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Abstract

For a class of (1 + 2)-dimensional nonlinear Schrédinger equations, classical symmetry algebra is
found and 1-dimensional optimal system, up to conjugacy, is constructed. Its symmetry reductions
are performed for each class, and someexamples of exact invainvariant solutions are given.
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1. Introduction

Inspired by Galois’ theory, Sophus Lie developed an analogous theory of symmetry for differential equations.
Lie’s theory led to an algorithmic way to find special explicit solutions to differential equation with its admitted
symmetry. These special solutions are called group invariant solutions and they constitute practically every
known explicit solution to the systems of non-linear partial differential equations (PDESs) arising in mathematic-
cal physics, differential geometry and other areas. These group-invariant solutions are found by solving a re-
duced system of differential equations involving fewer independent variables than the original system. The re-
duced system is obtained through reducing the underline system by using its admitted Lie symmetry. Hence, it is
critical to solve the invariant solutions that one finds all the symmetries of the original system. On the other
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hand, the algebra properties of the Lie algebra corresponding to the Lie symmetry group of a PDE show some
essential nature of the solutions of the PDE. For example, from the optimal structure of the Lie algebra, one can
solve optimal set of invariant solution to the PDE, which is critical to distinguish different classes of invariant
solutions of the PDE.

Generally, an optimal system of s-parameter subgroups of a Lie algebra is a list of conjugacyin equivalent
s-parameter subgroups with the property that any other subgroup is conjugate to precisely one subgroup in the
list. Correspondingly, a list of s-parameter subalgebras forms an optimal system if every s-parameter subalgebra
of the Lie algebra is equivalent to unique member of the list under some element of the adjoint representation set.
The optimal system of a Lie algebra provide the optimal classification of various different dimensional subalge-
bras. For a PDE, the optimal system of the Lie algebra admitted by the PDE provides the optimal classification
of invariant solutions of the PDE under its Lie symmetry group.

In this paper, we plan to consider the (1 + 2)-dimensional nonlinear Schrédinger equation (NLSE) with cubic
nonlinearity [1]

Uy +Uy, +1|uf*u =iy, )

where U=U (t, X, y) is a complex function and r is a non-zero real parameter. This equation occurs in vari-
ous chapters of physics, including nonlinear optics, superconductivity, quantum mechanics and plasma physics
[2]. The cubic nonlinearity is the most common nonlinearity in applications. It arises as a simplified model for
studying Bose-Einstein condensates, Kerr mediain nonlinear optics freak waves in the ocean (see [3] and refer-
ences therein).

For the NLSE (1), many researchers’ work mostly concentrated on obtaining exact or approximate solutions.
The classical symmetry reductions and some similarity solutions of the (1) are given in [1] by Lie symmetry
method. Its some approximate solutions are obtained in [3] with applying the differential transform method. The
1-soliton solution of (1) has been obtained in [4]. Reliable analysis for the (1 + 1)-dimensional NLSE with pow-
er law nonlinearity has been investigated by Wazwaz in [5]. Some soliton and periodic solutions of (1 + 2)-di-
mensional NLSE (1) are constructed in [6]. However, the algebra properties of the Lie algebra admitted by the
NLSE (1) such as optimal system of the Lie algebra, have not been studied so far.

We will construct optimal systems of the Lie algebra of the both NLSE (1) and its first reduction systems un-
der their admitted Lie symmetry groups respectively. Furthermore, we derive twice reductions of NLSE (1) with
respect to the obtained optimal system. Consequently, we show the NLSE (1) can be reduced to ordinary differ-
ential equations which yields exact solutions of the equation. The outline of the article is following. In Section 2,
the 9-dimensional classical Lie algebra L* of (1) is given by characteristic set algorithm proposed in In Section
3, 1-dimensional optimal system of the Lie algebra derived by using the algorithm given in [7]. In Section 4, the
first reductions with respect to the obtained optimal system of the equation are studied by means of Lie’s me-
thod of infinitesimal transformation. In Section 5, the optimal system of 6-dimensional Lie algebra L° of a first
reduced equations of the NLSE (1) obtained in Section 4 are given. Consequently, we obtain a twice reduction
of the original Equation (1). In Section 6, some exact invariant solutions of the NLSE (1) are obtained by com-
bining the twice reductions procedure using invariant method given in [8]. Concluding remarks are given in
Section 7.

2. Lie Symmetry of the Equation (1)

In this section we present the generators of the Lie algebra corresponding to classical symmetries of the NLSE
(1). Let theone parameter Lie group of infinitesimal transformations in (t,X,y,u) given by

t° =t+£r(t,x,y,u)+0(€2)

X' = x+g§(t,x,y,u)+0(sz)

. )
y =y+es(t,x, y,u)+0(52)
u"=u+en(t,x y,u)+O(gz)

where ¢ is the group parameter. The corresponding generator of the Lie algebra is
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X =z(t,xy,u)d, +&(t,x,y,u)d, +¢(t,x,y,u)d, +n(t,x,y,u)d, ®3)

For fitting the algorithm and software in [9], transform the NLSE (1) to real case by transforming u — u +iv,
where U and V are real function. For this transformed system, using characteristic set algorithm given in [9],
we find the simplified determining equations for generator

X =z(t,xy,u)8, +&(t,x,y,u)d, +¢(t,x,y,u)d, +n(t, X, y,u)d,
are as follows
ug, —v, =0, ucp+(v2+u2)7yv—w]:0, un+v<p—(v2+u2)77u=0,
U77+Vgo—(v2+u2)(pv:0, U(p—Vn—(V2+u2)(pu=0, =0, & =0,
ug +2¢, =0, 2n,-v§ =0, & =0, $pe =0, &, =0, ug +2¢, =0,
ury+v<o+(v2+u2)¢fx=0, 6, =0, ¢,=0, 2p,-vg, =0, ¢, +&, =0,
un+vw+(v2+u2)gy:0, 7,=0, 7, =0, 2(un+V¢)+(vz+uz)q:0,
7, =0, ‘ry=0, 7y =0, ¢,=0.
Solving the above system of PDEs, we obtain:
r(t, X, y,u,v) =ct? + 2c,t+c,
E(t X, Y,U,V) =X+ Cgy +(Cg +CX)t+C,

( )
s(t, X, y,u,v)=c,y—Cx+(c, +Cgy)t+c,
( )

n(t,x,y,u,v

%cs (x* + yz)v+%(cex+c7y)v—(c4 +Cgt)u +%cgv
o(t,x,y,u,v)= —%cg (x*+y*)u —%(c6x+c7y)u —(c, +cgt)v—%c9u
where C; (i=1,2,---,9) are arbitrary constants.

Therefore the infinitesimal generators of the transformed real form equations are given by
X, =0,, X,=08,, X3=0,, X,=Xxd,+ Yo, +2td, —ud, —va,,

Xy =Yy0,—%x0,, X;=10, +%vx6u —%uxav, X; =10, +%vyé’u —%uyaV \

y’
Xy = X0, +1tyd +t26t+[1v(x2+y2)—ut}a —Fu(x2+y2)+vt}a ,
X y 4 u 4 v

X, :lvau —iuav.
2 2
These are equivalent to generators for Lie algebra of NLSE (1) obtained by transforming u+iv—u,
du—>ou, ov—sidu It spans 9-dimensional Lie algebra L° of admitted by NLSE (1). The commutation rela-
tions of (4) are given in the following Table 1. It is fundamental to constructing the optimal system of L* span-

ned by (4).
Xi=0,, X;=0,, X3=0,, X,=x0,+Yyd,+2to, —ud, ,

Xq = Y0, -X0,, X¢ =10, —'Exuau, X, =10, —lzyuau , )

Xy =tX0, +tyd, +170, —B(x2 - y2)+t}u6u X :_luau .

2
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The commutation relations of the basis is given in the following Table 1.

3. 1-Dimensional Optimal System of L’

In this section we present a 1-dimensional optimal system of the algebra L* obtained in Section 2 spanned by
4).

The problem of finding an optimal system of subalgebra of a Lie algebra is a subalgebraclassification problem.
Unfortunately,this problem can still be quite complicated and has no efficient method to use. For 1-dimensional
subalgebras, this classification problem is essentially the same as the problem of classifying the orbits of the ad-
joint representation, since each 1-dimensionalsubalgebra is determined by a nonzero vector in the algebra. Essen-
tially, this problem is attacked by the naive approach of taking a general element X in the algebra and subject-
ing it to various adjoint transformations so as to “simplify” it as much as possible.

Now, in our case, given a nonzero vector X =k'X, +k°X, +---+k9X9 in algebra spanned by (4). The vec-
tor corresponds to the vector k = (kl, k?,---, kg) . Our task is to simplify as many of the coefficients k' being

zero as possible through applicationof adjoint maps on X and find its equivalent one.

Here we use the matrix method given in [7] to determine an optimal system of 1-dimmensional subalgebra of
L*. Thealgorithm is given by following steps.

Step 1. Determine structure constants matrix C ( j) by formula

Kk

(C(i); =«

where ci'j is structure constants given in commutator Table 1.
Step 2. Calculate adjoint matrix A( ) e) by definition.

n

A(j,g):exp(gC(j)):iC(j)”g_

n=0 n!

Step 3. Simplify the vector k =(k*,k®,--,k®) as much as possible by applying A(j,&) onk and obtain

equivalent one of X.
In the Following, we construct the optimal system of L° by following above the steps.
As the commutator table 1 showing, we have the structure constants matrices for the L areas follows

Table 1. Commutation table for the generators of the Lie algebra L°.

[]X X, X, X, X, X, X, X, X,
X,000 X, — X, X,0X,0
X, 000 X, X,0X, X, 0

X,0002 X,0 X, X, X, 0

X, — X, — X, —2X,00X, X, 2X,0

X, X, —X,000 X, — X, 00

X, — X,0— X, — X,— X, 0000
X, 0— X,— X, — X, X,0000
X,— X,— X, — X, —2 X, 00000

X, 000000000
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10000000 ¢ 10000 0 00 O
0 0 0 0
80100000%52 021000 00 g
00010e¢ 00 O 00010 0 ¢£0 0
AGe)=lo 0oo010ec0 o200 001 00 o0
00000100 O 00000 1 00 0
00000010 O 00000 0 10 0
00000001 O 00000 0 01 0
0000000GO0 1 00000 0 00 1
10000460 0 0 100000000
010000¢ 0 0 010000000
0015000 & 0 001000000
0001000 2 0 000100000
A(8,c)=[0 0 0 01 00 0 0| A9£)={0 00010000
0000010 0 0 000001000
0000001 0 0 000000100
0000000 1 0 00000O00O0T10
0000000 0 1 00000O00O0GO0 1

Hence, the vector k =(k",k?,--,k?) is transformed by the matrices A(j,¢) is as follows

KA(3,8) = (K* - £k®,k?* — ek’ k® —2ek* + £°K° k* = 2k® k®, k® k7 K k%) ,

kA(Le)= k' —ek® k? +k® k3 k* Kk k® —gk® k7 kB k°®—&k® +%82k8j,
kA(2,¢) = kK —ek® k? —gk* k3 k* k% k® k" —ek® k& k° — gk’ +%52k8) ,

kA(4,2) = (e°k",e°k?, ek k*, k®,e*k® e k7, e k® k°),
kA(5,¢) =(k1 cose +k2sing,—k*sing +k?cos e,k k*,k® k° cose + k sing,—k®sing + k’ COSS,kS,kg)

kA(6,.9):(kl+gk3,k2,k3,k4,kt—’,k6+$k4,k7 +gk5,k8,k9+gkl+%52k3j,

kA(7,¢) :(kl,kz +ek® k3 k" k® k8 —ek® k7 +ek? k8 k® + gk? +%52k3j,
KA(8, &) = (K"K K, k* +2k® Kk® k° + ak' k7 + 6k, k® + 2ek* +£7k° k7)),
kA(9,£) = (k' k? K, k*,Kk* k®, K7, K k?).
In order to obtain the optimal system, we solve k as simple as possible from the above transformations.
k! k? k® k'

F, Slz—F, & =—k5, EGZ—F, 83=€4=€5=88=0,the

coefficients k' k?,k® and k' are vanished. By scaling, we can suppose k=1, Hence X is equivalent to
X +aX, +bX, +cX, +0X,, where we use a, b, ¢ and g to denote the arbitrary constants.

If k® =0, bysetting &, =
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'S k? k® k'’

If k=0 and k* =0, by setting A7 B GBS ST BT E T4 =0,
coefficients k' k?,k® and k’ are vanished. By scaling, we can suppose k*=1. Hence X isequivalentto
X, +aX, +bX, +0X,.

k® k'

If k*=k>=0 and k®=0, by setting & SE BT BTG TE=6=6 =4 =0, coefficients k°
and k’ are vanished. By scaling, we can suppose k®=1.Hence X isequivalentto
Xg +aX, +bX, +cX; +0X,.

k* k?

If k*=k>=k®=0 and k=0, by setting & =T BTG aTaTa=6 =654 =0,
coefficients k' and k? are vanished. By scaling, we can suppose k*® =1.Hence X isequivalentto
Xy +aXg +bX; +9X, .

1 7 9

If k®=k*=k>=k®=0 and k°® =0, by setting & =- & = arctank—ﬁ, & :arctanF

k_61
&, =¢,=¢ =& =& =0, coefficients k*,k”,k® are vanished. By scaling, we can suppose k°=1.Hence X
is equivalentto X, +aX,.

. k? k®
If k®=k®=k>=k®=k®=0 and k” =0, by setting & ST BT BTG TE G4 =0,
coefficients k2,k° are vanished. By scaling, we can suppose k' =1.Hence X isequivalentto X, +aX;.
k! k®

If k®=k*=k>=k® =k’ =k®=0 and k*=0 by setting & :arctan—k—z, =7
g =¢=¢6=¢=¢ =g =0, coefficients k* k° are vanished. By scaling, we can suppose k’=1. Hence
X isequivalentto X,.
If k2=k®=k*=k>=k®=k’=k®=0 and k® =0, by scaling, we can suppose k°®=1.Hence X is
equivalentto X, +aX,.
If k?=k®=k*=k*>=k®=k" =k® =K® =0, by scaling, we can suppose k'=1. Hence X is equivalent
to X;.
Therefore the set of generators
X=X, X?2=X,, X¥=X,+aX,+bX, +0X,, X* =X, +aX; +bX, +0X,,
X® = X, +aX, +bX, +cXg +09X,, X=X +aX,, X' =X, +aX,, (5)
X8 = Xy +aX; +bX, +cX; +9X,, X° =X, +aX,.
is consisted of the optimal system of 1-dimensional subalgebra of the algebra L’ of the NLSE (1), where
a,b,c and g are arbitrary constants.

4. Reductions of NLSE (1) with (5)

In this section we give a classification of symmetry reductions of NLSE (1) by using (5).

The reduction in this section require lengthy computations and do not follow a standard algorithmic procedure,
so it would be difficult to reproduce them using software. We will introduce the details for the case
X = X;+aX, +bX, +gX, and the remaining ones can be reproduced in a similar manner.

The differential invariants (and hence the similarity variables) for the generator can be determined by solving
the characteristic system

dt dx dy du
E(ax +by+q)u
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Solving this system, one obtains invariant (similarity) variables are as follows
1
= x-Zat?,
y 2
1
2 2
=y—-=bht",
y =y >
Ve e—é(a2+b2 )t3 +12(ax+by+q)t
Hence let

i—2+23—i +by+
u=esl® ”‘5”W®V(¢dﬁ (7

and substitute (7) into the Equation (1) which yields the first reduced system of the NLSE (1)

Vi

In the same manner, we can obtain the additional reductions of (1) with using other subalgebras in (5) which
are listed in Table 2. The last column shows the cases of similarity variables. Here

Au=V (YY) =ty =y,

B:u=eb

1
+Vo +r|V|2V —E(ay1+by2+q)v =0 (8)

(a2+b2)t3—i§(ax+by+q)t

1 1
V(yhy2 )yt =x—=at’, y* = y—=ht?;
(VLY )yt =x-2aty =y =2

1+bt

{bt[ 2 (bt—cy)zw anrctanm

4| bi?+2tea 02(t2+c)J' Jab-1

L X cy — bt
e yl,yZ);yl: yz_ y .

JVbt? +2t+a Jot? 1 2t+a N

Table 2. The first reductions of Equation (1) by optimal system (5).

C.u=

Generator The rst reduced equations Cases
1_ 2 _ . 2y,
X'=X,, X*=X, V.. =iV +rNV[V =0 A
1 1 2
X® =X, +aX, +bX, +gX, V., +Vyzyz+rM2V7§(ay +by’+q)V =0 B

Vy‘v‘ +Vy2y2 + (ylvy’ + yzvvz )

X' =X, +aX,+bX, +gX
! ’ o +[4i—2q—ab((yl)2+(y2)2)}V+rM2V=0 c

VoV by YV i (-y byt )V,

X® =X, +aX, +bX, +cX, + X, 1. ) . , 1
+Z[2l(2b+|q)—ac(y ) +(y )Z}V +ZrM2V =0 D
X°=X,+aX,, X =X, +aX, 2[a2+(yl)2}vyzyz—2i(y1)2Vy]+2r(y1)2M2V—iy1\/=0 £
X® =X, +aX, +bX, +cX, +gX, Vy]y]+Vyzy2+%[az+bz—20q+cz((yl)2+(y2)2)}v+rMZV:0 F
. 1
X=X, +aX, vyzyz—uvyl—Aavarervzo G




M. R. My, C. L. Temuer

b+ct

ac-b?

ict(x2 +y2) 2qarctan

Doy () skt (v'y?):
arctan ﬂ arctan ﬂ
2 / 2
X COS ¢ -y sin %ac—b

y = Jac-b?
vJa+2bt +ct?

arctan bt arctan _bet
vJac—h? . vJac—h?
ycos— &2 4 xsin— Y29
y? = ac—b? Jac—b?
Ja+ 2bt +ct?
i ax
E:u=e ‘“V(yl,yz);yl =t,y’ = Y-
i[(a2+bz)t—20(ax+by)fct(x2+yz)]*i(aerbz*ZCQ)afCtan%
Eu= 1 e o[t +c) 45 V( 1 2). 1 Cx—at o, cy-bt
. - \/2— y 7y yy - 2 7y - 2 )
t“+c cVt +cC cVt +cC

G:u =e72i7xav(y1,y2);y1 =t,y’=y.

5. Reductions of NLSE (1) with (5)

The equations obtained in Table 2 can be reduced further in the similar way in last section, consequently, we
obtain second time reductions of NLSE (1). We take the first equation (the reduced one of (1) by X' or X?)
in Table 2

. 2
Voo =iV, +rV[v=0 9)
as example. This is a nonlinear “1 + 1” Schrédinger equation.

5.1. Lie Symmetry of the Equation (9)

In this section we present all symmetries of Equation (9). To obtain the Lie group symmetries of Equation (9),
we consider the one parameter Lie group of infinitesimal transformations in (yl, yz,v) given by

(yl)* =y +er(yhy'V)+0(e)
(yz)* =y? +g§(y1,y2,V)+O(gz)
V=V +g¢7(yl, yZ,V)+O(32)
where ¢ is the group parameter. The corresponding generator of the Lie algebra of the group symmetry is
Y=r(y, yZ,V)ayl +E(y, yZ,V)ay2 (¥ Y2V,

For fitting the algorithm and software in [9], we transform the (9) to real case by transformation V =V +iV'
where v and V' are real function. For this transformed system, we find the generator

Y=r (VL VYo +E (VL YVV)0 L +n (Y YRV V), +e(yh YRV V)R,

for its Lie symmetry group. The simplified determining equations are
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7, =0, Pa =0, —V'77+V(p+(V’2 +V2)77V, =0, V77+V'(p—(V’2 +V2)77V =0, V§y1+2goy2 =0,
Vn+Vio-(VZ4V?)@a,. =0, Vip-Ve+(V2+V?)g =0, 7, =0, 5, =0, 7, =0, &, =0,
avn+v¢y4v“+vﬂr¢=o,é,:o,vn+v¢H{v”+vﬂ§f=o,znﬁ_vngo_
After solving the above system of PDEs, we have
(YL y V. V) =c (y1)2+2c4y1+c1,
(y y2,V,V

N=cy' Y + Gy Y G,
(v vy V.V = —c3( )V += cSyZV +206V
)=

o(¥'y V.V’ ——c3( )V—EcsyZV+|Ec6 ’

Here ¢ (i=12,6) are constants.
Therefore the symmetry algebra generators are

2 1 2., 1 2
V=0, =0, Y,=(y') 0, +y'y0, +Z(y2) V'a, _Z(yz) Vo,
1 : .
Y, = 2y18yl + yzayz v Y = ylay2 +Ey2V’a\, Y ='EV6V +IEV’6V,.
By transformation V +iV' >V, a8, »4,, 8, —ié,, the 6-dimensional Lie algebra L° of (9) is span-

ed by the set of generators

2 1 2
Yl :ay“ Y2 Iayz, Y3 :(yl) ayl + ylyzayz —Z(yz) Vav* (10)

i i
Y, = 2y16y1 + yzayz, Y, = ylayz —Eyzvav, Y, =§V5v-
The commutation relations of the basis is given in the following Table 3.

5.2. 1-Dimensional Optimal System of the |°

This section presents a optimal system of 1-dimensional subalgebras of the symmetry algebras L® obtained in
Section 5.1. As above section, we have

0 0 0 0 0O 0 0 00 0O O 000100
0 0 0 0 0O 0 0 00 OO 000010
0 0 0 -1 00 0 0 00O -10 0 00O OTO
c(1)= . C(2)= . C(3)= ,
-2 0 0 0 0O 0 -1 00 0O 0 02000
0 -1 0 0 0O 0 0 00 0 1 0 00O0O0O
0 0 0 0 0O 0 0 00 0 O 0 00O0O0OTO
10 0 0 0 O 010000 0 00O0O0OTO
01 0 0 0 O 0 00O0O0 -1 0 00O0O0OTO
00 20 00 0 00O0O0TDO 0 00 0O0TO
C(4)= . C(5)= . C(6)= .
00 0 0O 0 O 000O0T1 O 0 00O0O0O
00 0 0 -10 0 00O0O0OTO 0 00O0O0OTO
00 0 0 0 O 0 00O0O0OTO 0 00O0O0OTO O

The exponentiation of the matrices C ( j) are obtained as follows
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Table 3. Commutator for (10).

2 3 "4 5 6

[TYLY, VY, VY

Y 00 Y,2Y Y, 0
Y, 00Y, Y, -Y, 0
Y,-Y, -Y,0 -2Y,0
Y, -2Y,-Y, 2Y,0,0
Y.-Y, Y, 0 -Y,00
Y, 000000
1 000 00 ! 00 0 0
0 1.0 0 00 1 000 10
20 1 - 00 0 0 10 —¢ -=¢&?
A(Le)= ‘92 . o 18 o ol A2e)= & T8,
e 001 0 ©
0 -0 0 10 0000 1 &
0 00001 00000 1
10 £ 00 e 0 0O 0 O O
01 0 0 ¢ O 0 ef 0O 0O O O
—2¢
A(3)= 00 1 0O0UDO , A(4,8)— 0 0 e 0 0 O ,
0 0 22 1 00 0 O 0 1 0 O
00 0 010 0 O 0 0 e O
00 0 O O01 0 O 0 0 0 1
1,
1 ¢ 00O —Eg 1 00000
ciuv L] [piene
A(s,g)z 0 01 00O 0 , A(6,g)= 000100
0 0 01 ¢ 0
0000 1 0 00 O0OT1P0
0000 O 1 0 00 O0O01
For the nonzero generator Y =K', +k°Y, +---+k°®,, the vector k=(Kk'k*,-,k®) is transformed by the

KA(Le) = (k%" - 2k*e +k" k* —Kk°e,k° k* — k%, k® k°)
kA(2,g):[k1,k2—gk4,k3,k4,k5—gk3, 1k3gz+k55+k6j
KA(3,) = (k' K2 K" + 2k ‘e +k°, k* + k', k® + k? K°)
kA(4,2) = (k" ek, e k% k*,eK° k°)

KA(5,¢) = (kl,kz +ek! K kK +gk4,—%klgz —kzg+k6j
KA(6,2) = (k' K2, Kk, k° k°)
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In order to get the optimal system, we need to transform K as simple as possible. This is done by following
deduction.

k* k®

If k®=0 by setting A= &= and &, =¢, =&, =&, =0, the coefficients k* and k* are va-

nished. By scaling, we can suppose k*®=1.Hence Y isequivalentto Y,+aY, +bY, +cY,.
'S k? k®

If k*=0 and k* =0 by setting = ©2 ST and g, =¢,=¢,=0, the coefficients

k', k* and k® are vanished. By scaling, we can suppose k*=1.Hence Y isequivalentto Y, +ay,.
k2 k6 1
If k®=k*=0 and k®=0 by setting elzk—s, gzz_k_S' 64:_E|nk_5 and &, =¢& =¢,=0, the

coefficients k® and k> are vanished. By scaling, we can suppose k®=1. Hence Y is equivalent to
Ys +Y, .
k6 2
If k®=k*=k>=0 and k' =0 by setting &, :IHF’ £ =0T
cient k? is vanished. By scaling, we can suppose k' =1.Hence Y isequivalentto Y, +Y,.
2

If k'=k>=k*=k>=0 and k®=0 by setting g4=—lnk—6 and ¢ =¢,=¢,=¢, =¢,=0. By scaling,

and g =¢, =g =¢,=0, the coeffi-

we can suppose k®=1.Hence Y isequivalentto Y, +Y,.
If k'=k>=k*=k>=k®=0 and k® =0, by scaling, we can suppose k*=1. Hence Y is equivalent to
Y,.
Therefore the set of generators
Yf =Y, +Y, Y2l =Y,, Y31 =Y, +aY, +bY, +cY;, Y41 =Y, +aYy, Y5l =Y, +Y,, YG1 =Y, +Y,. (11)

is consist of the optimal system of 1-dimensional subalgebra of the symmetry algebra of Equation (9),where a,
b and ¢ are arbitrary constants.

5.3. 1-Dimensional Optimal System of the L°
In this section we give a classification of symmetry reductions of PDE (9) with the optimal system of (11).
The Equation (9) admits optimal system (11) obtained in Section 5.2.

Taking Yy =Y; +Y, asexample to show the procedure of the reduction.

The differential invariants (and hence the similarity variables) for the generator can be determined by solving
the characteristic system

dy'  dy? av
T (12
—yV
2y
Solving this system, one obtains invariant (similarity) variables as follows
, 1/ 4\2 —ig(yl)3+i§y1y2
=Yy —— , wW=e V.
y'=5(v)
Hence let
AP ie
Vel 2 W), (13)

which yields reduction of (9)
W, —%zw +rW[*w =0.

This is the second reductions of (1), which is an ordinary differential equation.
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In the same manner, we can obtain the second reductions of Equation (9) with respect to other subalgebras of
(11) whichare listed in Table 4. For the equation reduced by X° (the last equation in Table 2)
where

i{\/g(bzyl—Zabyz —ayl( y2 )2 ]+(b2 +2ac)[a+(y1)2jarctan%}
3
2

AV e 4a [a+(y1)2] _ ayz _byl

B:V = eéy{(yl)z_gsz\N (z), z=y? _%(yl)z

. 1 2
Vy2y2 —IVy1 —EV + r|V| V=0 (14)

we have the same reduction as (9).
For the equation reduced by X° or X' (the fifth equation in Table 2)

2 . 2 2 2 .
Z[a2 +(y!) }Vyzyz ~2i(y) v, +2r(y') V[V -iyv =0 (15)
admits optimal system Y6,-'-,Y46 and leads to the reductions which are listed in Table 5.
where

a
e (w0 oy o 0 e ) v zmgva
AV =W(z), z=Y';
vt
B:V —e 4[(y1)27azlw(z), =Yy
| a3
C:V =(a2 +(y1)2); 94 (a2+(y1)2] W(z), z= 2 il(y;)z ;

LY
D:V=e 2ayW(z), 7=y
Similarly, other equations in Table 2 also can be further reduced. Consequently, we obtain the twice reductions
of (1) shown in Table 6.
where

Wy=0,, W,=0,, W=y, -y,

W, =Y'0,+Yy°0, Vo, W,=-iva,, Vy=Y0,~Y,, V,=-iVa,.

Z_bl 1
2=y’ 1=y 1= M S S z=y2—l v oz=yh 2=y
ety oy )
1,,2
o a4 s a1 P
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Table 4. The further reductions of (9) with (11).

Generator the second reductions similarity variables

2

Y=Y, +Y, W, +%aW+r’W\2W =0V :elsz(z), =y

1

YISY, i, rwfw =0 V=W(z), 2=y
Y, =Y, +aY, +bY, +cY, Cannot get explicit reduction A

i
1

Y, =Y, +Y, Cannot get explicit reduction V:(yz)EaW(Z), =Y

Yo=Y +Y, W, %zw +rwfw=08

12

YEZY, 4y, in+%W—r\W\2W —oV=(y)'W(z), z=y

1

Table 5. The reductions for the subalgebras of Equation (15).

Generator of optimal system the second reductions similarity variable

Y =2, 2iz2W, +iW - 2rzW['W =0 A
6 . 2iz 2
Y, =2, 20w, - W —2rW['W =0 B
-7
6 _ . ,., A 1 2
Y, =Z,+aZ, WH+[|az —EJW+Zr’W‘W=O Cc
Y =7, +aZ, 2i2w, +[%(a2 +zz)+iz}w 2’ WW =0 D
a

AW, +42W,, — bW +%(a2 +b? - 260+ 2)W +rW['W =0;
JA

AW, +42W,, + 2ibzW, +%[2i(2b+iq)—acz]W +%r|\N|ZW =0;
L =2iz°W, —[%(az + 22)+ iz}W +2r?Wlw =0;

3 :eiEy1W(z); E:V=W(z);

i\/g[bzyl—Zaby2 —ay1(y2 )2 j+i(bz +2ac)[a+( y1 )Zjarctan%

3

m(m(yl)zj

V=e W(z);

vV :(yz)%aW(z); H:v :eigy{(w)uyzj\N(z); RY :e%yzw(z); IV =eW(2);

—aiarctan

v =e“ay2W(z); L:V=e

(z); M : Cannot get similarity variable;
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Table 6. The rest reductions of the 2D-CNLS (1) by optimal system (6).

First step opts second step opts reduced equation similarity variable

X' or X2 or X°Y!'=Y+Y, W, +%aW +rw['w=0 D
Y, =Y, —iw, +rw['w=0 E
Y, =Y, +aY, +bY, +cY, Cannot be obtained explicit reduction F
Y, =Y, +aY, Cannot be obtained explicit reduction G
Y=Y, +Y, W, 7%ZW +rWwfw=0H
Yl =Y, +Y, —iw, —%W +rw[w =0 I
X* or X® Y'=W,+aW, Cannot be obtained explicit reduction J
Y, =W, +aW, Cannot be obtained explicit reduction K
YS =W, +aW, AL
Y} =W, +aW, +bW, Cannot be obtained explicit reduction M
Y,) =W, Cannot be obtained explicit reduction N
X* or X°Y'=V,BO
Y,' =V, Cannot be obtained explicit reduction P
X or X7 Y =7, -2izW, —iW +2rzW['W =0 Q

2iz
a2-7?

Y. =2, -2iW, +

A W +2rw[w =0 R
6 . ,., a 1 2
Y, =Z,+aZ, W, +(ia’z _E)W +er W=0S$

Yi=Z,+aZ,C T

N : Cannot get similarity variable; O:V =W(Z); P : Cannot get similarity variable;

iv(y? )2

Q:V=W(z); R:V=¢ 4[(y1)2_32]W(Z);

1 iyl((y1)27a2](y2)2+2iaman{%]

‘ a2+(yl)2 2 ‘% Ly
S:V=e (a2+(yl)) W(z); T:V=e2 W(z).

6. Some Exact Invariant Solutions of PDE (1)
In Table 4, we have
iW, —rw['w =0 (16)
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Transform the (16) to real case by transformation W —W +iW , where W and W are real functions, we

find the simplified

W, =W (W2 +W?)

Dividing Equation (17) by Equation (18), we obtain
WW, +WW, =0
which yields
W =gvc-W?
where ¢ =+1, cis arbitrary constant. Substituting (19) to (18), it has general solutions
W = ecsin(reez—c,)
W = e/ccos(reez—c,)
Therefore

W = g\/Ee—(rcgz—ol)i
In the same manner, solving the equation

rW[* W —iw, —%W =0

in Table 4, we have solution

1) }
rc+=— |ez—Cy i

W = E\/Ee{[ 4

In the same manner, solving the equation in Table 5
-2i7°W, —{iz(a2 + zz)+iz}W +2r?W['W =0
2a
one has solution

gz+i—iﬁln\z\— i
2 G

W = gx/ge{[méj 4z

(17)

(18)

(19)

(20)

These solutions W yield exact solutions of (1) through connection with V =W (Z) , (20) and (7).

7. Conclusion

The 1-dimensional optimal system of the Lie algebra of 2D-CNLS equation has been constructed by matrix
form methodand twice reductions of the equation by the optimal system are given. Consequently, some exact

invariant solutions of theequation are formed by symmetry method.
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