by setting 
1

2 5

k
k

ε = , 
2

1 5

k
k

ε = − , 
6

7 5

k
k

ε = − , 
7

6 5

k
k

ε = − , 3 4 5 8 0ε ε ε ε= = = = , the  

coefficients 1 2 6, ,k k k  and 7k  are vanished. By scaling, we can suppose 5 1k = , Hence X is equivalent to  
5 3 4 8 9X aX bX cX qX+ + + + , where we use a, b, c and q to denote the arbitrary constants. 
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If 5 0k =  and 4 0k ≠ , by setting 
1

1 4

k
k

ε = , 
2

2 4

k
k

ε = , 
6

6 4

k
k

ε = − , 
7

7 4

k
k

ε = − , 3 4 5 8 0ε ε ε ε= = = = , 

coefficients 1 2 6, ,k k k  and 7k  are vanished. By scaling, we can suppose 4 1k = 。 Hence X  is equivalent to  
4 3 8 9X aX bX qX+ + + . 

If 4 5 0k k= =  and 8 0k ≠ , by setting 
6

1 8

k
k

ε = , 
7

2 8

k
k

ε = , 3 4 5 6 7 8 0ε ε ε ε ε ε= = = = = = , coefficients 6k  

and 7k  are vanished. By scaling, we can suppose 8 1k = . Hence X  is equivalent to 
8 1 2 3 9X aX bX cX qX+ + + + . 

If 4 5 8 0k k k= = =  and 3 0k ≠ , by setting 
1

6 3

k
k

ε = − , 
2

7 3

k
k

ε = − , 1 2 3 4 5 8 0ε ε ε ε ε ε= = = = = = , 

coefficients 1k  and 2k  are vanished. By scaling, we can suppose 3 1k = . Hence X  is equivalent to 
3 6 7 9X aX bX qX+ + + . 

If 3 4 5 8 0k k k k= = = =  and 6 0k ≠ , by setting 
1

3 6

k
k

ε = − , 
7

5 6arctan k
k

ε = , 
9

1 6arctan k
k

ε =
 

2 4 6 7 8 0ε ε ε ε ε= = = = = , coefficients 1 7 9, ,k k k  are vanished. By scaling, we can suppose 6 1k = . Hence X   
is equivalent to 6 2X aX+ . 

If 3 4 5 6 8 0k k k k k= = = = =  and 7 0k ≠ , by setting 
2

3 7

k
k

ε = , 
9

2 7

k
k

ε = , 1 4 5 6 7 8 0ε ε ε ε ε ε= = = = = = , 

coefficients 2 9,k k  are vanished. By scaling, we can suppose 7 1k = . Hence X  is equivalent to 7 1X aX+ . 

If 3 4 5 6 7 8 0k k k k k k= = = = = =  and 2 0k ≠  by setting 
1

5 2arctan k
k

ε = − , 
9

7 2

k
k

ε = − , 

1 2 3 4 6 8 0ε ε ε ε ε ε= = = = = = , coefficients 1 9,k k  are vanished. By scaling, we can suppose 2 1k = . Hence 
X  is equivalent to 2X . 

If 2 3 4 5 6 7 8 0k k k k k k k= = = = = = =  and 9 0k ≠ , by scaling, we can suppose 9 1k = . Hence X  is  
equivalent to 9 1X aX+ . 

If 2 3 4 5 6 7 8 9 0k k k k k k k K= = = = = = = = , by scaling, we can suppose 1 1k = . Hence X  is equivalent 
to 1X . 

Therefore the set of generators 
1 2 3 4

1 2 3 6 7 9 4 3 8 9
5 6 7

5 3 4 8 9 6 2 7 1
8 9

8 1 2 3 9 9 1

, , , ,

, , ,

, .

X X X X X X aX bX qX X X aX bX qX

X X aX bX cX qX X X aX X X aX

X X aX bX cX qX X X aX

= = = + + + = + + +

= + + + + = + = +

= + + + + = +

       (5) 

is consisted of the optimal system of 1-dimensional subalgebra of the algebra 9L  of the NLSE (1), where 
, ,a b c  and q  are arbitrary constants. 

4. Reductions of NLSE (1) with (5) 
In this section we give a classification of symmetry reductions of NLSE (1) by using (5). 

The reduction in this section require lengthy computations and do not follow a standard algorithmic procedure, 
so it would be difficult to reproduce them using software. We will introduce the details for the case  

3 6 7 9X X aX bX qX= + + +  and the remaining ones can be reproduced in a similar manner. 
The differential invariants (and hence the similarity variables) for the generator can be determined by solving 

the characteristic system 

( )
d d d d
1

2

t x y u
iat bt ax by q u

= = = −
+ +

                            (6) 
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Solving this system, one obtains invariant (similarity) variables are as follows 

1 21
2

y x at= − , 

2 21
2

y y bt= − , 

( ) ( )2 2 3
6 2e
i ia b t ax by q t

v u
− + + + +

= . 
Hence let 

( ) ( ) ( )
2 2 3

1 26 2e ,
i ia b t ax by q t

u V y y
+ − + +

=                           (7) 

and substitute (7) into the Equation (1) which yields the first reduced system of the NLSE (1) 

( )1 1 2 2
2 1 21 0

2y y y y
V V r V V ay by q V+ + − + + =                   (8) 

In the same manner, we can obtain the additional reductions of (1) with using other subalgebras in (5) which 
are listed in Table 2. The last column shows the cases of similarity variables. Here 

( )1 2 1 2: , ; , ;A u V y y y t y y= = =  

( ) ( ) ( )
2 2 3

1 2 1 2 2 26 2 1 1: e , ; , ;
2 2

i ia b t ax by q t
B u V y y y x at y y bt

+ − + +
= = − = −  

( )
( )

( )

22

2 2 2

12 arctan
1

4 12
1 2 1 2

2 2 2

1: e , ; , ;
2 2

btqbt cyi x abbt
abbt t a c t c x cy btC u V y y y y

bt t a bt t a c t c

+   −  − − + +  −+ + + 
    −

= = =
+ + + + +

 

 
Table 2. The first reductions of Equation (1) by optimal system (5).                                                

Generator The rst reduced equations Cases 

1
1X X= ，

2
2X X=  2 2 1

2 0
y y y

V iV r V V− + =  A  

3
3 6 7 9X X aX bX qX= + + +  ( )1 1 2 2

2 1 21 0
2y y y y

V V r V V ay by q V+ + − + + =  
 

B  

4
4 3 8 9X X aX bX qX= + + +  

( )
( ) ( )( )

1 1 2 2 1 2
1 2

2 2 21 24 2 0

y y y y y y
V V i y V y V

i q ab y y V r V V

+ + +

 + − − + + =  

  
C  

5
5 3 4 8 9X X aX bX cX qX= + + + +  

( ) ( )

( ) ( ) ( )

1 1 2 2 1 2
1 2 1 2

2 2 21 21 12 2 0
4 4

y y y y y y
V V i by y V i y by V

i b iq ac y y V r V V

+ + + + − +

 + + − + + = 

  
D  

6
6 2X X aX= + , 7

7 1X X aX= +  ( ) ( ) ( )2 2 1

2 2 2 22 1 1 1 12 2 2 0
y y y

a y V i y V r y V V iy V + − + − =   
 

E  

8
8 1 2 3 9X X aX bX cX qX= + + + +  ( ) ( )( )1 1 2 2

2 2 22 2 2 1 21 2 0
4y y y y

V V a b cq c y y V r V V
c
 + + + − + + + =  

 
 

F  

9
9 1X X aX= +  2 2 1

2

2

1 0
4y y y

V iV V r V V
a

− − + =  G  
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( )
( ) ( )

2 2
2

2 2

2 arctan

4 2 4 1 2

2 2

2 2
1

2

2 2

2 2
2

2

: e , ;

arctan arctan
cos sin

,
2

arctan arctan
cos sin

;
2

b ctqict x y ac b
a bt ct ac bD u V y y

b ct b ct
ac b ac bx y

ac b ac by
a bt ct

b ct b ct
ac b ac by x

ac b ac by
a bt ct

+
+ −− +

+ + −
=

+ +

− −−
− −=

+ +
+ +

− −+
− −=

+ +

 

( )
2

1 2 1 24: e , ; , ;
ix

t axE u V y y y t y y
t

−
= = = −  

( ) ( ) ( )
( )

( )

( )

2 22 2 2 2

32
2

2 arctan2

4
1 2 1 24

2 2 2

1: e , ; , ;

ti a b cqi a b t c ax by ct x y c
c t c

c cx at cy btF u V y y y y
t c c t c c t c

  + −+ − + − +   +
+ − −

= = =
+ + +

 

( )1 2 1 22: e , ; , .
ix
aG u V y y y t y y

−
= = =  

5. Reductions of NLSE (1) with (5) 
The equations obtained in Table 2 can be reduced further in the similar way in last section, consequently, we 
obtain second time reductions of NLSE (1). We take the first equation (the reduced one of (1) by 1X  or 2X ) 
in Table 2 

2 2 1
2 0

y y y
V iV r V V− + =                                (9) 

as example. This is a nonlinear “1 + 1” Schrödinger equation. 

5.1. Lie Symmetry of the Equation (9) 
In this section we present all symmetries of Equation (9). To obtain the Lie group symmetries of Equation (9),  
we consider the one parameter Lie group of infinitesimal transformations in ( )1 2, ,y y v  given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

*1 1 1 2 2

*2 2 1 2 2

* 1 2 2

, ,

, ,

, ,

y y y y V O

y y y y V O

V V y y V O

ετ ε

εξ ε

εη ε

= + +

= + +

= + +

 

where ε  is the group parameter. The corresponding generator of the Lie algebra of the group symmetry is 

( ) ( ) ( )1 2
1 2 1 2 1 2, , , , , , Vy y

Y y y V y y V y y Vτ ξ η= ∂ + ∂ + ∂  

For fitting the algorithm and software in [9], we transform the (9) to real case by transformation V V iV ′→ +  
where V  and V ′  are real function. For this transformed system, we find the generator 

( ) ( ) ( ) ( )1 2
1 2 1 2 1 2 1 2, , , , , , , , , , , ,V Vy y

Y y y V V y y V V y y V V y y V Vτ ξ η ϕ′ ′ ′ ′= ∂ + ∂ + ∂ + ∂  

for its Lie symmetry group. The simplified determining equations are 
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1 0
y

η = , 1 0
y

ϕ = , ( )2 2 0VV V V Vη ϕ η ′′ ′− + + + = , ( )2 2 0VV V V Vη ϕ η′ ′+ − + = , 1 22 0
y y

Vξ ϕ+ = , 

( )2 2 0VV V V Vη ϕ ϕ ′′ ′+ − + = , ( )2 2 0VV V V Vη ϕ ϕ′ ′− + + = , 0Vτ ′ = , 0Vτ = , 2 0
y

τ = , 1 1 0
y y

ξ = , 

( ) ( ) 1
2 22 0

y
V V V Vη ϕ τ′ ′+ + + = , 0Vξ = , ( ) 2

2 2 0
y

V V V Vη ϕ ξ′ ′+ + + = , 2 12 0
y y

Vη ξ′− = . 

After solving the above system of PDEs, we have 

( ) ( )
( )
( ) ( )

( ) ( )

21 2 1 1
3 4 1

1 2 1 2 1 2
3 5 4 2

21 2 2 2
3 5 6

21 2 2 2
3 5 6

, , , 2 ,

, , , ,

1 1, , , ,
4 2 2

1 1, , , .
4 2 2

y y V V c y c y c

y y V V c y y c y c y c

iy y V V c y V c y V c V

iy y V V c y V c y V c V

τ

ξ

η

ϕ

′ = + +

′ = + + +

′ ′ ′= + +

′ ′= − − +

 

Here ( )1,2, ,6ic i =   are constants. 
Therefore the symmetry algebra generators are 

11 y
Y = ∂ , 22 y

Y = ∂ , ( ) ( ) ( )1 2

2 2 21 1 2 2 2
3

1 1
4 4V Vy y

Y y y y y V y V ′′= ∂ + ∂ + ∂ − ∂ , 

1 2
1 2

4 2
y y

Y y y= ∂ + ∂ , 2
1 2

5
1
2 Vy

Y y y V ′= ∂ + ∂ , 6 2 2V V
i iY V V ′′= ∂ + ∂ . 

By transformation V iV V′+ → , V V∂ → ∂ , V Vi′∂ → ∂ , the 6-dimensional Lie algebra 6L  of (9) is span- 
ed by the set of generators 

( ) ( )1 2 1 2

1 2 2

2 21 1 2 2
1 2 3

1 2 1 2
4 5 6

1, , ,
4

2 , , .
2 2

Vy y y y

V Vy y y

Y Y Y y y y y V

i iY y y Y y y V Y V

= ∂ = ∂ = ∂ + ∂ − ∂

= ∂ + ∂ = ∂ − ∂ = ∂
                  (10) 

The commutation relations of the basis is given in the following Table 3. 

5.2. 1-Dimensional Optimal System of the L6  
This section presents a optimal system of 1-dimensional subalgebras of the symmetry algebras 6L  obtained in 
Section 5.1. As above section, we have 

( )

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

1
2 0 0 0 0 0

0 1 0 0 0 0
0 0 0 0 0 0

C

 
 
 
 −

=  
− 
 −
  
 

, ( )

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

2
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

C

 
 
 
 −

=  
− 

 
  
 

, ( )

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

3
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C

 
 
 
 

=  
 
 
  
 

, 

( )

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0

4
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

C

 
 
 
 −

=  
 
 −
  
 

,  ( )

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

5
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

C

 
 − 
 

=  
 
 
  
 

, ( )

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C

 
 
 
 

=  
 
 
  
 

. 

The exponentiation of the matrices ( )C j  are obtained as follows 



M. R. Mu, C. L. Temuer 
 

 
614 

Table 3. Commutator for (10).                                                     

[ ] 1Y 2Y 3Y 4Y 5Y 6Y  

1Y 00         4Y 2 1Y 2Y 0 

2Y 00 5Y 2Y - 6Y 0 

3Y - 4Y - 5Y 0         -2 3Y 0 

4Y -2 1Y - 2Y 2 3Y 0 5Y 0 

5Y - 2Y 6Y 0       - 5Y 00 

6Y 000000 

 

( )
2

1 0 0 0 0 0
0 1 0 0 0 0

0 1 0 0
1,

2 0 0 1 0 0
0 0 0 1 0
0 0 0 0 0 1

A
ε ε

ε
ε

ε

 
 
 
 −

=  
− 
 −
  
 

, ( )
2

1 0 0 0 0 0
0 1 0 0 0 0

10 0 1 0
2, 2

0 0 1 0 0
0 0 0 0 1
0 0 0 0 0 1

A
ε ε

ε
ε

ε

 
 
 
 

− − =  
− 

 
 
 
 

, 

( )

21 0 0 0
0 1 0 0 0
0 0 1 0 0 0

3
0 0 2 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A

ε ε
ε

ε

 
 
 
 

=  
 
 
  
 

, ( )
2

e 0 0 0 0 0
0 e 0 0 0 0
0 0 e 0 0 0

4,
0 0 0 1 0 0
0 0 0 0 e 0
0 0 0 0 0 1

A

ε

ε

ε

ε

ε
−

−

 
 
 
 

=  
 
 
  
 

, 

( )

211 0 0 0
2

0 1 0 0 0
0 0 1 0 0 05,
0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

A

ε ε

ε

ε
ε

 − 
 

− 
 =  
 
 
 
 
 

, ( )

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

6,
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A ε

 
 
 
 

=  
 
 
  
 

. 

For the nonzero generator 1 2 6
1 2 6Y k Y k Y k Y= + + + , the vector ( )1 2 6, , ,k k k k=   is transformed by the  

matrices ( ),A j ε  as follows 

( ) ( )
( )

( ) ( )
( ) ( )
( )

3 2 4 1 2 5 3 4 3 5 6

1 2 4 3 4 5 3 3 2 5 6

1 2 1 2 4 3 4 1 5 2 6

1 2 2 3 4 5 6

1 2 1 3 4 5 4 1

1, 2 , , , , ,

12, , , , , ,
2

3, , , 2 , , ,

4, e ,e ,e , , e ,

15, , , , , ,
2

kA k k k k k k k k k k

kA k k k k k k k k k k

kA k k k k k k k k k k

kA k k k k k k

kA k k k k k k k k

ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

ε

ε ε ε ε

− −

= − + − −

 = − − − + + 
 

= + + + +

=

= + + −

( ) ( )

2 2 6

1 2 3 4 5 66, , , , , ,

k k

kA k k k k k k

ε

ε

 − + 
 

=
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In order to get the optimal system, we need to transform k  as simple as possible. This is done by following 
deduction. 

If 3 0k ≠  by setting 
4

1 3

k
k

ε = , 
5

2 3

k
k

ε =  and 3 4 5 6 0ε ε ε ε= = = = , the coefficients 4k  and 5k  are va- 

nished. By scaling, we can suppose 3 1k = . Hence Y  is equivalent to 3 1 2 6Y aY bY cY+ + + . 

If 3 0k =  and 4 0k ≠  by setting 
1

1 42
k
k

ε = , 
2

2 4

k
k

ε = , 
5

5 4

k
k

ε = −  and 3 4 6 0ε ε ε= = = , the coefficients  

1k , 2k  and 5k  are vanished. By scaling, we can suppose 4 1k = . Hence Y  is equivalent to 4 6Y aY+ . 

If 3 4 0k k= =  and 5 0k ≠  by setting 
2

1 5

k
k

ε = , 
6

2 5

k
k

ε = − , 
1

4 5

1 ln
2

k
k

ε = −  and 3 5 6 0ε ε ε= = = , the  

coefficients 2k  and 5k  are vanished. By scaling, we can suppose 5 1k = . Hence Y  is equivalent to 
5 1Y Y+ . 

If 3 4 5 0k k k= = =  and 1 0k ≠  by setting 
6

4 1ln k
k

ε = , 
2

5 1

k
k

ε = −  and 1 2 3 6 0ε ε ε ε= = = = , the coeffi- 

cient 2k  is vanished. By scaling, we can suppose 1 1k = . Hence Y  is equivalent to 1 6Y Y+ . 

If 1 3 4 5 0k k k k= = = =  and 6 0k ≠  by setting 
2

4 6ln k
k

ε = −  and 1 2 3 5 6 0ε ε ε ε ε= = = = = . By scaling,  

we can suppose 6 1k = . Hence Y  is equivalent to 6 2Y Y+ . 
If 1 3 4 5 6 0k k k k k= = = = =  and 2 0k ≠ , by scaling, we can suppose 2 1k = . Hence Y  is equivalent to  

2Y . 
Therefore the set of generators 

1 1 1 1 1 1
1 1 6 2 2 3 3 1 2 6 4 4 6 5 5 1 6 6 2, , , , , .Y Y Y Y Y Y Y aY bY cY Y Y aY Y Y Y Y Y Y= + = = + + + = + = + = +     (11) 

is consist of the optimal system of 1-dimensional subalgebra of the symmetry algebra of Equation (9),where a , 
b  and c  are arbitrary constants. 

5.3. 1-Dimensional Optimal System of the L6  
In this section we give a classification of symmetry reductions of PDE (9) with the optimal system of (11). 

The Equation (9) admits optimal system (11) obtained in Section 5.2. 
Taking 1

5 5 1Y Y Y= +  as example to show the procedure of the reduction. 
The differential invariants (and hence the similarity variables) for the generator can be determined by solving 

the characteristic system 
1 2

1
2

d d d
1

2

y y V
iy y V

= = −                                  (12) 

Solving this system, one obtains invariant (similarity) variables as follows 

( ) ( )31 1 222 1 6 21 , e .
2

i iy y y
z y y w V

− +
= − =  

Hence let 
( ) ( )

31 1 2
6 2e
i iy y y

V W z
−

= ,                                 (13) 

which yields reduction of (9) 
21 0

2zzW zW r W W− + = . 

This is the second reductions of (1), which is an ordinary differential equation. 
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In the same manner, we can obtain the second reductions of Equation (9) with respect to other subalgebras of 
(11) whichare listed in Table 4. For the equation reduced by 9X  (the last equation in Table 2) 
where 

( ) ( ) ( )

( )
( )

( )

12 22 1 2 1 2 2 1

3
212

2 2 arctan

2 14

21
: e ,

yi a b y aby ay y b ac a y
a

a a y ay byA V W z z
a a y

    
− − + + +    

     

 
+ 

  −
= =

+
 

( )
( ) ( )

21 1 23 26 2 11: e ,
2

i y y y
B V W z z y y

 
− 

 = = −  

2 2 1
2

2

1 0
4y y y

V iV V r V V
a

− − + =                            (14) 

we have the same reduction as (9). 
For the equation reduced by 6X  or 7X  (the fifth equation in Table 2) 

( ) ( ) ( )2 2 1

2 2 2 22 1 1 1 12 2 2 0
y y y

a y V i y V r y V V iy V + − + − =  
               (15) 

admits optimal system 6 6
1 4, ,Y Y  and leads to the reductions which are listed in Table 5. 

where 

21 y
Z = ∂ , 

( )
2

21 2
2

2 1 2 Vy

y a iZ y V
y

−
= ∂ − ∂ , 

( )( ) ( )( ) ( )( )1 2

22 2 22 1 1 2 2 1
3 1 4 Vy y

y iZ a y y a y y V
y

= + ∂ + − ∂ − + ∂ , 4 2 V
iZ V= − ∂ . 

( ) 1: ,A V W z z y= = ; 

( )
( )

( )

21 2

21 24
1: e ,

iy y

y a
B V W z z y

−
 

− 
 = = ; 

( )( )
( ) ( )

( )
( )

( )

2 21 1 2 2
1

222 1

2 arctan
1
41 1 22 22 1

22 1
: e ,

aiy y a y i
y

a y y yC V a y W z z
a y

   
  − +       − 

  
+−   

   = + =
+

; 

( )
2

12: e ,
i y
aD V W z z y

−
= = . 

Similarly, other equations in Table 2 also can be further reduced. Consequently, we obtain the twice reductions 
of (1) shown in Table 6. 
where 

11 y
W = ∂ , 22 y

W = ∂ , 1 2
2 1

3 y y
W y y= ∂ − ∂ , 

1 2
1 2

4 Vy y
W y y V= ∂ + ∂ − ∂ , 5 VW iV= − ∂ , 1 2

2 1
1 y y

V y y= ∂ − ∂ , 2 VV iV= − ∂ . 

2z y= ; 1z y= ; 
( )

2 1

21

ay byz
a a y

−
=

+
; 

( )
1

22

yz
y

= ; ( )22 11
2

z y y= − ; 1z y= ; 2z y= ; 

1z y= ; ( ) ( )( )2 21 21
2

z y y= + ; ( ) ( )2 21 2z y y= + ; 1z y= ; 1z y= ; 
( )

1 2

22 1

y yz
a y

=
+

; 1z y= . 
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Table 4. The further reductions of (9) with (11).                                       

Generator the second reductions similarity variables 

1
1 1 6Y Y Y= + 21 0

2zzW aW r W W+ + = ( )
1

2e
i y

V W z= , 2z y=  

1
2 2Y Y= 2 0ziW r W W− = ( )V W z= , 1z y=  

1
3 3 1 2 6Y Y aY bY cY= + + +

 Cannot get explicit reduction A  

1
4 4 6Y Y Y= +

 Cannot get explicit reduction ( ) ( )2 2
i a

V y W z= , 
( )

1

22

yz
y

=  

1
5 5 1Y Y Y= + 21 0

2zzW zW r W W− + = B  

1
6 6 2Y Y Y= + 21 0

4ziW W r W W+ − = ( ) ( )
2

2 2
i y

V y W z= , 1z y=  

  
Table 5. The reductions for the subalgebras of Equation (15).                            

Generator of optimal system the second reductions similarity variable 

6
1 1Y Z= 22 2 0zizW iW rz W W+ − =  A  

6
2 2Y Z= 2

2 2

22 2 0z

izizW W r W W
a z

− − =
−

 B  

6
3 3 4Y Z aZ= + 22 2 1 0

2 4zz

aW ia z W r W W + − + = 
 

 C  

6
4 4 1Y Z aZ= + ( ) 22 2 2 2

2

12 2 0
2ziz W a z iz W rz W W

a
 + + + − =  

 D  

 

( ) 22 2 2 21 1: 4 4 2 0
4z zzA W zW b W a b cq c z W r W W

z c
+ − + + − + + = ; 

( ) 21 1: 4 4 2 2 2 0
4 4z zz zB W zW ibzW i b iq acz W r W W+ + + + − + =   ; 

( ) 22 2 2 2
2

1: 2 2 0
2zC iz W a z iz W rz W W

a
 − − + + + =  

; 

( )
1

2: e
i y

D V W z= ; ( ):E V W z= ; 

( ) ( ) ( )

( )
( )

12 22 1 2 1 2 2 1

3
212

2 2 arctan

4
: e

yi a b y aby ay y i b ac a y
a

a a y
F V W z

   
− − + + +   

   

 
+ 

 = ; 

( ) ( )2 2:
i a

G V y W z= ; 
( )

( )
21 1 23

6: e
i y y y

H V W z
 

− 
 = ; ( )

2
2: e
i y

I V W z= ; ( )1
: e iayJ V W z−= ; 

( )2
: e iayK V W z−= ; 

( ) ( )

1

22
arctan

: e

yai
y

L V W z

 
 
 −
 
 
 = ; :M  Cannot get similarity variable; 
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Table 6. The rest reductions of the 2D-CNLS (1) by optimal system (6).                                            

First step opts second step opts reduced equation                  similarity variable 

1X  or 2X  or 9X 1
1 1 6Y Y Y= + 21 0

2zzW aW r W W+ + = D  

2
2 2Y Y= 2 0ziW r W W− + = E  

1
3 3 1 2 6Y Y aY bY cY= + + +

 
Cannot be obtained explicit reduction F  

1
4 4 6Y Y aY= +

 
Cannot be obtained explicit reduction G  

1
5 5 1Y Y Y= + 21 0

2zzW zW r W W− + = H  

1
6 6 2Y Y Y= + 21 0

4ziW W r W W− − + = I  

3X  or 8X 3
1 1 5Y W aW= +

 
Cannot be obtained explicit reduction J  

3
2 2 5Y W aW= +

 
Cannot be obtained explicit reduction K  

3
3 3 5Y W aW= + A L  

3
4 4 3 5Y W aW bW= + +

 
Cannot be obtained explicit reduction M  

3
5 5Y W=

 
Cannot be obtained explicit reduction N  

4X  or 5X 4
1 1Y V= B O  

4
2 2Y V= Cannot be obtained explicit reduction P  

6X  o r 7X 6
1 1Y Z= 22 2 0zizW iW rz W W− − + = Q  

6
2 2Y Z= 2

2 2

22 2 0z

iziW W r W W
a z

− + + =
−

R  

6
3 3 4Y Z aZ= + 22 2 1( ) 0

2 4zz

aW ia z W r W W+ − + = S  

6
4 4 1Y Z aZ= + C T  

 

:N  Cannot get similarity variable; ( ):O V W z= ; :P  Cannot get similarity variable; 

( ):Q V W z= ; 

( )
( )

( )

21 2

21 24
: e

iy y

y a
R V W z

−
 

− 
 = ;  

( ) ( )

( )
( )( ) ( )

2 21 1 2 2
1

22 1

2 arctan
1
4 1

2 22 1: e

aiy y a y i
y

a y

S V a y W z

   
  − +       − 

 + − 
  = + ; ( )

2
2: e
i y
aT V W z

−
= . 

6. Some Exact Invariant Solutions of PDE (1) 
In Table 4, we have 

2 0ziW r W W− =                                 (16) 
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Transform the (16) to real case by transformation W W iW→ +  , where W and W  are real functions, we 
find the simplified 

 ( )2 2
zW rW W W= +                                  (17) 

( )2 2
zW rW W W= − +                                 (18) 

Dividing Equation (17) by Equation (18), we obtain 
 0z zWW WW+ =  

which yields 

2W c Wε= −                                  (19) 
where 1ε = ± , c is arbitrary constant. Substituting (19) to (18), it has general solutions 

( )
( )

1

1

sin

cos

W c rc z c

W c rc z c

ε ε

ε ε

= −

= −

 

Therefore 
( )1e rc z c iW c εε − −=                                (20) 

In the same manner, solving the equation 

2 1 0
4zr W W iW W− − =  

in Table 4, we have solution 

1
1
4e

rc z c i
W c

ε
ε

  − + −    =  

In the same manner, solving the equation in Table 5 

( ) 22 2 2 2
2

12 2 0
2ziz W a z iz W rz W W

a
 − − + + + =  

 

one has solution 

12
1 ln

4 24e
irc z z c i

zaW c
ε εε

ε
  

− − + − −  
  =  

These solutions W  yield exact solutions of (1) through connection with ( )V W z= , (20) and (7). 

7. Conclusion 
The 1-dimensional optimal system of the Lie algebra of 2D-CNLS equation has been constructed by matrix 
form methodand twice reductions of the equation by the optimal system are given. Consequently, some exact 
invariant solutions of theequation are formed by symmetry method. 
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