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Abstract 
Background: Estrogen exposure plays a role in breast cancer (BC) development. A novel estrogen 
biomarker, the estrogen DNA adduct (EDA) ratio, was shown to be elevated in women at high-risk 
of BC and among BC cases. Modifiable factors may impact the EDA ratio, with studies demonstrat-
ing that resveratrol reduces EDA ratio in vitro. We sought to examine the hypothesis that dietary 
intake of fruits and vegetables is inversely associated with EDA ratio. Methods: This analysis was 
conducted in 53 pre-menopausal, healthy women aged 40 - 45 years from a cross-sectional study 
in which participants provided first-void urine samples and 3-day food records. Urine samples 
were analyzed using ultra performance liquid chromatography/tandem mass spectrometry. The 
EDA ratio was calculated as the estrogen-DNA adducts divided by estrogen metabolites and con-
jugates. A trend test was used to assess associations between tertiles of dietary intake using linear 
regression. Results: After adjustment for age, total energy, percent adiposity, serum estradiol and 
estrone-sulfate, we observed inverse associations of EDA ratio with carbohydrate consumption (P 
= 0.01) and vegetable intake (P = 0.01). EDA ratio was inversely associated with 5 botanical groups 
(Chenopodiaceae: P = 0.02; Umbelliferae: P = 0.03; Compositae: P = 0.01; Ericaceae: P = 0.01; Mu-
saceae: P = 0.03) but not fruit intake overall. Conclusion: Although these data require replication 
before conclusions are drawn, this report suggests an inverse association between vegetable and 
carbohydrate consumption and EDA ratio. Impact: While more information is still needed, these 
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findings suggest a link between dietary intake and a biomarker that is both associated with high- 
risk BC status and associated with modifiable factors. 
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1. Introduction 
Estrogen exposure has been implicated in breast cancer (BC) development [1]. While much of the focus has 
been upon estrogen’s proliferative effects, more recently research has focused on estrogen’s genotoxic effects [2] 
[3]. Estrogen metabolites within the catechol estrogen (CE) pathway have been investigated for their role in BC 
due to their ability to form adducts within DNA [4]-[6]. Cavalieri et al. developed an assay to measure the estro- 
gen DNA adduct (EDA) ratio, which consists of EDAs in relation to their unbound counterparts (estrogen meta- 
bolites and conjugates) [3]. Three studies reported elevated EDA ratios among BC cases and high-risk women 
compared to women at average-risk of BC (defined by Gail score; P < 0.001) [7]-[9]. 

EDAs are thought to play a role in BC initiation due to their role in forming depurinating DNA adducts, 
which have been described in a number of studies [4]-[6]. In general, estrone and estradiol (E1/E2) are converted 
into CEs by cytochrome P450 (CYP) enzymes. The CEs, unless inactivated, are oxidized into CE quinones. These 
quinones are capable of reacting with DNA to form depurinating adducts, which result in apurinic sites and re-
quire DNA repair to resolve the missing base pair. Greater adduct formation with the 4-CE compared to the 2- 
CE has been observed, likely as a result of the location of the hydroxy group [6]. Within this pathway, enzymes 
are involved in both activating and inactivating CE metabolites [3] [10]. For example, CYP1A1 and CYP1B1 
convert E1/E2 to the 2- and 4-CE, respectively; while Phase II enzymes, including catechol-O-methyltransferase 
(COMT), glutathione S transferase (GST), UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), and 
NADPH-quinone reductase (NQ01), can inactivate CEs. Thus, there is biological plausibility for a role of EDAs 
in BC development as well as indication that this pathway involves a number of enzymes. 

Interestingly, many of the enzymes in the CE pathway are modulated by components of diet. Several classes 
of phytochemicals have been shown to influence the activity of phase II enzymes, including UGT, GST, NQ01, 
and SULT enzymes. For example, flavones (such as those found in the Umbelliferae botanical grouping) de-
crease CYP1A1 activity while inducing UGT activity [11]. Although the relationship between dietary constitu-
ents and phase II enzymes is complex, the overall direction of phytochemicals, such as flavones, on phase II en-
zymes is consistent with chemoprevention. Thus, the intake of foods rich in certain phytochemicals (e.g., fla-
vones), may influence the CE pathway due to their induction of enzymes involved in estrogen metabolism [12]- 
[14]. 

Additional studies indicate that the EDA ratio can be modulated by dietary components, with evidence com-
ing predominantly through in vitro studies [3] [15]. Such studies have shown that resveratrol (a dietary polyphe- 
nol) and N-acetylcysteine (NAcCys, a dietary supplement) when administered to immortalized/non-transformed 
cell lines can substantially reduce EDA ratios and cell transformation [14] [16] [17]. Within a pilot study of heal- 
thy adults, Cavalieri et al. observed reduced EDA concentrations after 1 month use of NAcCys [3]. Taken toge- 
ther, these studies suggest that dietary consumption of phytochemicals may influence the EDA ratio; however, 
no studies have investigated the association between usual dietary consumption and the EDA ratio. Given the 
proposed effect of phytochemicals on the EDA ratio, we hypothesized that intake of fruits and vegetables, such 
as umbelliferae vegetables, would be inversely associated with the EDA ratioin women. 

2. Materials and Methods 
2.1. Study Population 
This analysis was conducted within a randomly selected subset of 117 premenopausal women (out of 203, due 
to funding constraints) who participated in the Equol, Breast, and Bone (EBB) study, a cross-sectional study 
originally designed to investigate equol production, hormones, and breast density in premenopausal women. 
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Study methods have been previously described [18]. Briefly, women were recruited from the Group Health Co-
operative (GHC) in western Washington State. Eligible women were premenopausal, aged 40 to 45 years, and 
had received a screening mammogram at GHC. Ineligible women were current or recent users of hormone ther-
apy/oral contraceptives or antibiotics, had a history of BC, or had shown signs of perimenopause. 

After obtaining informed consent, EBB participants: completed a health and demographics questionnaire; pro- 
vided a blood sample and a spot urine sample (collected at a clinic visit scheduled between days 5 - 9 of their 
menstrual cycle); underwent a Dual X-ray Absorptiometry (DXA) scan; and completed a 3-day food record (3- 
DFR) within two weeks of urine collection. Dietary intake data from the 3-DFR were analyzed using the Nutri-
tion Data System for Research software using previously described methods [18]. Estimates of daily intake of 
nutrients, grains, meats and shellfish, egg, dairy, tea and coffee, as well as botanically-defined groupings of fruits 
and vegetables were obtained [19]. This study was approved by the Institutional Review Boards at GHC and the 
Fred Hutchinson Cancer Research Center. 

2.2. Urinary Estrogen Metabolites 
Urine samples were processed with the addition of ascorbic acid, and stored at −80˚C. Laboratory methods on 
the urinary EDA ratio have been previously published [7] [8]. In order to concentrate and partially purify the es-
trogen metabolites and DNA adducts, 2 mL of urine (pH adjusted to 7) was placed on a 1 mL solid phase extrac-
tion cartridge (SPE; Phenyl Bond Elut, 100 mg, Varian, Palo Alto, CA) preconditioned with methanol, water, 
and 10 mM ammonium formate (pH 7). The sample was loaded onto the SPE cartridge, washed, eluted, and 
concentrated; was reconstituted in methanol:water (1:1); and ultraperformance liquid chromatography/tandem 
mass spectrometry (UPLC/MS-MS) was used to separate and analyze the 32 estrogen metabolites and DNA ad-
ducts in urine. The sample was injected onto an Acquity UPLC BEH C18 column (1 × 100 mm, 1.7 μm) using a 
flow rate of 0.15 mL/min. The total run time was 10 min and the mobile phase consisted of 0.1% formic acid in 
water (A) and 0.1% formic acid in acetonitrile (B). A gradient was used over the course of the run to obtain se-
paration. The linear gradient gradually increased from 20% B to 21% over 4 min and then further increased to 
55% B over 6 min. Analytes were detected using electron spray ionization (ESI) in positive and negative ion 
modes on a Waters (Milford, MA) Quattro Micro triple quadruple mass spectrometer. Multiple reaction moni-
toring was used to monitor all compounds and optimization of cone voltages and collision energies were obtain- 
ed by direct infusion of standard compounds onto the instrument. The instrument was operated using Micromass 
Mass Lynx 4.1 software (Waters) and data were processed used QuanLynx. The limit of detection for the 32 
analytes was determined by spiking charcoal stripped urine with known amounts of standard compounds and 
ranged from 1.2 - 867 fmol on column [8]. 10% blinded quality controls were included across 6 batches. The in-
tra-batch coefficient of variation (CV) for the calculated EDA ratio ranged from 2.7% to 67.0%. Only batches 
that had less than 15% intra-batch CV (n = 53 samples) were retained for use in the statistical analysis presented 
here (n = 3 batches). The %CV for these three batches was 12.4%, 8.9%, and 2.7% (mean% CV = 8.0 ± 4.9). 

2.3. Statistical Analysis 
This statistical analysis was conducted in 53 women whose samples were analyzed within the three batches with 
<15% intra-batch CV. The numerator of the EDA ratio contains depurinated estrogen-DNA adducts; the deno-
minator contains the estrogen metabolites and conjugates; summed for the 2- and 4-CEs separately as described 
previously [7] [8]. 

Lack of normality was assessed for each continuous variable; the distribution was skewed for the EDA ratio 
and many dietary factors. As a result, the EDA ratio was log-transformed. Tertiles were created for the dietary 
factors, with the exception of the botanical groupings. For botanical groupings, analyses were limited to those 
groups that were consumed by at least 15% of participants. Within those remaining botanical groupings, intake 
was categorized as any intake versus none. 

We tested associations between the EDA ratio and dietary factors using generalized linear models (GLM) ad-
justed for potential confounding factors. A confounding factor was included in the GLM if it was associated 
with the EDA ratio (at α = 0.05 determined using one-way ANOVA) and with dietary factors. All models in-
cluded confounding factors (i.e., percent adiposity, serum estradiol and estrone-sulfate [E1S]), in addition to age 
and total energy intake. A trend test was used to assess associations between tertiles of dietary intake and the 
EDA ratio. Correlations were also examined between continuous variables to ensure that variables with high 
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correlations were not included in the model together. Because these hypotheses were specified a priori we did 
not adjust for multiple comparisons. Analyses were conducted using Stata v. 11. 

3. Results 
Our study population consisted of healthy, premenopausal women with an average age of 42.5 years and BMI of 
25.6 kg/m2 (Table 1). Our population was predominantly White women (81.1%), never smokers (53.6%), and 
relatively high socioeconomic status (94.3% attended ≥ some college). Among this group of premenopausal 
women, the EDA ratio values ranged from 4.1 to 99.4 [mean = 22.23 (SD16.09)]. 

An elevated EDA ratio was associated with low total carbohydrate consumption (P = 0.01), low vegetable in-
take (P = 0.01), low fruit and vegetable intake (P = 0.03), high fish and shellfish consumption (P = 0.03), and 
high egg consumption (P = 0.03) after adjustment for age, total energy intake, percent adiposity, serum E2 and 
E1S (Table 2). Based on these findings [i.e., opposite directions in the associations for botanical groupings and 
protein-based groups (eggs, fish and shellfish)], we further examined the association between the percent of 
energy consumed from macronutrients. The percent of energy from carbohydrate was associated with the EDA 
ratio [coefficient = −0.27 (SE 0.12); P = 0.03], but the percent of energy from protein (P = 0.53), and the percent 
of energy from fat (P = 0.16) were not (data not shown). 

 
Table 1. Demographic characteristics of the study participants.                                                   

Characteristic n = 53 

 Mean SD 
Age, years 42.5 1.3 
BMI, kg/m2 25.6 4.5 
Height, cm  164.7 7.1 
Weight, kg 69.5 12.6 

Waist: Hip ratio  0.79 0.06 
Percent adiposity 31.9 6.9 

   
 n % 

Parous 39 73.6 
Had a history of breast-feeding 32 64.0 
Had a history of OC or HT use  38 71.7 

First degree relative with breast and/or ovarian cancer  7 30.4 
Smoking status   

Current 16 30.2 
Never  37 69.8 

Race/ethnicity   
Asian 6 11.3 
White 43 81.1 
Other 4 7.6 

Years of school completed   
≤12  3 5.7 

13 - 15  19 35.8 
16 13 24.5 

≥17  18 34.0 
Income    

≤$49,999 10 18.9 
$50,000 - $75,000  13 24.5 

>$75,000 23 43.4 
Prefer not to answer  7 13.2 
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Table 2. Associations of nutrients and food groups with the Estrogen DNA Adduct Ratio.                              

 
Estrogen DNA Adduct Ratio1   

T1 (95% CI) T2 (95% CI) T3 (95% CI) Coefficient (SE)2 P-value3 

Nutrients      

Energy  17.5 (9.2 - 25.7) 19.8 (13.8 - 25.8) 27.3 (19.6 - 34.9) 0.02 (0.10) 0.85 

Tertilecutpoints (kcal/d) <1686 1820 - 2069 2070 - 3183   

Fat 18.9 (10.7 - 27.1) 25.8 (18.8 - 32.8) 21.3 (10.9 - 31.7) 0.17 (0.18) 0.33 

Tertilecutpoints (g/d) <64.2 67.5 - 85.5 86.4 - 148.3   

Carbohydrate  19.7 (14.9 - 24.5) 19.0 (15.6 - 22.5)  19.9 (15.5 - 24.3) −0.52 (0.18) 0.01 

Tertilecutpoints (g/d) <185.3 190.6 - 250.9 255.0 - 378.5   

Total sugars  20.3 (10.6 - 30.0) 15.6 (8.6 - 22.6) 29.3 (21.2 - 37.4) −0.26 (0.16) 0.11 

Tertilecutpoints (g/d) <75.7 78.1 - 114.0 116.4 - 202.9   

Protein  13.6 (5.0 - 22.1) 25.2 (19.2 - 31.1) 27.3 (18.7 - 35.9) 0.18 (0.17) 0.27 

Tertilecutpoints (g/d) <68.0 70.0 - 88.8 89.0 - 132.8   

Total dietary fiber  21.6 (13.0 - 30.2) 20.2 (14.1 - 26.4) 23.7 (16.4 - 31.1) −0.22 (0.15) 0.14 

Tertilecutpoints (g/d) <14.2 14.5 - 19.5 19.7 - 49.4   

Caffeine 24.3 (16.3 - 32.4) 19.1 (13.4 - 25.5) 21.8 (13.1 - 30.5) 0.07 (0.13) 0.64 

Tertilecutpoints (mg/d) <71.1 75.8 - 193.4 196.5 - 570.7   

Alcohol  24.7 (17.3 - 32.2) 24.3 (16.2 - 32.5) 19.0 (11.5 - 26.5) −0.10 (0.11) 0.36 

Tertilecutpoints (g/d) 0 0.01 - 0.3 0.5 - 39.9   

Food Groups (servings/d)     

Fruit and vegetable 25.3 (17.6 - 32.9) 20.8 (14.5 - 27.0) 20.8 (14.7 - 26.9) −0.28 (0.13) 0.03 

Tertilecutpoints <3.7 3.8 - 5.6 5.7 - 11.7   

Fruit 19.6 (11.0 - 28.1) 23.1 (15.6 - 30.6) 23.5 (15.9 - 31.0) −0.13 (0.14) 0.35 

Tertilecutpoints <0.93 0.94 - 2.1 2.2 - 7.1   

Vegetables 25.6 (18.3 - 32.9) 23.7 (18.4 - 28.9) 17.9 (10.8 - 24.9) −0.27 (0.10) 0.01 

Tertilecutpoints <2.35 2.36 - 3.60 3.62 - 6.60   

Grains, refined 14.9 (6.3 - 23.5) 25.9 (19.4 - 32.5) 25.1 (16.6 - 33.8) 0.14 (0.11) 0.22 

Tertilecutpoints ≤3.2 3.21 - 4.7 5.1 - 12.6   

Grains, whole 20.2 (10.7 - 29.7) 18.3 (11.7 - 24.9) 26.2 (18.5 - 33.9) −0.10 (0.15) 0.49 

Tertilecutpoints <0.64 0.64 - 1.8 1.9 - 5.6   

Meat and poultry 17.3 (9.3 - 25.3) 20.1 (14.2 - 26.1) 35.5 (25.3 - 45.6) 0.21 (0.14) 0.13 

Tertilecutpoints <3.6 3.6 - 5.95 6.0 - 14.9   

Fish and shellfish 16.4 (9.4 - 23.4) 20.7 (13.9 - 27.5) 30.5 (22.4 - 38.6) 0.23 (0.10) 0.03 

Tertilecutpoints 0 0 - 0.49 0.5 - 6.0   

Eggs 19.6 (10.8 - 28.4) 22.5 (16.6 - 28.4) 23.9 (15.5 - 32.4) 0.30 (0.13) 0.03 

Tertilecutpoints <0.2 0.2 - 0.53 0.59 - 2.6   

Dairy foods 25.2 (16.6 - 33.9) 21.1 (14.8 - 27.5) 20.2 (11.9 - 28.4) −0.05 (0.14) 0.72 

Tertilecutpoints <1.42 1.42 - 2.55 2.59 - 6.00   

Tea and coffee 21.7 (13.5 - 29.9) 24.0 (18.2 - 29.7) 20.3 (11.4 - 29.3) 0.07 (0.13) 0.60 

Tertilecutpoints <0.7 0.7 - 2.5 2.6 - 8.4   

1). For the ratio: [4-OHE2(E1)-1-N7Gua + 4-OHE2(E1)-1-N3Ade] in numerator, and [4-OHE2 (E1) + 4-OCH3E2(E1) + 4-OHE2 (E1) -2-Cys + 4-OHE2 
(E1) -2-SG + 4-OHE2 (E1) 2-NAcCys] in denominator; added to [2-OHE2 (E1) -6-N3Ade] in numerator, and [2-OHE2 (E1), 2-OCH3E2 (E1) + 2-OH-3- 
OCH3E2 (E1) + 2-OHE2-(1,4)-Cys, 2-OHE1-1-Cys + 2-OHE1-4-Cys + 2-OHE2(E1)-1-NAcCys + 2-OHE2(E1)-4-NAcCys + 2-OHE2(E1)-1-SG + 
2-OHE2(E1)-4-SG] in denominator; 2) adjustment for age, total energy, percent adiposity, serum estradiol and Estrone; 3) P-value for trend test across 
the tertiles. T1: tertile 1; T2: tertile 2; T3: tertile 3. 
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To follow up on the inverse association observed between total fruit and vegetable intake and the EDA ratio, 
we investigated associations with botanical groups. We observed that the EDA ratio was associated with five 
botanical groupings (Table 3). Among the vegetable-based botanical groups, elevated EDA ratio was associated 
with low Chenopodiaceae consumption (e.g., spinach and beets; P = 0.02), low Umbelliferae consumption (e.g., 
carrots and celery; P = 0.03), low Compositae consumption (e.g. lettuce; P = 0.01) and borderline association 
with low Cruciferae consumption (e.g. broccoli and cabbages; P = 0.05). With respect to fruit-based botanical 
groupings, elevated EDA ratio was associated with low Ericaceae consumption (e.g. blueberries and cranberries; 
P = 0.01) and low Musaceae consumption (e.g. bananas; P = 0.03). 

4. Discussion 
We observed inverse associations between reported dietary intake of botanical groups and the EDA ratio, as well 
as positive associations between the EDA ratio andfish/shellfish and eggs. We had hypothesized an inverse rela-
tionship for EDA with fruit and vegetable consumption but had not hypothesized there to be an association be-
tween EDA and fish/shellfish and eggs. To our knowledge, we are the first research group to investigate associ-
ations between dietary intake and the EDA ratio. 

 
Table 3. Association between Estrogen DNA Adduct Ratio and fruit and vegetable botanical groups.                     

Botanical  
groupings 

Common  
example3,4 

Consumption 

None Any   

n (%) EDA ratio n (%) Median  
consumption2 EDA ratio Coefficient (SE) P-value1 

Vegetables         

Gramineae Corn 41 (78.8) 22.7 11 (21.2) 0.07 20.1 0.19 (0.27) 0.47 

Oleaceae Olive 37 (71.2) 23.5 15 (28.8) 0.08 18.9 −0.27 (0.21) 0.19 

Lauraceae Avocado 35 (67.3) 21.9 17 (32.7) 0.08 22.6 −0.12 (0.23) 0.60 

Agaricaceae Mushroom 33 (63.5) 23.2 19 (36.5) 0.04 20.3 −0.01 (0.22) 0.98 

Chenopodiaceae Spinach 32 (61.5) 24.0 20 (38.5) 0.15 19.2 −0.47 (0.20) 0.02 

Umbelliferae Carrots, celery 18 (34.6) 27.6 34 (65.4) 0.27 19.3 −0.40 (0.18) 0.03 

Cruciferae Broccoli 16 (30.8) 27.4 36 (69.2) 0.20 19.8 −0.40 (0.20) 0.05 

Compositae Lettuce 11 (21.2) 28.0 41 (78.8) 0.37 20.6 −0.63 (0.22) 0.01 

Leguminosae Alfalfa 6 (11.5) 35.8 46 (88.5) 0.64 20.4 −0.18 (0.14) 0.19 

Solanaceae Potato 3 (5.8) 17.6 49 (94.2) 0.80 22.4 −0.01 (0.22) 0.96 

Liliaceae Onions 3 (5.8) 17.7 49 (94.2) 0.18 22.4 0.68 (0.57) 0.23 

Fruit         

Ericaceae Blueberries 41 (78.8) 21.6 11 (21.2) 0.20 24.1 −0.70 (0.28) 0.01 

Vitaceae Grapes 38 (73.1) 21.5 14 (26.9) 0.18 23.8 −0.23 (0.22) 0.30 

Musaceae Banana 27 (51.9) 24.7 25 (48.1) 0.50 19.4 −0.41 (0.18) 0.03 

Curcurbitaceae Melon 22 (42.3) 18.6 30 (57.7) 0.16 24.8 0.06 (0.21) 0.76 

Rutaceae Citrus fruits 17 (32.7) 22.8 35 (67.3) 0.50 21.9 0.37 (0.21) 0.07 

Rosaceae Apple 5 (9.6) 28.0 47 (90.4) 0.50 21.5 0.15 (0.40) 0.71 

1) Testing association with the EDA ratio of any versus no consumption, adjusted for age, total calories, percent carbohydrate intake, percent adiposi-
ty, serum estradiol and estrone sulfate; 2) Median level among those consuming food categorized within this botanical grouping in servings per day; 3) 
Limited to botanical groupings that is consumed by ≥15% of study population; 4) Lauraceae: Avocado, cinnamon; Chenopodiaceae: Silver beet, spi-
nach, beetroot, beets; Cruciferae: broccoli, brussels sprouts, cabbages, cauliflower, collard greens, daikon, horseradish, kale, kohlrabi, mustard greens 
and seeds, radishes, arugula, rutabagas, turnips, watercress; Solanaceae: potato, tomato, chili, tomatillo, eggplant, tamarillo; Leguminosae: alfalfa, ji-
cama, lentils, licorice, fava, pinto, garbanzo, kidney, lima, pinto, and soy beans; Umbelliferae: carrots, celery, celeriac, parsley, dill; Compositae: arti- 
chokes, chamomile, dandelions, echinacea, endive; Liliaceae: chives, garlic, leeks, onions, scallions, asparagus; Gramineae: corn, lemongrass, sugar 
cane, oats, barley; Oleaceae: olive; Agaricaceae: cultivated button mushroom; Curcurbitaceae: melon, watermelon, cucumber, courgette, marrow 
pumpkin, squash, balsam-pear; Ericaceae: blueberries, cranberries, huckleberries, lingonberries, oheloberries, wintergreen; Rosaceae: almond, apple, 
pear, strawberry, raspberry, apricot, plum, peach, blackberry, cherry, Juneberry, loganberry, nectarine, prune, quince, salmonberry, acerola, loquat; 
Rutaceae: oranges, mandarin, grapefruit, kumquats, lemons, limes, tangerines; Vitaceae: grapes; Musaceae: banana, plantain. 
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Our findings of an inverse association between EDA and botanical groups are supported by several lines of 
research. This includes: 1) reports of phytochemicals inducing enzymes which inactivate CEs, rendering them 
more easily excreted [12]-[14] [17] [20], including induction of GST enzymes by anthocyanidins (a flavonoid 
contained in plant-based foods, including berries, beets, bananas) [21] [22]; 2) inhibition of CE-activating en-
zyme, CYP1B1, by resveratrol as demonstrated in MCF-10F cells [16] and by berry supplementation in animal 
models [20]; and 3) phytochemicals, including resveratrol, inducing UGT activity [23]. Past studies have also 
reported on inverse associations between estrogen metabolites and fruit and vegetable intake in population-based 
studies [16] [24]-[27]. Overall, our findings are in general agreement with prior experimental work in this re-
search area showing that resveratrol and NAcCy scan inhibit both the formation of CE quinones and their reac-
tion with DNA in cultured cells [14] [16] [17]. 

NAcCys, a potent antioxidant, can block quinone induced oxidative DNA damage through three primary me-
chanisms [28]. First, it can covalently bind with CE quinone to form an inactive quinone conjugate (4-OHE2-2- 
NAcCys). Second, it may act as a quencher of CE semiquinones (CE-SQ) that are generated during redox cycl-
ing between CE and quinones [28] [29]. Lastly and more importantly, through a biosynthesis pathway it can be 
transformed to cysteine, which could elevate the levels of cellular glutathione and produce a new NAcCys [30]. 
Resveratrol (3, 5, 4’-hydroxystilbene), present in grapes and other plants, has several anti-carcinogenic proper-
ties [31]. Resveratrol’s anticarcinogenic effect within the estrogen pathway is exhibited through the following 
three mechanisms. One is the induction of key protective enzymes (e.g. NQ01) in estrogen metabolism pathway 
that provides a decrease in CEquinone and corresponding increase in CE concentrations [16]. The second me-
chanism is the modulation of activating enzyme CYP1B1, which decreases the formation of 4-CE [16]. The 
third is through reduction of CE-SQ to CE, as indirectly determined in vitro [16].  

While we did not hypothesize that fish and eggs would be associated with EDA, our data offer this suggestion. 
It is plausible that fish and eggs are associated with EDA as they may be involved with the enzyme pathway that 
acts upon EDAs. Heterocyclic aryl amines (HAA) produced when cooking proteins are metabolized through the 
same pathway as CEs (i.e. acted upon by CYP, SULT, and GST enzymes) [32] [33]. If HAAs induce this path-
way, these enzymes may also act upon estrogens, which then are shunted into the catechol pathway leading to 
EDA formation. It is also plausible that a confounding factor other than fish and eggs is responsible for this 
finding. We examined in our data whether a confounding variable could explain this but did not observe data to 
suggest this. We also investigated whether egg and fish consumption were inversely associated with consump-
tion of fruits and vegetables but observed no evidence of an association (P = 0.93). Although the shared enzy-
matic pathway is a potential explanation for our finding, more work would be needed to determine whether the 
association between EDA and fish and eggs is a chance finding. 

Limitations of our study include assay variability, our homogeneous study sample (affecting generalizability 
to the wider population), and participant recall of dietary intake. Our blinded QC indicated a high% CV in 3 ba- 
tches (excluded from this analysis), which may be attributed to different technicians handling sample prepara-
tion. However, we are reassured by the similar mean values for the EDA ratio reported previously among aver-
age-risk women [EDA ratio of 20.51 (SD 37.01)] [8] compared to the present study [22.23 (SD 16.09)]. In terms 
of generalizability, because our study population consists of women in premenopause, is relatively healthy, is 
predominantly White, has a narrow age range, and are all members of a health plan, these results may not be 
generalized to the wider population. However, at the expense of generalizability, we gained high internal validi-
ty. For example, our stringent exclusion criteria related to exogenous hormone use allowed us to estimate asso-
ciations between diet and an endogenous hormone biomarker; and among these healthy women, there was a rel-
atively high proportion reporting consumption of fruit and vegetable intake which allowed for examination of 
associations with the EDA ratio. Lastly, a potential limitation lies in the ascertainment of dietary intake through 
participant recall. However, a 3-DFR generally has higher validity than a food frequency questionnaire, particu-
larly for major food groups [34]. 

5. Conclusion 
These findings suggest that vegetable intake may influence the EDA ratio. These results provide the first investi- 
gation of dietary intake in relation to this novel biomarker. While these data require replication, this preliminary 
report suggests a link between dietary factors and an estrogen biomarker with implications for BC risk. 
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