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Abstract 
A real square matrix whose non-diagonal elements are non-positive is called a Z-matrix. This 
paper shows a necessary and sufficient condition for non-singularity of two types of Z-matrices. 
The first is for the Z-matrix whose row sums are all non-negative. The non-singularity condition 
for this matrix is that at least one positive row sum exists in any principal submatrix of the matrix. 
The second is for the Z-matrix A  which satisfies Ax 0≥  where x 0∃ > . Let ija  be the ith row 
and the jth column element of A , and jx  be the jth element of x . Let F  be a subset of 

{ }N n1,2, ,=   which is not empty, and G  be the complement of F  if F  is a proper subset. 

The non-singularity condition for this matrix is i F∃ ∈  such that ∑ ij jj N a x 0
∈

>  or i F j G,∃ ∈ ∃ ∈  

such that ija 0<  for F N∀ ⊆ . Robert Beauwens and Michael Neumann previously presented 
conditions similar to these conditions. In this paper, we present a different proof and show that 
these conditions can be also derived from theirs. 
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1. Introduction 
A real square matrix whose non-diagonal elements are non-positive is called a Z-matrix. The purpose of this 
paper is to show a necessary and sufficient condition for non-singularity of two types of Z-matrices. 

The first is the Z-matrix whose row sums are all non-negative. In this paper, we denote this as a Non-negative 
Sums Z-matrix (NSZ-matrix). 

The second is the Z-matrix A which satisfies 0Ax ≥  where 0x∃ > . In this paper, we denote this as a 
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Non-negative Product Z-matrix (NPZ-matrix). 
The following relation exists between these matrices. 
Theorem 1.1 An NSZ-matrix is equivalent to an NPZ-matrix where all elements of x  are the same number. 
Proof. Let { }1,2, ,N n=   be a set of numbers, and x  be a positive vector with all elements equal to the 

same number *x . 
If ( )ijA a=  is an NSZ-matrix, the ith element of Ax  is ( ) *

ijj N a x
∈∑ . 0ijj N a

∈
≥∑  for i N∀ ∈  because 

A  is an NSZ-matrix. Also, * 0x >  from the premise. Hence, ( ) * 0ijj N a x
∈

≥∑  for i N∀ ∈  is satisfied.  

Therefore, A  is an NPZ-matrix. 
Conversely, consider that ( )ijA a=  is an NPZ-matrix which satisfies ( ) * 0ijj N a x

∈
≥∑  for i N∀ ∈  where

* 0x∃ > . If we divide both sides of ( ) * 0ijj N a x
∈

≥∑  by * 0x > , we obtain 0ijj N a
∈

≥∑  for i N∀ ∈ . Thus,  

A  is an NSZ-matrix. [Q. E. D.] 
As Theorem 1.1 shows, the NSZ-matrix is a type of the NPZ-matrix. Therefore, if we can find a necessary 

and sufficient condition for non-singularity of the NPZ-matrix, we find the ( )a  necessary and sufficient condi-
tion for non-singularity of the NSZ-matrix automatically. However, we will prove the latter condition first, and 
then address the former condition. 

We first state the basic propositions of linear algebra used in this paper. 
The determinant of a square matrix A  is denoted det A  in this paper. 
Theorem 1.2 Let ( )ijA a=  be a Z-matrix. Take a real number ρ  which is equal to or more than all diago-

nal elements and construct the matrix B E Aρ= −  where E  refers to the unit matrix. B  is a non-negative 
matrix. 

Proof. The non-diagonal elements of ( )ijB b=  are ij ijb a= − . As A  is a Z-matrix, 0ij ijb a= − ≥  for 
i j∀ ≠ . On the other hand, the diagonal elements of B are ii iib aρ= − . Since iiaρ ≥  for i N∀ ∈  by the 

premise, 0iib ≥  for i N∀ ∈ . Therefore, 0ijb∀ ≥ . [Q. E. D.] 
Theorem 1.3 A non-negative square matrix B  always has a non-negative eigenvalue. Let ( )Bλ  be the 

maximum non-negative eigenvalue of B . Then there exists a non-negative eigenvector corresponding to 
( )Bλ . 
If a Z-matrix A E Bρ= −  satisfies ( )Bλ ρ≤ , A  is called an M-matrix1. 
Theorem 1.4 An M-matrix A  is non-singular if and only if ( )Bλ ρ< . In this case, 0ρ >  and all ele-

ments of the inverse of an M-matrix are non-negative. In particular, all diagonal elements of the inverse are 
equal to or more than 1 ρ 2. 

Proof. As Theorems 1.3 and 1.4 are well known, we entrust the proof to another work3. However, as it re-
ceives less attention that diagonal elements of 1A−  are 1 ρ  or more, we confirm this aspect. 

Regarding the inverse of an M-matrix A E Bρ= − , ( )1 1
1

k k
kA E Bρ ρ∞− +
=

= +∑  is satisfied4. Thus, if we 

set ( )ijA a=  and ( ){ }kk
ijB b= , ( ){ }1

11 k k
ii iika bρ ρ∞ +

=
= +∑  is satisfied. As B  is a non-negative matrix and 

0ρ > , ( ) 1 0k k
iib ρ + ≥  for 1k∀ ≥ . Therefore, we can obtain ( ){ }1

11 1k k
ii iika bρ ρ ρ∞ +

=
= + ≥∑ . [Q. E. D.] 

Theorem 1.5 If the row sums of a square matrix A  are all zeroes, det 0A = . 
Proof. Let jk  be the jth column vector of A . We construct the linear combination 1 1 2 2 n nk k kλ λ λ+ + + . 

If the row sums of A  are all zeroes, 1 1 2 2 0n nk k kλ λ λ+ + + =  when 1 2 1nλ λ λ= = = = . Therefore, 
1 2 , ,, nk k k  are linearly dependent. The determinant of a matrix whose column vectors are linearly dependent 

is zero5. [Q. E. D.] 
If 1B P AP−=  holds for the square matrices A  and B  and a non-singular matrix P , A  and B  are 

called similar to each other. 

 

 

1This definition is that given by Berman & Plemmons [1] p. 133. Alexander Ostrowski, who used the concept M-matrix first, gave a differ-
ent definition for M-matrix. Cf. Ostrowski [2] p. 69, Berman & Plemmons [1] p. 161. The definition of M-matrix given in Varga [3] is also 
different. Cf. Varga [3] p. 91. 
2Theorems 1.3 and 1.4 are often called Frobenius theorem after their discoverer, Georg Frobenius. 
3Cf. Berman & Plemmons [1] pp. 6-7, p. 26, Nikaido [4] pp. 101-102, Varga [3] p. 51, p. 89. 
4Cf. Nikaido [4] p. 96, Varga [3] p. 89. 
5Cf. DeFranza & Gabliardi [5] pp. 118-119. 
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Theorem 1.6 When two matrices are similar, if one matrix is non-singular, the other is also non-singular. 
Theorem 1.7 Similar matrices have the same eigenvalue6. 
Here, we define the notation for submatrices in this paper. 
Let { }1,2, ,N n=   be a set of number of rows and columns of a square matrix A  and let F  be a subset 

of N  which is not empty. FFA  refers to a submatrix of A  whose row and column elements belong to F . 
When F  is a proper subset, we define G  as the complement of F . FGA  refers to a submatrix of A  whose 
row elements belong to F  and column elements belong to G . Similarly, GFA  refers to a submatrix of A  
whose row elements belong to G  and column elements belong to F , and GGA  refers to a submatrix of A  
whose row and column elements belong to G . Clearly, FFA  and GGA  are principal submatrices. NNA  is A  
itself. 

Based on the above, we confirm the following basic proposition. 
Theorem 1.8 If FGA  is a zero matrix, ( )( )det det detFF GGA A A= 7. 

2. A Necessary and Sufficient Condition for Non-Singularity of the Z-Matrix Whose 
Row Sums Are All Non-Negative 

In this section, we discuss the non-singularity of the NSZ-matrix. We reconfirm that the NSZ-matrix is defined 
as the Z-matrix whose row sums are all non-negative. ( )ijA a=  denotes an NSZ-matrix in this section. 

Theorem 2.1 An NSZ-matrix is an M-matrix8. 
Proof. Take an NSZ-matrix A  and a real number ρ  which is equal to or more than all diagonal element, 

and construct the matrix B E Aρ= − . B  is a non-negative matrix from Theorem 1.2. Let ijb  be the 𝑖𝑖th row 
and the jth column element of B  and let jx  be the jth element of a non-negative eigenvector of B  corre-
sponding to ( )Bλ . Moreover, let kx  be a maximum of jx . Incidentally, multiple candidates of k  may exist. 
In that case, one can choose any k  of these. From the definition of eigenvalue and eigenvector, 
( ) k kj jj NB x b xλ

∈
= ∑  is satisfied. On the other hand, j kx x≤  for j N∀ ∈  because kx  is a maximum of jx . 

0ijb∀ ≥  because B  is a non-negative matrix. From these conditions, kj j kj kb x b x≤  is satisfied generally. 

Thus, ( ) ( )k kj j kj kj N j NB x b x b xλ
∈ ∈

= ≤∑ ∑ . 

Here, we confirm 0kx > . Note that 0jx ≥  because it is an element of non-negative eigenvector. Therefore, 
if kx  is zero, 0jx∀ =  because kx  is the maximum of jx . However, the eigenvector is not a zero vector 
from its definition. Hence, 0kx > . 

Based on the above, we divide both sides of the formula ( ) ( )k kj kj NB x b xλ
∈

≤ ∑  by 0kx > . Then, we can 

derive ( ) kjj NB bλ
∈

≤ ∑ . Note that 0ijj N bρ
∈

− ≥∑  for i N∀ ∈  because A E Bρ= −  is an NSZ-matrix. 

Then, ( ) kjj NB bλ ρ
∈

≤ ≤∑ . It is obvious that A  satisfies the definition of an M-matrix. [Q. E. D.] 

Theorem 2.2 An NSZ-matrix is non-singular if and only if it is a non-singular M-matrix. 
Proof. It is obvious that an NSZ-matrix is non-singular if it is a non-singular M-matrix. Conversely, if an 

NSZ-matrix is non-singular, it is a non-singular M-matrix by Theorem 2.1. [Q. E. D.] 
Considering Theorem 2.2, we see that finding a necessary and sufficient condition for non-singularity of the 

NSZ-matrix equates to finding a condition that it is a non-singular M-matrix. We will show this. 
Theorem 2.3 All row sums of any principal submatrix of an NSZ-matrix are non-negative. 
Proof. Regarding A  itself, this is obvious because of the definition of the NSZ-matrix. In the following, we 

show a proof for principal submatrices which are not A  itself. 
Let F  be a proper subset of N  and G  be the complement of F . As all row sums of A  are non-nega-  

tive, 0ij ij ijj N j F j Ga a a
∈ ∈ ∈

= + ≥∑ ∑ ∑  holds for i F∀ ∈ . Hence, ij ijj F j Ga a
∈ ∈

≥ −∑ ∑ . Because G  is the  

complement of F , it is clear that ija  for ,i F j G∀ ∈ ∀ ∈  are non-diagonal elements of the Z-matrix A. 

Therefore, all of these are non-positive. Then, 0ij ijj F j Ga a
∈ ∈

≥ − ≥∑ ∑  for i F∀ ∈  is true. [Q. E. D.] 

Theorem 2.4 If there exists at least one principal submatrix of an NSZ-matrix whose row sums are all zeroes, 

 

 

6Cf. Anton & Rorres [6] pp. 305-306 for Theorems 1.6 and 1.7. 
7Cf. Bretscher [7] p. 258. 
8This theorem is stated in Plemmons [8] p. 248. 
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the matrix is singular. 
Proof. If all row sums of A  itself, which is one of the principal submatrices of an NSZ-matrix, are zeroes, 

the proposition is derived from Theorem 1.5 immediately. In the following, we show a proof for principal sub-
matrices which are not A  itself. 

Choose F φ≠  which is a proper subset of N , where the row sums of FFA  are all zeroes. G , which is the 
complement of F , is also not empty. 

Based on this, we will confirm that FGA  is a zero matrix. From the definition of an NSZ-matrix, 
0ij ij ijj N j F j Ga a a

∈ ∈ ∈
= + ≥∑ ∑ ∑  holds for i F∀ ∈ . Then, 0ijj G a

∈
≥∑  for i F∀ ∈  are obtained because 

0ijj F a
∈

=∑  for i F∀ ∈  as defined. However, 0ija ≤  for ,i F j G∀ ∈ ∀ ∈  because A  is a Z-matrix. For  

these two propositions to be compatible, 0ija =  must hold for ,i F j G∀ ∈ ∀ ∈ . Therefore, FGA  is a zero ma-
trix. 

Then, ( )( )det det detFF GGA A A=  holds by Theorem1.8. Because all row sums of FFA  are zeroes, 
det 0FFA =  by Theorem 1.5. Thus, det 0A = . [Q. E. D.] 

Theorem 2.5 If an NSZ-matrix is non-singular, at least one positive row sum exists in any principal subma-
trix of the matrix. 

Proof. Due to the contraposition of Theorem 2.4, if an NSZ-matrix is non-singular, there does not exist a 
principal submatrix whose row sums are all zeroes. Then, by Theorem 2.3, at least one positive row sum exists 
in any principal submatrix of the matrix. [Q. E. D.] 

As a result of Theorem 2.5, a necessary condition for non-singularity of the NSZ-matrix is shown. We now 
prove this is also a sufficient condition. 

Theorem 2.6 If at least one positive row sum exists in any principal submatrix of an NSZ-matrix, the matrix 
is a non-singular M-matrix. 

For the proof of Theorem 2.6, we have to use inference. In the following section, we will set A  as an 
NSZ-matrix which has at least one positive row sum in any principal submatrix. Moreover, we take a real num-
ber ρ  which is equal to or more than all diagonal elements and construct the matrix B E Aρ= − . Note that, 
from Theorem 1.2, B  is a non-negative matrix. We now prove the following Lemmas. 

Lemma 2.7 Any row sum of all principal submatrices of B  is equal to or less than ρ . 
Proof. It is obvious that ij ijj F j Fb aρ

∈ ∈
= −∑ ∑  for i F∀ ∈  from the definition of B . 0ijj F a

∈
≥∑  for

i F∀ ∈  by Theorem 2.3. Thus, ijj F aρ ρ
∈

− ≤∑ . Therefore, ijj F b ρ
∈

≤∑  for i F∀ ∈ . [Q. E. D.] 

Lemma 2.8 Any principal submatrix of B  has at least one row sum which is less than ρ . 
Proof. If we take F N∀ ⊆ , i F∃ ∈  such that 0ijj F a

∈
>∑  from the premise. Hence, i F∃ ∈  such that

ijj F aρ ρ
∈

− <∑ . Note that ij ijj F j F ab ρ
∈ ∈

= −∑ ∑  is true from the definition of B . Thus, i F∃ ∈  such that 

ijj F b ρ
∈

<∑  for F N∀ ⊆ . [Q. E. D.] 

Then, we classify elements belonging to the number set N . 
According to Lemma 2.8, B  itself, which is one of the principal submatrices of B , has at least one row 

sum which is less than ρ . We choose i N∀ ∈  which satisfy ijj F b ρ
∈

<∑  to belong to the set 1H . 1H φ≠  
from the premise. 

If i N∀ ∈  belong to 1H , the classification is complete. In the following, we consider the case where 
i N∃ ∈  which does not belong to 1H . First, we prove the following Lemma. 
Lemma 2.9 ijj N b ρ

∈
=∑  for 1i H∀ ∉ . 

Proof. By Lemma 2.7, ijj N b ρ
∈

≤∑  for i N∀ ∈ . Since 1i H∉ , ijj N b ρ
∈

<∑  is not true from the defini-

tion of 1H . Thus, ijj N b ρ
∈

=∑  
for 1i H∀ ∉ . [Q. E. D.]  

We now consider the classification where i N∃ ∈  that does not belong to 1H . We define F  as the com- 
plement of 1H . By Lemma 2.8, i F∃ ∈  such that ijj F b ρ

∈
<∑ . We classify such i as belonging to the set 

2H . 
If i N∀ ∈  belong to 1H  or 2H , the classification is complete. If i N∃ ∈  which belongs to neither set, we 
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execute the third classification. 
Generally, r  classification steps are executed when i N∃ ∈  which does not belong to any of 1 1, , rH H − .  

In such a case, we define F  as the complement of 1
1

r
ss H−

=
. Then, i F∃ ∈  such that ijj N b ρ

∈
<∑  by  

Lemma 2.8. We classify such i  as belonging to the set rH . The next Lemma is obvious from the past consid-
eration. 

Lemma 2.10 rH φ≠  if i N∃ ∈  that belongs to the complement of 1
1

r
ss H−

=
. 

Then, the following Lemmas are derived. 
Lemma 2.11 If rH φ≠  for 2r ≥ , then sH φ≠  for 1 1s r≤ ≤ − . 
Proof. It is obvious by the method to construct rH  and mathematical induction. [Q. E. D.] 
Lemma 2.12 If r s≠ , then r sH H φ= . 
Proof. Without loss of generality, we suppose r s>  and prove the Lemma under this supposition. If 

ri H∈ , i  belongs to the complement of 1
1

r
ss H−

=
 by the definition of rH . Hence, i  does not belong to  

sH  where r s> . That is, r sH H φ= . [Q. E. D.] 
From Lemmas 2.11 and 2.12, rH  can be defined at most by r n= . In short, the classification is finished in 

limited time. If it is finished within m  times, we derive the next Lemmas. 
Lemma 2.13 1

m
r rN H==



. 

Proof. It is obvious that 1
m
r rN H==



. Hence, we prove 1
m

rrN H
=

⊆


. We suppose that i N∃ ∈  that be-

longs to the complement of 1
m

rr H
=

. Then, 1mi H +∃ ∈  from Lemma 2.10, but this contradicts the definition of 

m . By reductio ad absurdum, i N∀ ∈  belong to 1
m

rr H
=

. [Q. E. D.] 

Lemma 2.14 We define 1
1

r
ssG H−

=
=


. If rH  where 2r ≥  is not empty, 0ijj G b
∈

>∑  for ri H∀ ∈ . 

Proof. Let F  be the complement of 1
1

r
ssG H−

=
=


 and i  be any element of rH  where 2r ≥ . By 

Lemma 2.9, ij ij ijj N j F j Gb b b ρ
∈ ∈ ∈

= + =∑ ∑ ∑  holds. Then, ij ijj F j Gb bρ
∈ ∈

= −∑ ∑  is satisfied. 

ijj F b ρ
∈

<∑  holds by the definition of rH . Therefore, ijj G bρ ρ
∈

− <∑  holds. Thus, we obtain 

0ijj G b
∈

>∑ . [Q. E. D.] 

Note that because B  is a non-negative matrix, a non-negative eigenvector corresponding to ( )Bλ  exists 
by Theorem 1.3. However, ( )Bλ  refers to a maximum non-negative eigenvalue of B . Let jx  be the jth 
element of the non-negative eigenvector and kx  be a maximum of jx . 

Lemma 2.15 If 1k H∈ , ( )Bλ ρ< . 
Proof. j kx x≤  for j N∀ ∈  from the definition of k . Further, 0kjb∀ ≥  because B  is a non-negative 

matrix. From these two conditions, kj j kj kb x b x≤  for j N∀ ∈ . 

On the other hand, ( ) k kj jj NB x b xλ
∈

= ∑  is true from the definition of eigenvalue and eigenvector. From 

these, ( ) ( )k kj kj NB x b xλ
∈

≤ ∑  is derived. 

Note that if kx , which is a maximum of the non-negative eigenvector, is zero, the eigenvector must be a zero 
vector. However, this contradicts the definition of eigenvector. Thus, 0kx > . Then if we divide both sides of  
the former formula by kx , we derive ( ) kjj NB bλ

∈
≤ ∑ . Note that kjj N b ρ

∈
<∑  from the premise 1k H∈ .  

From these two formulas, ( )Bλ ρ<  is derived. [Q. E. D.] 
Lemma 2.16 Let r  be a natural number equal to or more than 2. If 1

1
r

ssk H−

=
∉


 and rk H∈ , then 
( )Bλ ρ< . 
Proof. We define 1

1
r

ssG H−

=
=


 and F  as the complement of G . F φ≠  since rk H∈ , and 
1
1

r
ssG H φ−

=
= ≠


 by Lemma 2.11. Let h G∈  such that j hx x≤  for j G∀ ∈ . As jx  is an element of the ei-

genvector corresponding to eigenvalue ( )Bλ , ( ) k kj j kj jj F j GB x b x b xλ
∈ ∈

= +∑ ∑  holds. j hx x≤  for j G∀ ∈  



S. Miura 
 

 
114 

from the definition of h  and 0kjb ≥  because B  is a non-negative matrix. Hence, kj j kj hb x b x≤  for j G∀ ∈

holds. Therefore, ( )kj j kj hj G j Gb x b x
∈ ∈

≤∑ ∑  is satisfied. Further, j kx x≤  by the definition of k  and 0kjb ≥ . 

Accordingly, kj j kj kb x b x≤  for j F∀ ∈  holds. Hence, ( )kj j kj kj F j Fb x b x
∈ ∈

≤∑ ∑  is satisfied. From the above 

results, we see that ( ) ( ) ( )k kj j kj j kj k kj hj F j G j F j GB x b x b x b x b xλ
∈ ∈ ∈ ∈

= + ≤ +∑ ∑ ∑ ∑ . 

We divide the leftmost and rightmost sides of this formula by 0kx > , ( ) ( )( )kj kj h kj F j FB b b x xλ
∈ ∈

≤ +∑ ∑  
is derived. Note that kx  is defined as the maximum of the elements in the non-negative eigenvector corre- 
sponding to ( )Bλ . Moreover, k  does not belong to G  and h  belongs to G . Hence, h kx x< . Therefore, 

1h kx x < . From the premise rk H∈  where 2r ≥  and Lemma 2.14, 0kjj G b
∈

>∑ . Accordingly, 

( )( )kj h k kjj G j Gb x x b
∈ ∈

<∑ ∑  holds. Hence, ( ) ( ) ( )( )kj kj h k kj kjj F j G j F j GB b b x x b bλ
∈ ∈ ∈ ∈

≤ + < +∑ ∑ ∑ ∑  

holds. As kj kj kjj N j F j Gb b b
∈ ∈ ∈

= +∑ ∑ ∑ , we derive ( ) kjj NB bλ
∈

< ∑ . Note that as 1
1

r
ssk H−

=
∉


 by the 

premise, it does not belong to 1H  either. Therefore, kjj N b ρ
∈

=∑  by Lemma 2.9. ( ) kjj NB bλ ρ
∈

< =∑  is 

derived. [Q. E. D.] 
Proof of Theorem 2.6. By Lemma 2.13, k N∀ ∈  belong to any rH . By Lemmas 2.15 and 2.16, 
( )Bλ ρ<  is true when k  belongs to any rH . From Theorem 1.4, A  is a non-singular M-matrix. [Q. E. D.] 
Now, we can show a necessary and sufficient condition for non-singularity of the NSZ-matrix. We will also 

show a necessary and sufficient condition for singularity of the matrix. 
Theorem 2.17 A necessary and sufficient condition for non-singularity of the Z-matrix whose row sums are 

all non-negative is that at least one positive row sum exists in any principal submatrix of the matrix. 
Proof. Necessity is shown in Theorem 2.5. Sufficiency is derived from Theorem 2.6. [Q. E. D.] 
Theorem 2.18 A necessary and sufficient condition for singularity of the Z-matrix whose row sums are all 

non-negative is that there exists at least one principal submatrix of the matrix whose row sums are all zeroes. 
Proof. By the contraposition of Theorem 2.17, a necessary and sufficient condition for singularity of the 

NSZ-matrix is that at least one principal submatrix of the NSZ-matrix whose row sums are all non-positive ex-
ists. From Theorem 2.3, this means that there exists at least one principal submatrix of the NSZ-matrix whose 
row sums are all zeroes. [Q. E. D.] 

3. A Necessary and Sufficient Condition for Non-Singularity of the Z-Matrix Which 
Has a Non-Negative Product with a Positive Vector 

In this section, we discuss the non-singularity of the NPZ-matrix. We reconfirm that the NPZ-matrix is defined 
as the Z-matrix A  which satisfies 0Ax ≥  where 0x∃ > . ( )ijA a=  denotes an NPZ-matrix in this section. 

We construct the diagonal matrix P  whose 𝑖𝑖th diagonal element is the ith element of x . As the diagonal 
elements of P  are all positive, its inverse 1P−  exists. Note that 1P−  is a diagonal matrix whose ith diagonal 
element is 1 ix . 

We subsequently construct a matrix ( )ijV v=  which satisfies 1V P AP−= . A and V are similar to each other 
by the definition of matrix similarity. 

Theorem 3.1 ij ij j iv a x x=  for ,i j N∀ ∈ . 
Proof. As the ith row vector of 1P−  is ( )0, ,0,1 ,0, ,0ix   and the jth column vector of A  is 

( )1 1 1, , , , , ,j i j ij i j nja a a a a− +  , the ( ),i j th element of 1P A−  is ( ) 01 i ij kj ij ik ix a a a x
≠

+ =∑ . Thus, the ith  

row vector of 1P A−  is ( )1 1 1, , , , , ,i i ij i ij i ij i in ia x a x a x a x a x− +  . Further, the jth column vector of P  is 

( )0, ,0, ,0, ,0jx  . Thus, the ( ),i j th element of 1V P AP−=  is ( ) ( )0ij ij i j ih i ij j ih jv a x x a x a x x
≠

= + =∑ . 

[Q. E. D.] 
Theorem 3.2 V  is an NSZ-matrix. 
Proof. 0ija ≤  for i j∀ ≠  because A  is a Z-matrix, and 0, 0i jx x> >  because 0x > . Therefore,

0ij j ia x x ≤  for i j∀ ≠ . Then, 0ijv ≤  for i j∀ ≠  by Theorem 3.1. That is, V  is a Z-matrix. 
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Moreover, 0ij jj N a x
∈

≥∑  for i N∀ ∈  because A  is an NPZ-matrix. If we divide both sides of this for- 

mula by 0ix > , we obtain 0ij j ij N a x x
∈

≥∑  for i N∀ ∈ . From Theorem 3.1, 0ijj N v
∈

≥∑  for i N∀ ∈  is 

derived. 
We have shown that V  is a Z-matrix and all row sums of V  are non-negative. Thus, V  satisfies the defi-

nition of an NSZ-matrix. [Q. E. D.] 
Theorem 3.3 An NPZ-matrix A  is non-singular if and only if at least one positive row sum exists in any 

principal submatrix of V . 
Proof. V  is an NSZ-matrix from Theorem 3.2. Then, by Theorem 2.17, V  is non-singular if and only if at 

least one positive row sum exists in any principal submatrix of V . Since A  and V  are similar to each other, 
this is also a necessary and sufficient condition for the non-singularity of A  by Theorem 1.6. [Q. E. D.] 

Further, we will prove that this is also an equivalent condition that A  is a non-singular M-matrix. 
Theorem 3.4 Take a real number ρ  which is equal to or more than all diagonal elements of A  and con-

struct the matrix B E Aρ= − . Moreover, we construct W E Vρ= − . Then, B  and W  are similar to each 
other. 

Proof. ( )1 1 1 1P BP P E A P P EP P AP E V Wρ ρ ρ− − − −= − = − = − = . [Q. E. D.] 
Theorem 3.5 W E Vρ= −  is a non-negative matrix. 
Proof. iia ρ∀ ≤  by the definition of ρ  and ii ii i i iiv a x x a= =  from Theorem 3.1. Then, iiv ρ∀ ≤ . There- 

fore, iivρ − , which are diagonal elements of W E Vρ= − , are non-negative for i N∀ ∈ . Then, ijv− , which 
are non-diagonal elements of W E Vρ= − , are non-negative for i j∀ ≠  because V  is a Z-matrix by Theo-
rem 3.2. Thus, W  is a non-negative matrix. [Q. E. D.] 

Theorem 3.6 An NPZ-matrix is an M-matrix9. 
Proof. B E Aρ= −  and W E Vρ= −  are both non-negative matrices due to Theorems 1.2 and 3.5. Thus, 

they have maximums of non-negative eigenvalues both by Theorem 1.3. Let ( )Bλ  and ( )Wλ  each be a 
maximum of a non-negative eigenvalue. Because B  and W  are similar by Theorem 3.4, ( ) ( )B Wλ λ=  by 
Theorem 1.7. Note that V  is an NSZ-matrix from Theorem 3.2. Then, V  is an M-matrix from Theorem 2.1. 
Therefore, ( )Wλ ρ≤  from the definition of an M-matrix. Then, ( )Bλ ρ≤  because ( ) ( )B Wλ λ= . We can 
confirm that 𝐴𝐴 satisfies the definition of an M-matrix. [Q. E. D.] 

Theorem 3.7 An NPZ-matrix is non-singular if and only if it is a non-singular M-matrix. 
Proof. It is obvious that an NPZ-matrix is non-singular if it is a non-singular M-matrix. Conversely, if an 

NPZ-matrix is non-singular, it is a non-singular M-matrix by Theorem 3.6. [Q. E. D.] 
By Theorem 3.3, we can find a necessary and sufficient condition for non-singularity of an NPZ-matrix. 

However, this condition is described with parts of V  which is similar to A . It is not described with parts of 
A  and x  that are used in the definition of the NPZ-matrix. We will look for a condition described with such 

parts. 
In the following, let F  be a subset of N  that is not empty, and G  be the complement of F  if F  is a 

proper subset. Then, the next Theorems hold. 
Theorem 3.8 0ijj F v

∈
>∑  if and only if 0ij jj F a x

∈
>∑  for i F∀ ∈  where F N∀ ⊆ . 

Proof. This is true because ( )ij ij j ij F j Fv a x x
∈ ∈

=∑ ∑  from Theorem 3.1 and 0ix∀ >  because x  is a 
positive vector. [Q. E. D.] 

Theorem 3.9 If F  is a proper subset, 0ij ja x− ≥  for ,i F j G∀ ∈ ∀ ∈ . 
Proof. Since G  is the complement of F , ija  for ,i F j G∀ ∈ ∀ ∈  are non-diagonal elements of A . Then, 

they are non-positive because A  is a Z-matrix. Moreover, 0jx∀ >  because x  is a positive vector. Thus, 
0ij ja x− ≥  for ,i F j G∀ ∈ ∀ ∈ . [Q. E. D.] 

Theorem 3.10 0ij jj F a x
∈

≥∑  for i F∀ ∈  where F N∀ ⊆ . 
Proof. If F N= , this is obvious because of the definition of the NPZ-matrix. In the following, we show a 

proof for F N . 
By the definition of an NPZ-matrix, 0ij j ij j ij jj N j F j Ga x a x a x

∈ ∈ ∈
= + ≥∑ ∑ ∑  is satisfied. Hence, we obtain

ij j ij jj F j Ga x a x
∈ ∈

≥ −∑ ∑ . Note that 0ij jj G a x
∈

− ≥∑  for i F∀ ∈  holds from Theorem 3.9. Accordingly,

0ij j ij jj F j Ga x a x
∈ ∈

≥ − ≥∑ ∑ . [Q. E. D.] 

 

 

9This theorem is stated in Berman & Plemmons [1] p. 155. 
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Theorem 3.11 Let i  be any element of F N∀ ⊆ . Then, 0ij jj N a x
∈

>∑  or j G∃ ∈  such that 0ija <  is a 

necessary and sufficient condition for 0ij jj F a x
∈

>∑ . 

Proof.  
[Sufficiency] We prove this Theorem by dividing it into two cases. 
(1) The case 0ij jj N a x

∈
>∑ . 

If F N= , this is obvious. In the following, we show a proof for F N . 
By the supposition, 0ij j ij j ij jj N j F j Ga x a x a x

∈ ∈ ∈
= + >∑ ∑ ∑  is satisfied. Therefore, we obtain 

ij j ij jj F j Ga x a x
∈ ∈

> −∑ ∑ . Note that if i F∈ , 0ij jj G a x
∈

− ≥∑  from Theorem 3.9. Hence, 

0ij j ij jj F j Ga x a x
∈ ∈

> − ≥∑ ∑ . 

(2) The case j G∃ ∈  such that 0ija < .  
If F N= , G  cannot be defined. Thus, this case is applied only when F N . 
Let k  be one of j G∈  which satisfies 𝑎𝑎𝑖𝑖𝑖𝑖 < 0, and 𝐻𝐻 be a set which removes k from G. By the define 

tion of an NPZ-matrix, 0ij j ij j ij j ik kj N j F j Ha x a x a x a x
∈ ∈ ∈

= + + ≥∑ ∑ ∑  is satisfied. Then we obtain 

ij j ij j ik kj F j Ha x a x a x
∈ ∈

+ ≥ −∑ ∑ . Since we consider the case 0ika < , and 0kx >  is true from the definition of 

an NPZ-matrix, we obtain 0ik ka x− > . Then 0ij j ij jj F j Ha x a x
∈ ∈

+ >∑ ∑ ; in other words 

ij j ij jj F j Ha x a x
∈ ∈

> −∑ ∑  is true. Further, considering i F∈  and H G⊂ , 0ij jj H a x
∈

− ≥∑  is satisfied by 

Theorem 3.9. Therefore, we obtain 0ij j ij jj F j Ha x a x
∈ ∈

> − ≥∑ ∑ . [Q. E. D.] 

[Necessity] By the definition of an NPZ-matrix, 0ij jj N a x
∈

≥∑  for i F∀ ∈  and 0ija ≤  for 

,i F j G∀ ∈ ∀ ∈  holds. Thus, the negative proposition of “ 0ij jj N a x
∈

>∑  or  j G∃ ∈  such that 0ija < ” is 

“ 0ij jj N a x
∈

=∑  and 0ija =  for j G∀ ∈ ”. Further, as i F∈ , the negative proposition of “ 0ij jj F a x
∈

>∑ ” is 

“ 0ij jj F a x
∈

=∑ ” from Theorem 3.10. Therefore, the contraposition of this Theorem is as follows. Let i  be any 

element of F N∀ ⊆ . If 0ij jj N a x
∈

=∑  and 0ija =  for j G∀ ∈ , 0ij jj F a x
∈

=∑ .  

When F N= , this is obvious. When F N , if the supposition of the contraposition is satisfied, 
0 0ij j ij j ij j ij j j ij j

j N j F j G j F j G j F
a x a x a x a x x a x

∈ ∈ ∈ ∈ ∈ ∈

= = + = + =∑ ∑ ∑ ∑ ∑ ∑  

is true for i F∀ ∈  where F N∀ ⊆ . That is, the contraposition is true. [Q. E. D.] 
Now, we can show a necessary and sufficient condition for non-singularity of the NPZ-matrix described with 

parts of A and x . We reconfirm that the NPZ-matrix is defined as a Z-matrix which satisfies 0Ax ≥  where 
0x∃ > . Let F  be a subset of the number set N  which is not empty, and G  be the complement of F . 

Theorem 3.12 Let the Z-matrix ( )ijA a=  satisfy 0Ax ≥  where 0x∃ > . A necessary and sufficient condi- 
tion for the non-singularity of A  is i F∃ ∈  such that 0ij jj N a x

∈
>∑  or ,i F j G∃ ∈ ∃ ∈  such that 0ija <   

for F N∀ ⊆ 10. 
Proof. By Theorem 3.3, an NPZ-matrix is non-singular if and only if i F∃ ∈  such that 0ijj F v

∈
>∑  for

F N∀ ⊆ . By referring to Theorems 3.8 and 3.11, this condition can be rewritten as i F∃ ∈  such that
0ij jj N a x

∈
>∑  or ,i F j G∃ ∈ ∃ ∈  such that 0ija <  for F N∀ ⊆ . [Q. E. D.] 

Theorem 3.13 Let the Z-matrix ( )ijA a=  satisfy 0Ax ≥  where 0x∃ > . A necessary and sufficient condi- 
tion for the singularity of A  is F N∃ ⊆  such that 0ij jj N a x

∈
=∑  for i F∀ ∈  and 0ija =  for 

,i F j G∀ ∈ ∀ ∈ 11. 

 

 

10In the case F N= , this condition is merely i F∃ ∈  such that 0ij jj N
a x

∈
>∑ . 

11In the case F N= , this condition is merely 0ij jj N
a x

∈
=∑  for i F∀ ∈ . 
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Proof. By the contraposition of Theorem 3.12, an NPZ-matrix is singular if and only if F N∃ ⊆  such that
0ij jj N a x

∈
≤∑  for i F∀ ∈  and 0ija ≥  for ,i F j G∀ ∈ ∀ ∈ . However, 0ij jj N a x

∈
≥∑  for i F∀ ∈  and 

0ija ≤  for ,i F j G∀ ∈ ∀ ∈  are satisfied by the definition of an NPZ-matrix. Therefore, this singularity con- 
dition means F N∃ ⊆  such that 0ij jj N a x

∈
=∑  for i F∀ ∈  and 0ija =  for ,i F j G∀ ∈ ∀ ∈ . [Q. E. D.] 

4. Derivation from the Conditions by Robert Beauwens and Michael Neumann 
In fact, Robert Beauwens has already shown a condition which resembles what is shown in Theorem 2.17 as a 
necessary and sufficient condition for non-singularity of the NSZ-matrix. It is as follows. 

First, we define the necessary concept. 
If an n -dimensional square matrix ( )ijA a=  satisfies ii iji ja a

≠
≥ ∑  for i N∀ ∈ , A  is called diago-

nally dominant. 
Then, if a diagonally dominant matrix ( )ijA a=  satisfies 1

1
i

ii ijja a−

=
> ∑  for i N∀ ∈ , A  is called lower 

semi-strictly diagonally dominant. 
In the following, a permutation of A  denotes TB PAP=  by a permutation matrix P . Then, if B , a per-

mutation of A , is lower semi-strictly diagonally dominant, A  is called semi-strictly diagonally dominant. 
Beauwens showed the following Theorem. 
Theorem 4.1 Let the Z-matrix A  be diagonally dominant and have diagonal elements that are all 

non-negative. A  is a non-singular M-matrix if and only if it is semi-strictly diagonally dominant12. 
If A  is a Z-matrix, ij ija a= −  holds for all non-diagonal elements. If diagonal elements of A  are non- 

negative, ii iia a=  holds for all diagonal elements.  
Thus, if A  is diagonally dominant and has diagonal elements that are all non-negative, all row sums of A  

are non-negative. Conversely, if all row sums of the Z-matrix A  are non-negative, diagonal elements of it are 
all non-negative by Theorem 2.3, and it is obviously diagonally dominant. 

Therefore, the matrix which Theorem 4.1 addresses is nothing but the NSZ-matrix defined in this paper. Fur- 
ther, if ( )ijA a=  satisfies the premise of Theorem 4.1, 1

1
i

ii ijja a−

=
> ∑  can be rewritten as 1 0i

ijj a
=

>∑ . 

Hence, Theorem 4.1 can be rewritten as follows. 
Theorem 4.2 The NSZ-matrix ( )ijA a=  is a non-singular M-matrix if and only if A  satisfies 1 0i

ijj a
=

>∑  

for i N∀ ∈  or ( )ijB b= , a permutation of A , satisfies 1 0i
ijj b

=
>∑  for i N∀ ∈ . 

Considering Theorem 2.2, Theorem 4.2 can be also rewritten as follows. 
Theorem 4.3 The NSZ-matrix ( )ijA a=  is non-singular if and only if A  satisfies 1 0i

ijj a
=

>∑  for 

i N∀ ∈  or ( )ijB b= , a permutation of A , satisfies 1 0i
ijj b

=
>∑  for i N∀ ∈ . 

The Beauwens condition shown in Theorem 4.3 is equivalent to the condition shown in Theorem 2.17. How-
ever, before we prove this, we introduce another Theorem of Beauwens. 

Theorem 4.4 The Z-matrix ( )ijA a=  is a non-singular M-matrix if and only if there exists a vector 0x >   
such that 0Ax ≥  and 1 0i

ij jj a x
=

>∑  for i N∀ ∈ 13. 

Furthermore, Michael Neumann showed the next Theorem. 
Theorem 4.5 Let ( )ijA a=  be a Z-matrix and ( )ijB b=  be a permutation of A . A  is a non-singular M-  

matrix if and only if there exists a vector 0x >  such that 0Bx ≥  and 1 0i
ij jj b x

=
>∑  for i N∀ ∈ 14. 

The matrix which Theorems 4.4 and 4.5 address is nothing but the NPZ-matrix defined in this paper. Consid-
ering also Theorem 3.7, the following Theorem can be derived. 

Theorem 4.6 The NPZ-matrix ( )ijA a=  is non-singular if and only if A  satisfies 1 0i
ij jj a x

=
>∑  for 

 

 

12Cf. Beauwens [9] pp. 110-111. 
13It is written in Plemmons [10] p. 181, p. 183 and Berman & Plemmons [1] p. 136, p. 162 that this theorem was first shown in Beauwens [9]. 
14It is written in Berman & Plemmons [1] p. 136, p. 162 that this theorem was first shown in Neumann [11]. 
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i N∀ ∈  or ( )ijB b= , a permutation of A , satisfies 1 0i
ij jj b x

=
>∑  for i N∀ ∈ . 

The condition for non-singularity of the NPZ-matrix shown in Theorem 3.12 is equivalent to the Beau-
wens-Neumann condition shown in Theorem 4.6. We now prove this. 

Theorem 4.7 Let ( )ijA a=  be an NPZ-matrix, and ( )ijB b=  be a permutation of A . i F∃ ∈  such that 
0ij jj F a x

∈
>∑  for F N∀ ⊆  is a necessary and sufficient condition that 1 0i

ij jj a x
=

>∑  for i N∀ ∈  or

1 0i
ij jj b x

=
>∑  for i N∀ ∈ . 

Proof.  
[Sufficiency] Based on the premise, i N∃ ∈  such that 0ij jj N a x

∈
>∑ . If we permute this i  with n , 

1 0n
ij jj b x

=
>∑  is satisfied. Next, let 1nF −  be a set which removes i  from N . Based on the premise,  

1ni F −∃ ∈  such that 
1

0
n ij jj F a x
−∈

>∑ . If we permute this i  with 1n − , 1
1 0n

ij jj b x−

=
>∑  is satisfied. After this, 

in the range of 1 2r n≤ ≤ − , let rF  be a set which removes i  from 1rF + . Based on the premise, ri F∃ ∈  

such that 0
r ij jj F a x

∈
>∑ . If we permute this i  with r , 1 0r

ij jj b x
=

>∑  is satisfied. If these steps are exe-

cuted to 1r = , 1 0i
ij jj b x

=
>∑  holds for i N∀ ∈ . [Q. E. D.] 

[Necessity] 0ij jj F a x
∈

≥∑  is guaranteed by Theorem 3.10. Then, the contraposition of the proposition is as 

follows. If F N∃ ⊆  such that 0ij jj F a x
∈

=∑  for i F∀ ∈ , then i N∃ ∈  such that 1 0i
ij jj a x

=
=∑  and 

i N∃ ∈  such that 1 0i
ij jj b x

=
=∑ . We prove this contraposition. 

Let k  be the maximum number of elements of F such that 0ij jj F a x
∈

=∑  
for i F∀ ∈ . Naturally,

0kj jj F a x
∈

=∑  holds. Then, we prove 1 0k
kj jj a x

=
=∑ . 

If the number of elements of F  is more than k , k  cannot be the maximum number of elements of F . 
Hence, there is no such possibility. Thus, if we define { }1,2, ,K k=  , F K⊆  holds. 

Then, we prove 1 0k
kj jj a x

=
=∑  by dividing it into two cases. 

(1) The case F K= .  
In this case, 1

k
kj j kj j kj jj j K j Fa x a x a x

= ∈ ∈
= =∑ ∑ ∑  is true. Moreover, 0kj jj F a x

∈
=∑  is true from the 

premise. Thus, 1 0k
kj jj a x

=
=∑ . 

(2) The case F K .  
Let H  be the relative complement of F  in K . 1

k
kj j kj j kj j kj jj j K j F j Ha x a x a x a x

= ∈ ∈ ∈
= = +∑ ∑ ∑ ∑  is true. 

Since 0kj jj F a x
∈

=∑  from the premise, kj j kj jj K j Ha x a x
∈ ∈

=∑ ∑ . 0kj jj K a x
∈

≥∑  because of Theorem 3.10. 

Therefore, 0kj jj H a x
∈

≥∑ . On the other hand, 0kja ≤  for j H∀ ∈  because k F∈ , H F⊄  and A  is a 

Z-matrix. Further, 0jx∀ >  by the definition of the NPZ-matrix. Thus, 0kj jj H a x
∈

≤∑ . In order for these con-

ditions to be compatible, we must have 0kj jj H a x
∈

=∑ . Therefore, 1 0k
kj j kj j kj jj j K j Ha x a x a x

= ∈ ∈
= = =∑ ∑ ∑ . 

Then, 1 0k
kj jj a x

=
=∑  is proved in any case. Thus, we obtain i N∃ ∈  such that 1 0i

ij jj a x
=

=∑ . 

Next, we consider ( )ijB b= , a permutation of A . Let F ′  be a permutated set of F . Since F N∃ ⊆  such 

that 0ij jj F a x
∈

=∑  for i F∀ ∈  is premised on the contraposition, then F N′∃ ⊆  such that 0ij jj F b x′∈
=∑

for i F ′∀ ∈ . 
Let k ′  be the maximum number of elements of F ′ . Then, we can also prove 1 0k

k j jj b x′
′=

=∑  similarly to 
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the proof for 1 0k
kj jj a x

=
=∑ . Thus, we also obtain i N∃ ∈  such that 1 0i

ij jj b x
=

=∑ . [Q. E. D.] 

Theorem 4.8 Let ( )ijA a=  be an NPZ-matrix, and ( )ijB b=  be a permutation of A . i F∃ ∈  such that

0ij jj N a x
∈

>∑  or ,i F j G∃ ∈ ∃ ∈  such that 0ija <  for F N∀ ⊆  if and only if 1 0i
ij jj a x

=
>∑  for i N∀ ∈

or 1 0i
ij jj b x

=
>∑  for i N∀ ∈ . 

Proof. This is derived from Theorems 3.11 and 4.7 immediately. [Q. E. D.] 
Theorem 4.8 shows the equivalence between the two non-singularity conditions of the NPZ-matrix, the condi-

tion in Theorem 3.12 and the Beauwens-Neumann condition in Theorem 4.6. Theorem 3.12 is also derived from 
Theorems 4.6 and 4.8. 

The equivalence between the two non-singularity conditions of the NSZ-matrix, the condition in Theorem 
2.17 and the Beauwens condition in Theorem 4.3, can be also proved. 

Theorem 4.9 Let ( )ijA a=  be an NSZ-matrix, and ( )ijB b=  be a permutation of A . i F∃ ∈  such that 
0ijj F a

∈
>∑  for F N∀ ⊆  if and only if 1 0i

ijj a
=

>∑  for i N∀ ∈  or 1 0i
ijj b

=
>∑  for i N∀ ∈ . 

Proof. By Theorem 1.1, A  is equivalent to an NPZ-matrix where all elements of x  are the same number
*x . Therefore, considering Theorem 4.7 in the case all jx  are equal to *x , i F∃ ∈  such that 

( ) * 0ijj F a x
∈

>∑  for F N∀ ⊆  if and only if ( ) *
1 0i

ijj a x
=

>∑  for i N∀ ∈  or ( ) *
1 0i

ijj b x
=

>∑  for i N∀ ∈ . 

If we divide ( ) * 0ijj F a x
∈

>∑  and ( ) *
1 0i

ijj a x
=

>∑  and ( ) *
1 0i

ijj b x
=

>∑  by * 0x > , we obtain this Theo-

rem. [Q. E. D.] 
If i F∈ , ijj F a

∈∑  means a row sum of a principal submatrix of A . Thus, i F∃ ∈  such that 0ijj F a
∈

>∑   

for F N∀ ⊆  means that at least one positive row sum exists in any principal submatrix of ( )ijA a= . Hence, 
Theorem 2.17 can be also derived from Theorems 4.3 and 4.9. 
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