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Abstract 
The probability density functions (pdf’s) and the first order structure functions (SF’s) of the pair-
wise Euclidean distances between scaled multichannel human EEG signals at different time lags 
under hypoxia and in resting state at different ages are estimated. It is found that the hyper gam-
ma distribution is a good fit for the empirically derived pdf in all cases. It means that only two pa-
rameters (sample mean of EEG Euclidean distances at a given time lag and relevant coefficient of 
variation) may be used in the approximate classification of empirical pdf’s. Both these parameters 
tend to increase in the first twenty years of life and tend to decrease as healthy adults getting old-
er. Our findings indicate that such age-related dependence of these parameters looks like as age- 
related dependence of the total brain white matter volume. It is shown that 15 min hypoxia (8% 
oxygen in nitrogen) causes a significant (about 50%) decrease of the mean relative displacement 
EEG value that is typical for the rest state. In some sense the impact of the oxygen deficit looks like 
the subject getting older during short-term period. 
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1. Introduction 
The progress in information theory, nonlinear dynamics, deterministic chaos theory, and random fractal theory 
caused a wave of researches where the analysis of complexity EEG signals is done on the base on the using of 
various complexity measures derived from them. Since the foundations of these theories are fundamentally dif-
ferent one can get a variety of complexity measures concerning the same EEG process. Detailed examination of 
a number of such measures given in [1] shows that their variations with time are either similar or reciprocal, but 
behaviors some of them are counter-intuitive and puzzling. The attempt to understand such behaviors is done in 
[1] through a new multiscale complexity measure of EEG. Despite of very promising findings in these studies 
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some of complexity measures adopted from nonlinear dynamics and chaos theory domain should be used with 
caution for EEG classification, since the brain isn’t completely deterministic and the stochasticity may influence 
its function in some cases [2]. This means that it is reasonable just now to avoid any speculations about what 
types of deterministic and/or stochastic processes govern the EEG signals and to use some characteristics of 
these signals that are insensitive to any process underlying them. The one-dimensional probability density func-
tions (pdf’s) of the human EEG relative displacements may be used as one of such characteristics. It is not suffi-
cient to infer the EEG dynamics but it is enough to capture some of its features. 

2. Methods 
2.1. EEG Data Collection 
The eye closed resting state EEG data were recorded from 46 healthy subjects (12 adults and 34 children of 
school-age and preschool-age) with 16 Ag/AgCl scalp electrodes placed according to the international 10-20 
system over both hemispheres at a sampling frequencies fs of 185 Hz and 250 Hz. Three adults were also en-
gaged in night time EEG recording and one was involved in 15 minutes EEG recording under hypoxia (8% 
oxygen in nitrogen). All school-age children took part in a longitudinal study of the EEG activity started at age 
8.8 - 11.5 in 2005 and ended at age of 16.3 - 17.4 in 2011. The artifact free epochs selected for our analysis vary 
in length from a several seconds to one minute. 

2.2. EEG Data Analysis 
Let all EEG data samples be represented as m-dimensional vectors (m-dimensional time series)  

( ) ( ) ( ) ( ){ }1 2, ,  ,
T

mX t X t X t X t= …  

where m = 16 is a number of channels (electrodes), Xj(t) is the signal amplitude on the channel j at the discrete 
integer valued time moment t = 1, 2,…, N, N is the number of samples received, and the superscript T denotes the 
matrix transpose operation. Since signals reveal significant spread of amplitude values from subject to subject 
and for different sleep stages within a single sleep recording the original EEG data was centered by subtracting 
their mean in every channel first and then scaled by the [det(R)](1/2m), where det denotes determinant, R = 
E[δXδXT] is the sampling covariance matrix, δX = X - E[X], and E denotes statistical expectation. As the result 
any new vector Y(t) = δX(t)/[det(R)](1/2m) has the same generalized variance independently on the subject since 
the determinant of the covariance matrix Σ = E[δYδYT] is equal here to 1. Geometrically the quantity [det(Σ)]1/2 
determines the volume of the confidence ellipsoid for any particular confidence level and the scaling proposed 
here makes the distributions of any vectors Y to be equivalent in the sense that they occupy the same hypervolume 
in the m-space. It means that the ellipsoids with different orientations and different semi-axes but having the same 
generalized variance will be considered here as equivalent.  

The vector sequence (Y(1), Y(2), …, Y(N)) specifies a personal EEG trajectory in initial m-dimensional space. 
Our aim is to estimate the probability density functions (pdf’s) of the EEG relative displacements ΔYτ (the Euc-
lidean distances between scaled multichannel human EEG signals pairs at given time lag τ) along this trajectory, 
defined by 
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The idea to use such pdf’s for describing and discriminating EEG patterns was inspired by the approach [3] 
proposing to reduce the shape matching problem to the comparison of probability distributions of the distance 
between two random points on a surface provide a robust method for discriminating between some classes of 3D 
objects. Since the relative displacement ΔYτ value, being m-dimensional Euclidean distance, doesn’t depend on 
how the axes of the initial space are chosen and how many of principal components exhaust a given amount of 
the total variance there is no need to care about the proper state space reconstruction for pdf’s deriving. But un-
like artificial objects having rather stable shapes, the EEG trajectory forms a “living” shape that may evolve in 
time, i.e. may change its geometrical characteristics in dependence on epoch selection during a given EEG re-
cording. Our aim is not only to analyze the empirically derived pdf’s but also to find some types of theoretical 
distributions that can fit them. Here we will follow the general assumption borrowed from [4] “that if the me-
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chanism (experiment) to generate the samples is the same, then the distribution type that describes the datasets 
will also be the same”. In our case it means that we need to identify a single type of theoretical distribution that 
can fit the different datasets of {ΔYτ} by altering its parameters. Most likely the best candidate for such distribu-
tion may be a hyper gamma distribution proposed in [5] that is written here as 

1( ) exp( )f Y Y Yν α
τ τ τγ β−∆ = ⋅∆ − ∆                                (2) 

where ( )/ /ν αγ αβ ν α= Γ , Γ(∙) is the gamma function, α and ν are shape parameters, and β is the scale parame-
ter. It follows from the fact that the “random EEG” relative displacement ΔYτ (obtained from m-dimensional 
vector X(t) whose components are independent normal random variables having zero mean and variance σ2) is 
distributed according to the chi distribution that is a special case of (2) when ν = m, α = 2, and β = 0.25/σ2.  

The pdf’s f(ΔYτ) are obtained in the standard way by fitting an empirical probability functions f0(ΔYτ) 
represented by normalized histograms. The histogram bin size Wτ is selected here as the half-sum of the  

1/3
1 2( )( )W IQR Nτ τ τ −= −  and 1/3

2 3.73 ( )W Nτ τσ τ −= −  calculated according to [6] and [7] suggestions respect- 
tively, where IQRτ is the interquartile range defined as the 75th percentile minus the 25th percentile, and στ is the 
standard deviation of the distribution. The number of bins hτ is defined as entire(max(ΔYτ)/Wτ) + 1. 

The fitting procedure is based here on the estimation of parameters ν, α, and β by the moment method. Since 
any covariance matrix Σ for our EEG data under analysis has full column rank, we set ν = m. Then the estimates of 
α is defined by the squared coefficient of variation (CVτ) according to the following equation 

2 2( [ ]) (( 3) ) (( 1) ) [ (( 2) )] 1E Y m m mτ τσ α α α∆ = Γ + Γ + Γ + −                      (3) 

Getting the estimate of α using the Equation (3) one can obtain the estimate of β according to the following 
relation 

[ (( 2) )] [ [ ] (( 1) )]m E Y mα α
τβ α α= Γ + ∆ ⋅Γ +                            (4) 

The fitting procedure is limited here by the fitting range (FRτ) endpoints that are defined as 1st percentile and 
the 99th percentile respectively. The criterion of fitting quality evaluation is based on the relative error of the 
first three moments and the percentage root mean square difference (PRD) suggested in [8] 
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3. Results 
Examples of the empirical pdf f0(ΔY1) and its hyper gamma fit f(ΔY1) for one of the subjects are shown in Figure 
1(a). In this case the value of N is equal to 8060 that corresponds to about 43.6 second EEG recording with the 
sampling frequency fs = 185 Hz. Time lag τ = 1 corresponds to time interval of 0.0054 sec and W1 = 0.2. For 
comparison the pdf’s for the “random” EEG with σn = 1 and for the original EEG with randomly permuted data 
samples within each channel are shown on the same Figure 1(a). Visually the single type of theoretical f(ΔY1)  

 

  
(a)                                                        (b) 

Figure 1. (a) The examples of the empirical pdf’s f0(ΔY1) and hyper gamma fits f(ΔY1) for the real (blue), real, but randomly 
permuted (green), and “random EEG” data (red) and (b) relevant structure functions SFτ. 
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provides a reasonably good fit for all three empirical f0(ΔY1). The maximum value of PRD1 here refers to the 
case of the original EEG and is less than 8.8% while the maximum relative error in the first three moments does 
not exceed 0.5%. 

In general there is a noticeable inter-individual variation in PRDτ value even for the same sample size N but in 
average PRDτ decreases proportional to N−0.17 as N increases. As usual the relatively high PRDτ values occur 
when the empirical pdf’s f0(ΔYτ) have a rather long tales. It might mean that they can represent a mixture of hy-
per gamma distributions with different time scales. Since the mean PRDτ value here is about 9.1% and visually 
any empirical pdf is fitted well enough with the single hyper gamma pdf, we restrict our attention to this case. 
According to Equations (3) and (4) it is enough to analyze here only two parameters-E[ΔYτ] and στ/E[ΔYτ]. 

The first one defines the individual first order structure function (SFτ) that rapid increases for small τ as τδ (δ < 
1) leading to shifting the f0(ΔYτ) from f0(ΔY1) to the right. The CVτ also reveals the individual power law depen-
dence on τ for small τ. But starting with some τ* value the SFτ begins to oscillate around its sill level defined by 
the variance of stochastic component of ΔYτ. It causes the oscillatory behavior of f0(ΔYτ) that depends on the 
subject’s individuality and is most conspicuous in the resting state. It was found that for all our subjects in this 
state the oscillation frequency lies in the alpha range (see Figure 1(b)). For comparison, both SFτ and CVτ cor-
responding to the “random” EEG do not depend on τ and for σn = 1 are equal to 5.57 and 0.99 respectively. The 
SFτ and CVτ for the original EEG with randomly permuted data samples within each channel do not depend on τ 
as well. 

The age dependence of E[ΔY1] in the eye-closed resting state is shown in Figure 2(a). The original E[ΔY1] 
values getting at fs = 185 Hz were multiplied by 0.74 to approximately adopt them to fs = 250 Hz. The blue dots 
show such adopted data representing in fact the upper bounds for E[ΔY1] that actually could be in this case. The 
presented data reflect high variability of E[ΔY1] both within some subjects and between different subjects. Nev-
ertheless there is some tendency of E[ΔY1] increasing in the first twenty years of life and of E[ΔY1] decreasing as 
adults getting older. This tendency can be approximately described by log-normal curves in Figure 2(a) de-
picted by colored lines. We are going to define more exactly the type of curve fitting at a later time. 

Having conducted multiple longitudinal studies, we find that the CV1 reveals noticeable inter-individual dif-
ferences being rather stable within an individual subject over long period of time. The analysis of 10 min resting 
state, following 15 min hypoxia and 15 min after hypoxia study did not show significant variation in CV1 as 
well. The relative standard deviation of CV1 for this case is about 4.4%. 

The time-specific dependence of E[ΔY1] in 15 min hypoxia (red dots) was followed by 10 min resting state 
(blue dots) is shown in Figure 2(b). The hypoxia causes a dramatic decreasing of E[ΔY1] relative to the resting 
state. During the last minute of the hypoxia the initial E[ΔY1] value is reduced by 50%. In some sense the impact 
of the oxygen deficit looks like as the subject get older during short-term period (see age-dependence of E[ΔY1] 
on Figure 2(a)). During the 15 min period of time after the hypoxia E[ΔY1] tends to reach the value inherent in 
the resting state. It was found that changes of E[ΔY1] have a strong positive correlation (r = 0.89) with changes 
in oxygen saturation. 

 

  
(a)                                                        (b) 

Figure 2. (a) Age dependence of E[ΔY1] in the eye-closed resting state and (b) time-specific dependence of E[ΔY1] in 15 
min hypoxia (red dots) was followed by 10 min resting state (blue dots) and 15 min post-hypoxic recovery (green dots). 
The different color lines on the panel (a) corresponding to log-normal curves and the green line and curve on the panel (b) 
are used for a fitting of the empirical data. 
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4. Conclusions and Future Work 
The results of this study allow us to make a preliminary conclusion that one-dimensional pdf’s of EEG relative 
displacements can be used for understanding of the real EEG dynamics in various functional states and different 
subjects. To a first approximation, in each case the empirically derived pdf are fitted quite well by the single 
hyper gamma distribution. It means that only two parameters (sample mean of EEG relative displacements and 
coefficient of variation) may be taken into account. Both these parameters exhibit subject’s individuality. The 
first one reveals age and state dependence while the second one stays rather stable for a given subject over long 
period of time except sleep stages. It is interesting to note that age-related dependence of E[ΔY1] looks like as 
age-related dependence of the total brain white matter volume given in [9]. In addition the non-linear age effect 
on E[ΔY1] is consistent with the suggestion that during late childhood period there is a shift of topological or-
ganization of brain white matter toward a more randomized configuration [10]. 

In our future research we are going to analyze much more EEG records to investigate in details the age and 
time-specific dependence of the parameters mentioned above. The next interesting aspect of our future work is 
the improvement of the fitting quality of the empirically derived pdf of EEG relative displacements by using 
distribution that consists of a mixture of hyper gamma distribution. 
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