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Abstract 
This paper concerns a continuous-time portfolio selection problem with inflation in an incomplete 
market. By using the approach of more general stochastic linear quadratic control technique (SLQ), 
we obtain the optimal strategy and efficient frontier to this problem. Furthermore, a numerical 
example is also provided. 
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1. Introduction 
Portfolio selection problem is a key topic in the modern finance. The seminal work of Markowitz (1952, 1959) 
addressed the issue of allocation of wealth in order to obtain the optimal return-risk trade-off. Since then, the 
mean-variance model has been extended in many aspects. Merton (1969, 1971) introduced a continuous-time 
model for maximizing the expected utility from investor’s consumption and terminal wealth. Zhou & Li (2000) 
investigated a continuous-time mean-variance portfolio problem and obtained the optimal strategy and efficient 
frontier by using the stochastic LQ technique, which opened up possible approach to solve the problem for more 
constraints. Following Zhou & Li (2000), many scholars extended this model to the more complicated market 
situations, such as liability, bankruptcy prohibition and incomplete market. See more details in Bielecki, Jin, 
Pliska, & Zhou (2005), Xie, Li, & Wang (2008) and Ji (2010).  

In a real world, investors must deal realistically with the problems of inflation with the growth of economy 
when adopting a long-term but finite horizon investment strategy. Therefore, the consideration of inflation risk 
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in a portfolio selection model will make it more practical. However, to our knowledge, the research on mean-va- 
riance portfolio selection under inflation is limited. The existing literature on this topic is not much as can be 
seen Brennan & Xia (2002) and Bensoussan, Keppo, & Sethi (2009). 

The main goal of this paper is to investigate a continuous-time portfolio selection problemunder inflation in 
an incomplete market. It is clear that this model is more suitable and practical in most of the real-world situa- 
tions, especially for long-term investors. Therefore, our focus will be on two cases. On the one hand, we inves- 
tigate the incomplete market with inflation, in which there are m risky assets and one risk-free asset. The price 
processes of risky assets are driven by an m-dimensional Brownian motion. We also assume that the inflation 
factors affected by the market are random, which can be described by m + 1 Brownian motion. In general, the 
changes in the nominal price index are not just correlated with the risky assets’ nominal prices, but also with 
other uncertainties. It is reasonable that the other uncertainties can be represented by one Brownian motion, 
which is our (m + 1)-th Brownian motion. The original idea can be seen in Brennan & Xia (2002). On the other 
hand, we employ a stochastic linear quadratic (LQ) technique introduced by Zhou & Li (2000) to solve this 
problem. It should be pointed out that the introduction of inflation is by no means routine and does give rise to 
difficulties which are not encountered in Zhou & Li (2000). However, by using the more general stochastic LQ 
control technique in Yong & Zhou (1999), we can also obtain the optimal strategy and efficient frontier in 
closed forms. 

The paper proceeds as follows. In Section 2, the model is formulated. Section 3 provides a closed-form solu- 
tion of our model by using the more general stochastic LQ approach. Section 4 presents a numerical example. 
Finally, concluding remarks and suggestions for future work are given in Section 5. 

2. Problem Formulation 
We consider a market in which m + 1 assets are traded continuously within the time horizon [ ]0,T . One of the 
assets is the risk-free whose nominal price process 0

tS  is subject to the following ordinary differential equa- 
tion: 

[ ]0 0

0
0 0

d d , 0, ,

0,
t t tS r S t t T

S s

 = ∈


= >
                                (1) 

where 0tr >  is the nominal interest rate of the risk-free asset. The remaining m assets are risky and their no- 
minal price processes 1, , m

t tS S  satisfy the following stochastic differential equations: 

( ) [ ]
0

d d d , 0, ,i i i i
t t t t t

i
i

S S b t W t T

S s R

σ = + ∈


= ∈
                            (2) 

where ( )1: , , m
t t tW W W ′=   is a m-dimensional standard Brownian motion, which represents the random factors 

that affect risky assets’ nominal prices. i
tb  is the appreciation rate of the ith ( )1, ,i m=   risky asset, let 

( )1 2: , , , m
t t t tb b b b=  . ( )1 2: , , ,i i i im

t t t tσ σ σ σ=   is the volatility associated with the ith risky asset. Thus, the cova- 
riance matrix of risky assets is as follows: 

( ) ( ) ( )1 2: , , , ,m ij
t t t t m m

tσ σ σ σ σ
×

′= =                             (3) 

where the superscript “ ′ ” represents the transpose of a vector or a matrix. As widely adopted in the literature, 
we assume the non-degeneracy condition of 

( ) ( ) [ ],    0, ,   0.t t I t Tσ σ ε ε′ ≥ ∀ ∈ >                            (4) 

The nominal price of real consumption goods in the economy at time t is denoted by tΨ , which follows a 
diffusion process: 

1 1 1 1

0

d d d : d d d ,

1,

m mt
t t t t t t t t

t

t W t W Wρ ξ ρ ξ ξ + +Ψ = + = + + + Ψ
Ψ =



                   (5) 

where ( )1 1: , , m
t t tW W W + ′=   is a (m + 1)-dimensional Brownian motion, which represents the random factors 
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that affect the price index. tρ  is the expected rate of inflation, and ( )1 1: , , m
t t tξ ξ ξ +=   is the volatility of the 

price index. 
Remark 1. In general, the driving factors of inflation include but do not equal to the ones of the risky assets’ 

nominal prices. We describe randomness of the price index with 1 1, , m
t tW W +
 , in which the foregoing m Brow- 

nian motions are the same ones that drive the risky assets’ nominal price, and the (m + 1)-th Brownian motion 
1m

tW +  represents other randomness. Moreover, we assume that 1m
tW +  and ( )1,2, ,j

tW j m=   are indepen-
dent. 

Let { }( )0
, , , t t
F P F

≥
Ω  be a complete filtered probability space, where { }; 0tF F t= ≥  and  

{ }1, ;0m
t s sF W W s tσ += ≤ ≤ . We assume that all the coefficient functions are continuous bounded deterministic 

functions on [ ]0,T . We denote by [ ]( )0, ; n kC T R ×  the class of n kR × -valued continuous bounded determinis-  
tic functions on [ ]0,T , and by [ ]( )2 0, ; m

FL T R  the class of all mR -valued, progressively measurable and  

square integral random variables on [ ]0,T  under P with norm  

( ) [ ]( )2

1
2 2 2

0
: d , 0, ;

F

T m
t t FL E t L T Rξ ξ ξ= < ∞ ∀ ∈∫ . 

We denote by tX  the nominal wealth of the investor at time [ ]0,t T∈ . Suppose the investor decides to hold 
i
tN  shares of ith asset ( )0,1, ,i m=   at time t. Then  

0
, 0 .

m
i i

t t t
i

X N S t T
=

= ≤ ≤∑                                  (6) 

Let i i i
t t tN Sπ =  be the total nominal market value of the ith ( )0,1, ,i m=   asset held by the investor at time 

t, and let ( )1: , , m
t t tπ π π ′=  . We call the process [ ]{ }: : 0,t t Tπ π= ∈  a portfolio or a strategy of the investor. 

We assume that the trading of shares takes place continuously in a self-financing fashion and there are no 
transaction costs or taxes. We also assume that short-selling is allowable. Then we have 

0

d d d d
0

t t t t t t t tX r X t B t W
X x

π π σ′= + +
 = >

                             (7) 

where ( )1 , , m
t t t t tB b r b r= − −  is the risk premium. 

With the consideration of the inflation, the real value of any asset in the economy at time t is determined by 
deflating by the price index tΨ . The real value of the investor’s wealth is given by t tX Ψ . Let :t t th X= Ψ . 
Applying Itô’s formula to th , we obtain  

( )

( )

1 1

0

d d d d

d d

m mt t t t
t t t t t t t t t t t t t t

t t

t t t t
t t t t t t t t t t

t t

Bh r h t h W h W

Br h t h W

h x

σ ξ σρ ξ ξ π π ξ ξ

σ ξ σρ ξ ξ π π ξ

+ +  ′ ′  −′ ′ ′= − + + + − −    Ψ Ψ   


 ′ ′   −′ ′ ′= − + + + −    Ψ Ψ   
 =            (8) 

where ( )1, , ,0m
t t tπ π π ′=  , ( )1 , , ,0m

t t t t tB b r b r= − −  and  

( )( ) ( )

11 12 1

21 22 2

1 1
1 2

0
0

0
0 0 0 1

m
t t t

m
t t t

ij
t t m m

m m mm
t t t

σ σ σ
σ σ σ

σ σ
σ σ σ

+ × +

 
 
 
 = =
 
 
 
 





    





. 

Remark 2. In order to facilitate the following mathematical treatment, we give , ,t t tBπ σ . In fact, we can also 
think that: it is assumed that there are m + 1 risky assets in the market, and their nominal prices are driving by 
m + 1 Brownian motions. The first m risky assets are the same ones we assumed before, and the (m + 1)-th risky 
asset is a fictitious risky asset. The ith ( )1,2, , 1i m= +  risky asset’s volatility is given by the ith rank of tσ . 
Moreover, we assume the shares of the (m + 1)-th risky asset held by the investor remains 0. Therefore, we can 
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get tπ  by deriving tπ .  
The admissible strategy set under inflation with initial wealth x is defined as  

( ) [ ]( ) ( ){ }2 1: 0, ; , , satisfies Equation (8)m
t F t tU x L T R hπ π π+= ∈ . 

The objective of the investor is to maximize the expected terminal real wealth, TEh , and at the same time to 
minimize the variance of the terminal real wealth, TVarh , 

( ) ( )2 22
T T T T TVarh E h Eh Eh Eh= − = − . 

This is the mean-variance model which can be expressed by the bi-objective optimization problem: 

( )
( )min ,T TU x

P Eh Varh
π∈

− .                                (9) 

It is known from Li & Ng (2000) that Equation (9) is equivalent to the following single objective optimization 
problem: 

( )
( )
( )min T TU x

P Eh Varh
π

µ µ
∈

− + ,                           (10) 

where the parameter 0µ >  represents the weight imposed by the investor on the objective TVarh . Define  

( ) ( ){ }: is an optimal strategy ofP Pµ π π µ∏ = .                      (11) 

3. Solution to the Problem 
In this section, we will apply the more general stochastic linear quadratic (LQ) control technique in Yong & 
Zhou (1999) to our model. Firstly, we will introduce a stochastic LQ auxiliary control problem and derive its 
optimal feedback control. Eventually the optimal portfolio strategy and the efficient frontier for the original 
mean-variance portfolio optimization problem under inflation are obtained in closed form. 

3.1. Auxiliary Problem 
Similar to Zhou & Li (2000), we introduce an auxiliary problem as follows: 

( )
( )

( )2, min T TU x
A E h h

π
µ λ µ λ

∈
−                             (12) 

where 0,µ λ> −∞ < < +∞ . Define 

( ) ( ){ }, is an optimal control of ,A Aµ λ π π µ λ∏ =                    (13) 

Recall Theorem 3.1 in Zhou & Li (2000) which shows the relationship between problems ( )P µ  and
( ),A µ λ . 
Theorem 1. For any 0µ > , one has  

( ) ( ),P Aµ µ λ
λ−∞< <+∞

∏ ⊆ ∏ . 

Moreover, if ( )P µπ ∗ ∈∏ , then ( ),A µ λπ ∗ ∈∏  with 1 2 TEhλ µ∗ ∗= + , where th∗  is the wealth process corres-  

ponding to the strategy π ∗ . 
Let ( )2γ λ µ= , t tY h γ= − . Then Equation (8) becomes the following stochastic differential equation: 

( ) ( )
0

d d d d d

:

t t
t t t t t t t t t t t t t t t t

t t

VY r Y t r t t Y W

Y y x

σρ ξ ξ ρ ξ ξ γ π π ξ γξ

γ

  ′ ′ ′ ′= − + + − + + + − −  Ψ Ψ  
 = = −

         (14) 

where t t t tV B σ ξ′ ′= − , and the objective function of the auxiliary problem ( ),A µ λ  becomes ( )2 2
TE Yµ µγ− . 

Hence, the auxiliary problem ( ),A µ λ  is equivalent to minimizing  

( ) 21; :
2 TJ E Yπ γ µ =  

 
                                  (15) 
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Furthermore, the admissible strategy set ( )U x  can be written as  

( ) [ ]( ) ( ){ }2 1: 0, ; , ,  satisfies Equation (14)m
t F t ty L T R Yπ π π+Λ = ∈ . 

Thus the auxiliary problem ( ),A µ λ  is equivalent to the following stochastic LQ control problem: 

( )
( )

( )min ;
y

A J
π

γ π γ
∈Λ

. 

3.2. Solution to the Auxiliary Problem 
A solution of the stochastic LQ control problem ( )A γ  will involve, in an essential way, the following Riccati 
equation: 

( ) ( ) ( )

[ ]

12 0

0, 0, ,

t t t t t t t t t t t t t

T

t t t

P A M D D D M D P

P
D P D t T

ξ ξ ξ ξ

µ

−  ′′ ′ ′ ′ ′ ′ ′ ′+ + − + + =    =
 ′ > ∀ ∈




                   (16) 

along with the following adjoint ordinary differential equation: 

( ) ( ) ( ) ( )1 1 0

0,

t t t t t t t t t t t t t t t t t t t

T

g A M D D M D g D D D M D A P

g

ξ ξ ξ γξ γ− −  ′   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ − + + − + + =       
 =



    (17) 

where 
d d: , :
d d

t t
t t

P gP g
t t

= =

 , 

t t t t tA r ρ ξ ξ ′= − + , t
t

t

VM =
Ψ

, 

( ) ( )1 1 1 11 , , , , ,j j m j m
t t t t t t

t

D D D Dσ σ + + ′= =
Ψ

  . 

Theorem 2. Let [ ]( )0, ;tP C T R+∈  and [ ]( )0, ;tg C T R∈  be the solution of Equations (16) and (17), re- 
spectively, such that 

( ) ( )1:t t t t t tD D M Dϕ ξ−′ ′ ′ ′= + , 

( ) ( )1:t t t t t t t t tD PD M g D Pψ γ ξ−′ ′ ′ ′= + . 

Then Problem ( )A γ  is solvable with the optimal control being in a state feedback form, 

( ) [ ]* , 0,t t t tY Y t Tπ ϕ ψ= − − ∈ .                            (18) 

Moreover, the optimal cost value is  

( )
21

* 2 22
0 00

1 12 d
2 2

T
t t t t t t t t tJ A g P D PD t P y g yγ γ ξ ξ ψ

  ′ ′= + − + + 
  

∫ ,                (19) 

where 2
, iji jM m= ∑  for any matrix or vector ( )ijM m=  and y x γ= − . 

Proof: We first prove that the control given by Equation (18) is an admissible control. Substituting Equation 
(18) into Equation (14), we have 

( ) ( )
0

d d d

.
t t t t t t t t t t t t t t t tY A M Y A M t D Y D W

Y y

ϕ γ ψ ξ ϕ γξ ψ  ′ ′ ′ ′ = − + − + − + −    
=

            (20) 
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Noting that ,t tP g  are continuous, and the appreciation coefficient and the diffusion coefficients are bounded 
continuous within t. Hence, we deduce that Equation (20) admits a unique strong solution tY ∗  which yields  

[ ]
( )2*

0,
sup 1t T

t T
E Y K y

∈
≤ + , 

where 0TK >  is a constant associated with the terminal time. Therefore, we have shown that ( ) ( )tY yπ ∗ ∈Λ . 
Next, we prove that ( )*

tYπ  is an optimal feedback control of state variable tY . For any ( )t yπ ∈Λ , let tY
be the state variable associated with the control vector tπ . By applying Itô formula to 2 2t tPY  and t tg Y , and 
integrating them from 0 to T, taking expectations, add them together, we get 

( )

( ) ( )( ) ( )

2 2 2
0 0 0 0 0 0 0 0

21
22

0

1 1 1;
2 2 2

1 2 d .
2

T

T
t t t t t t t t t t t t t t t t t t t

Y PY g Y J PY g Y

E Y D PD Y D PD A g P t

µ π γ

π ϕ ψ π ϕ ψ ψ γ γ ξ ξ

− − = − −

  ′ ′′ ′= + + + + − + + 
  

∫
     (21) 

Because 

( ) ( )( )
0

1 d 0
2

T
t t t t t t t t t t tE Y D PD Y tπ ϕ ψ π ϕ ψ′ ′+ + + + ≥∫ . 

We obtain  

( ) ( )
21

2 2 2
0 0 0 0 0

1 1; 2 d
2 2

T
t t t t t t t t tJ PY g Y A g P D PD tπ γ γ γ ξ ξ ψ

  ′ ′− − ≥ + − 
  

∫ , 

and the equality holds if and only if ( )t t t tY Yπ ϕ ψ≡ − − , [ ]0,t T∈ . It shows that the feedback control given by 
Equation (18) is an optimal control and the optimal cost function can be obtained by Equation (19). The proof is 
completed.   

Noting that the third constraint in Equation (16) is satisfied automatically since the assumption t t mIσ σ ε′ ≥ ,
[ ]0,t T∀ ∈ . Obviously, the solution of Equation (16) can be expressed by the following: 

( )
21

2exp 2 d
T

t s s s s s st
P A D D sλ ξ ξ ϕ′

   ′= − + −  
    

∫ .                      (22) 

Let t t tH g P= . Then noting Equation (16) and Equation (17), one has  
( ) ( )1 d

1 e
T

s s s s s s s s s st A D D D M D s

tH
ξ ξ ξ ξ

γ
− ′ ′′ ′ ′− + − +  ∫ 

= − ⋅ 
 

                        (23) 

Since the equivalence of problem ( )A γ  and ( ),A µ λ , the optimal feedback control of the auxiliary prob- 
lem ( ),A µ λ  is also given by Theorem 2:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]1 1* ,   0,t t t t t t t t t t t t t t t th h D D M D h D D M H D t Tπ ϕ γ ψ ξ γ γ ξ− −   ′ ′′ ′ ′ ′ ′ ′= − − − = − + − − + ∈      
, (24) 

Substituting Equation (23) into Equation (24), we have 

( ) ( ) ( ) ( ) ( ) ( )1 d1 1* e
T

s s s s s s s s s st A D D D M D s

t t t t t t t t t t t t t th D D M D h D D M D D
ξ ξ ξ ξ

π ξ γ ξ ξ
− ′ ′′ ′ ′− + − +− −   ∫   ′ ′ ′′ ′ ′ ′ ′ ′ ′= − + + + −       

. 

3.3. Solution to the Original Problem 
Let *

th  be the wealth process under the optimal feedback control *π  of the auxiliary problem ( ),A µ λ . Sub- 
stituting ( ) ( )*

t t t th hπ ϕ γ ψ∗ ∗= − − −  into Equation (8) yields 

( ) ( ) ( )( )
( )

* * * *

0

d d d

0

t t t t t t t t t t t t t t t th A M h M M t h D h W

h x

ϕ γ ϕ ψ ϕ γ ψ ξ

∗

  ′  ′= − + − + − − − +     
 =

          (25) 
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Applying Itô’s formula to 2
th∗  yields 

( ) ( )

( ) ( )

( )( )

2 2

* 2

* * *

d 2 2 d 2 2

         2 2 d 2 d

         2

t t t t t t t t t t t t t t t t t t t t t t

t t t t t t t t t t t t t t t t t t t t t t t

t t t t t t t

h A M D D D h t M M D D

D D D D h t D D D D D D t

h h D h

ϕ ϕ ϕ ξ ϕ ξ ξ γ ϕ ψ γϕ ϕ

ψ ϕ γξ ϕ ξ ψ γ ϕ ϕ γψ ϕ ψ ψ

ϕ γ ψ ξ

∗ ∗ ′′ ′ ′ ′= − + − + + − − 
′ ′ ′ ′ ′ ′ ′ ′+ + − + − +

 ′ ′+ − − − + 
 

2 2
0

d tW

h x∗










=

     (26) 

Taking expectation on both side of Equations (25) and (26), which leads respectively to 

( ) ( )* *

0

d dt t t t t t t t tEh A M Eh M M t

Eh x

ϕ γ ϕ ψ
∗

  = − + −  
=

                       (27) 

and 

( ) ( ) ( )

( ) ( ) ( )

1 1 12 2

2
1 1 12

2 2
0

d 2 2 d

2 d

t t t t t t t t t t t t t t t t t t t t

t t
t t t t t t t t t t t t

t t

Eh A M D D M M D D D D D D D Eh t

g gM D D M M D D M M D D M t
P P

Eh x

ξ ξ ξ ξ ξ

γ γ

− − −∗ ∗

− − −

∗

  ′ ′ ′′ ′ ′ ′ ′ ′= − − − +  
    ′ ′ ′ ′ ′ ′ + + −  

    


=


       (28) 

The solution of Equation (27) is 

( ) ( ) ( ) [ ]0 d d0
0

0

e e d , 0,
t t

s s s z z zs
tA M s A M z

t s s s s
xEh M M s t T
q

ϕ ϕγ ϕ ψ− −∗ ∫ ∫= + − ∈∫ . 

This leads to  

TEh α βγ∗ = + ,                                    (29) 

where 

( )0 d: e
T

t t tA M tx ϕα −∫= , ( ) 1
0 d: 1 e
T

t t t tM D D M tβ
−′ ′−∫= − . 

Similarly, by solving Equation (28) we have 
( ) ( )

( ) ( ) ( )

( ) ( )

1 1
0

1 1

2 2 d2 2

2
1 1 12

0

2 2 d

e

          2

          e d ,       0

T
t t t t t t t t t t

T
s s s s s s s s s st

A M D D M M D D D t

T

T t t
t t t t t t t t t t t t

t t

A M D D M M D D D s

Eh x

g g
M D D M M D D M M D D M

P P

t t

ξ

ξ

γ γ

− −

− −

 ′ ′ ′ ′ ′− −∗   

− − −

 ′ ′ ′ ′ ′− −  

∫

∫

=

  
′ ′ ′ ′ ′ ′ + + − 

   

× ∈

∫

[ ], .T

          (30) 

Substituting Equation (23) into Equation (30), we have 
( ) ( ) ( ) ( )

( ) ( ) ( ) [ ]

1 1 1
0

1 1 1
0 0

2 2 d 1 d2 2 2
0

2 2 d d2 2

e e d

e 1 e , 0, .

T Tt t t t t t t t t t s s s st

T Tt t t t t t t t t t t t t t

A M D D M M D D D t T M D D M s
T t t t t

A M D D M M D D D t M D D M t

Eh x M D D M t

x t T

ξ

ξ

γ

γ

− − −

− − −

 ′′ ′ ′ ′− − ′ ′− −∗   

 ′′ ′ ′ ′− − ′ ′−  

∫ ∫

∫ ∫

′ ′= +

 = + − ∈ 
 

∫
 

Then we get  
2 2

TEh η βγ∗ = + ,                                     (31) 

where 
( ) ( )1 1

0 2 2 d2: e
T

t t t t t tA M D D M M D D D t
x

ξ
η

− − ′ ′′ ′ ′− −  ∫
= . 
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Based on the Theorem 1, if any optimal solution of problem ( )P µ  exists, it can be obtained by the solution 
*π  of the auxiliary problem ( )*,A µ λ  with * *1 2 TEhλ µ= + . According to *

TEh α βγ= + , * *
TEh α βγ= +

with * * 2γ λ µ= . The above two equations yield 

* 1 2
1

µαλ
β

+
=

−
. 

Thus, the optimal feedback control of the problem ( )P µ  can be expressed by  

( ) ( )*
t t t th hπ ϕ γ ψ= − − − , 

with 

( )
* 1

2 1 1
αγ γ

µ β β
= = +

− −
. 

Correspondingly, the variance of the terminal wealth is  

( ) ( )
22 2 21 2T T TVarh Eh Eh β β γ αβγ η α∗ ∗ ∗ ∗ ∗= − = − − + − .                    (32) 

By substituting ( )TEhγ α β∗ ∗= −  and , ,α β η  into Equation (32), we have  

( )

( )

( )

( )

( ) ( )
( )( )
( )

1 0
1 10 0

0
1 1 1

0 0 0

2 2
* *

2
d2

d d
2 2 d* 2

d d d

1
1 1

ee e e
1 e e e

T
t t tT T

Tt t t t t t t
t t t t t t

T T T
t t t t t t t t t t t t

T T

A M t
M D D M t A M t

A M D D M M D D D C t

TM D D M t M D D M t M D D M t

Varh Eh

xxEh x

ϕ
ϕ

β α αη
β β β

−
− −

− − −

−
′ ′− −  ′ ′ ′ ′− −  

′ ′ ′ ′ ′ ′− − −

∫
∫ ∫

∫

∫ ∫

 −
= − + − − − 

 
 = − + −
 −  

∫

(33) 

Substituting ( ) ( )1
t t t t t tD D M Dϕ ξ−′ ′ ′ ′= + , ( ) ( )1

t t t t t t t t tD PD M g D Pψ γ ξ−′ ′ ′ ′= +  and Equation (23) into Equation 
(33), we finally obtain the efficient frontier as follows: 

( )

( )

( )( ) ( )

( )

( )( )
1 1

110 0
00

1 1
0 0

22d d
dd* * *

d d

e e e
1 e 1 e

T T
TTt t t t t t t t

t t t t t tt t

T T
t t t t t t t t

M D D M t V V t
A V tA M D D D t

T T TM D D M t V V t
Varh Eh xe Eh x

σ σ
σ σ σ ξξ

σ σ

− −
−−

− −

′′ ′ ′− − ′ ′ ′ ′′ ′ ′ +−

′′ ′ ′− −

∫ ∫
∫∫

∫ ∫

  
= − = −  

   − −
. (34) 

Remark 3. If we let 0, 0tρ ξ= = , and the market is complete, then Equation (34) would reduce to  
( )

( ) ( )
1

0
0

1
0

d 2
d* *

d

e e
1 e

T
t t t t T

t
T

t t t t

B B t
r t

T TB B t
Varh Eh x

σ σ

σ σ

−

−

′ ′−

′ ′−

∫
∫

∫
= −

−
.                         (35) 

Obviously, the result of Zhou & Li (2000) is a special case in our paper. 

4. Numerical Example 
In this section, we discuss a numerical example. Suppose that the market has four assets and a risk-free asset. 
Let’s assign the following parameters which are needed in our model: the risk-free asset 0.0350tr = , the ex- 
pected value of inflation 0.0310tρ = , the time horizon T = 2, the volatility of the price index  

( )0.2123;0.1396;0.0823;0.1562;0.1876ξ = , the appreciation rate of assets ( )0.1621;0.1422;0.1013;0.1326b =  
the initial wealth 0 1x = . And also suppose that the covariance matrix ( ),

4 4

i j
tσ ×

 is as follows: 
0.3121 0.1127 0.1362 0.1831
0.1127 0.2656 0.0956 0.1772
0.1362 0.0956 0.1856 0.1432
0.1831 0.1772 0.1432 0.2372

 
 
 
 
 
 

. 

After some transformations and calculations by using the above parameters, the efficient frontier of our model 
is obtained by the following. 

( )2* *
2 26.0236 1.4426Varh Eh= − . 
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Figure 1. The efficient frontier with and without inflation. 

 
Next, we compare our model with that of Zhou & Li (2000). The biggest difference is that our model is con- 

sidered the factor of inflation in the decision-making process. Figure 1 shows the efficient frontier to conti- 
nuous-time mean-variance model with and without inflation in a market. It can be seen that the frontier with in- 
flation lies below the one without inflation. This means that the inflation plays as a penalty factor for portfolio 
revision. Furthermore, it tells us that the impact of it cannot be ignored in the real world when portfolio man- 
agers choose investment strategy. 

5. Conclusion 
This paper extends the work of Zhou & Li (2000) to an incomplete market with inflation. In our model, the in- 
flation process is assumed to be a geometric Brownian motion, which is correlated with those risky assets. The 
driving factors of inflation are not the same ones which affect risky assets’ prices. This means that the random 
factors affecting inflation include but do not equal to the ones of risky assets’ prices. By using the more general 
stochastic LQ approach, we have provided a closed-form optimal strategy and efficient frontier. Comparing to 
Zhou & Li (2000), our results in this paper are more general. In addition, a numerical example is also provided. 
The search on the liability and bankruptcy prohibition in this problem is left for future work. 
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