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Abstract 
In this study, we used near-infrared spectroscopy (NIRS) to examine the effects of environmental 
sounds on performance of a serial arithmetic task. Subjects included 6 males and 15 females aged 
21 or 22 years. All subjects were required to perform a serial arithmetic task according to the 
Uchida-Kraepelin performance test. We used four environmental conditions: hubbub sound, forest 
sound, traffic noise, and a silent control condition. During the serial arithmetic task, we also 
measured hemodynamic changes in the frontal cortex using NIRS to assess the effects of environ- 
mental sounds on brain function during the serial arithmetic task. Results showed that exposure 
to environmental sounds did not enhance or detract from task performance speed in a serial 
arithmetic task performance when compared with results obtained upon exposure to silence. 
However, environmental sounds enhanced cortical responses during the serial arithmetic task. 
Our results reveal differences in activation of the prefrontal cortex under different sound condi- 
tions, which may help increase our understanding of the potential effects of environmental 
sounds. 
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1. Introduction 
Humans are constantly exposed to a multitude of sounds, and complete silence is somewhat rare. Characteriza- 
tion of sounds as pleasant or unpleasant depends on the individual. For example, a forest sound consisting of 

 

 

*Corresponding author. 

http://www.scirp.org/journal/psych
http://dx.doi.org/10.4236/psych.2014.58094
http://dx.doi.org/10.4236/psych.2014.58094
http://www.scirp.org/
mailto:fujimaki@pu-hiroshima.ac.jp
http://creativecommons.org/licenses/by/4.0/


K. Fujimaki et al. 
 

 
829 

chirping of small birds or a small running stream is considered pleasant, and sounds of nature in a virtual reality 
forest enhance stress recovery (Annerstedt et al., 2013). Furthermore, it is reported that nature sounds alone can 
provide an effective method of reducing potentially harmful physiological responses due to anxiety (Saadatmand 
et al., 2013). On the other hand, in a time of extraordinary efforts toward environmental protection, protection 
against “unwanted sounds” has become crucial. For example, traffic noise, which is steadily increasing, is re- 
garded as an important environmental health problem, and the role of road traffic noise as stressor has been ex- 
tensively investigated (Babisch, 2005; Babisch et al., 2005; Bluhm et al., 2004; Jarup et al., 2005). The correla- 
tion between annoying sounds, including chatter, was studied, and a significant negative effect of noise on stu- 
dents’ schoolwork was shown (Lundquist et al., 2000). In a background of children’s chatter, greater cognitive 
resources are required, and this background noise has been shown to be associated with reduced task perfor- 
mance (Howard et al., 2010). The potential of environmental noise to influence cognitive performance has in- 
trigued researchers, therapists, and educators. Little research, however, has been conducted to investigate the ef- 
fects of environmental noise and auditory distractions on cortical responses during performance. It was sug- 
gested that background noise affected P300 latency (Salisbury et al., 2002). In addition, recent research sug- 
gested that significant performance degradation was observed for near-infrared spectroscopy NIRS-based 
brain-computer interfaces based on prefrontal cortex activation (e.g., via music imagery) (Falk et al., 2010). This 
reduction in accuracy may be due to factors such as 1) the performance of mental tasks being severely affected 
by environmental noise (Banbury, 1998; Cassidy & MacDonald, 2007; Flaten et al., 2005; Furnham & Strbac, 
2002; Gumenyuk et al., 2004) or 2) the prefrontal cortex being involved in the processing of distracting auditory 
stimuli (Boly et al., 2004; Engelien et al., 2000). 

NIRS has been recently investigated as a noninvasive means of assessing functional activity in the brain via 
measured hemodynamic responses (Sitaram et al., 2007). Unlike electroencephalograms (EEGs), however, 
NIRS measurements do not require cumbersome skin preparation and electrode gels. NIRS has been used for the 
non-invasive measurement of concentration changes in oxygenated hemoglobin (oxy-Hb), deoxygenated he- 
moglobin (deoxy-Hb), and total hemoglobin (total-Hb) related to brain functions. NIRS determines the proper- 
ties of the brain tissue by transmitting near-infrared electromagnetic radiation (650 - 950 nm wave lengths) 
through the skull and comparing the intensities of the returning and incident light. Because the fraction of light 
absorbed versus the fraction transmitted is dependent on the concentrations of chromophores, NIRS can be used 
to assess hemodynamic responses in regions such as the motor cortex (using motor imagery tasks (Sitaram et al., 
2007)) and the prefrontal cortex (using music imagery (Blood & Zatorre, 2001), mental arithmetic (Villringer & 
Chance, 1997), or preference tasks (Luu & Chau, 2009)). In regard to changes in oxy-Hb induced by a serial 
arithmetic task, a previous study suggested that oxy-Hb significantly increased just after the initiation of calcula- 
tion and returned to initial levels 3 min after the calculation in the first half of the task (Watanabe et al., 2002). 
Furthermore, in a recent meta-analysis including 53 fMRI data sets on brain activation during mental arithmetic, 
three distinct regions in the prefrontal cortex that contribute to performance on mental arithmetic were identified 
(Arsalidou & Taylor, 2011). 

Based on an examination of the above-mentioned studies, we set up the hypotheses in the present study. 
Background noise has been shown to be associated with reduced task performance (Howard et al., 2010), and 
the prefrontal cortex is involved in the processing of distracting auditory stimuli (Boly et al., 2004; Engelien et 
al., 2000). Furthermore oxy-Hb significantly increases just after the initiation of calculation (Watanabe et al., 
2002). Considering these previous studies, we hypothesized that environmental sounds would be associated with 
slowed psychomotor responses during serial arithmetic task performance, mediated by the processing of audito- 
ry stimuli. In this study, we used NIRS to investigate the effects of environmental sounds on the prefrontal cor- 
tex during an intelligence task. 

2. Methods 
2.1. Subjects 
Twenty-one healthy volunteers (males, 6; females, 15) participated in this study (mean age, 21.7 ± 0.47 years; 
range, 21 - 22 years). All subjects were determined to be right-handed using the Edinburgh Handedness Inven- 
tory Scale (Oldfield, 1971). Participants were recruited from the Prefectural University of Hiroshima. Partici- 
pants were recruited primarily via emails and recruitment posters. All participants were students. All participants 
live in a radius 1 km around the Prefectural University of Hiroshima, which is away from major roadways, fac- 
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tories etc., that is, not exposed to noise. Participants also had to be able and willing to attend the research. No 
subject had a history of neurological disorder, major psychiatric disorder, substance abuse, head injury, or major 
physical illness, or was using any psychotropic medications at the time of the study. We screened subjects for 
hearing impairment, confirming that all subjects had hearing levels of less than 20 dB at two frequencies tested 
(1, 4 kHz). This study was approved by the Prefectural University of Hiroshima. Written informed consent was 
obtained from each subject prior to the study. 

2.2. Activation Task 
The activation task consisted of a 30-s pre-task baseline, a serial arithmetic task, and a 70-s post-task baseline. 
Each subject sat on a comfortable chair in a quiet room and was ordered to keep his/her head as immobile as 
possible and not to speak. The task was a serial addition test (Sugimoto et al., 2009), which required subjects to 
perform calculations as fast and accurately as possible within 15 min. This was achieved using pre-printed paper 
containing 15 lines of random, single-digit, horizontally aligned numbers. For each minute of the test, the sub- 
ject was instructed to begin a new line regardless of their position on the current line. Each line contained an 
excess of calculations such that the subjects were not able to finish any line for a particular minute before being 
prompted to move on to the start of the next minute by the examiner’s prompting. In order to rule out learning 
effects, all participants were trained by performing five lines of calculations. 

2.3. Sound Conditions 
We used four types of sound conditions: hubbub sound, forest sound, traffic noise, and a silent control condition. 
We recorded hubbub sound that consisted of irrelevant speech and kitchen noise in the Prefectural University of 
Hiroshima school cafeteria. Similarly, we recorded forest sound that consisted of bird vocalizations in forests 
near the Prefectural University of Hiroshima and traffic noise that was generated by a major roadway (Japan 
National Route 2). Four sessions were conducted per subject in a counter-balanced order. Seven days passed 
between each session for each subject. The experiment was conducted in a soundproofed room maintained at 
24˚C and 50% humidity. Sounds were presented by two loudspeakers placed 1 m in front of the participants’ 
ears with a mean sound level of 50 decibel (dB). A decibel meter was used to ensure that participants were pre- 
sented with stimuli matched for a sound level of 50 dB.  

2.4. NIRS Measurement 
Changes in the concentration of oxy-Hb and deoxy-Hb were measured using a 24-channel NIRS machine 
(ETG-100, Hitachi Medical Corporation, Tokyo, Japan) at 2 wavelengths of near-infrared light (i.e., 780 and 
830 nm). Absorption was measured, and oxy-Hb and deoxy-Hb were calculated. The distance between the pair 
of emission and detector probes was 3.0 cm, and we defined each measuring area between pairs of source-de- 
tector probes as one “channel”. It is assumed that a machine, in which the source-detector spacing is 3.0 cm, was 
able to measure points at a depth of 2 - 3 cm from the scalp (Okada & Delpy, 2003). The probes of the NIRS 
machine were placed on the subject’s bilateral frontal region (Figure 1). The frontal probes measured Hb con- 
centration changes at 24 measurement points in a 6 × 15 cm area, with the lowest probes positioned along the 
Fp1-Fp2 line according to the international 10/20 system used in electroencephalography (Okamoto et al., 2004). 
The absorption of near-infrared light was measured with a time resolution of 0.1 s. To remove slow baseline 
drifts and high-frequency instrument noise in oxy-Hb and deoxy-Hb, raw NIRS data were pre-processed. Using 
analysis software Hitachi ETG-100 OT system (Hitachi Medical Co., Tokyo, Japan), a moving average filter 
with a time window of 5 s and a band pass filter with cut-off frequencies of 0.02 and 0.8 Hz were applied. To 
reduce additional spike-like noise in the continuous data (e.g., head motion artifacts), the signal was improved 
by applying a method based on the assumption that oxy-Hb and deoxy-Hb are negatively correlated (Cui et al., 
2010). This way, the data were also cleaned from potential artifacts due to the arithmetic task. Resulting data 
consisted of solely one parameter, that is, a linear combination of oxy-Hb and deoxy-Hb representing the he- 
modynamic response. Larger values thereby indicated higher cortical activation. 

2.5. Analytical Methods 
We calculated the mean number of correct answers per line on the serial arithmetic task, and used one-way  
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Figure 1. Probe setting and channels showing significant hemodynamic 
change. Yellow area indicates a channel showing significant differences in 
hemodynamic change comparing to a silent control conditions.            

 
analysis of variance (ANOVA) with Bonferroni’s test to compare the results of the four groups. Bonferroni cor- 
rections were used to minimize the risk of falsely identifying significant differences due to multiple compari- 
sons. 

The hemodynamic waveforms of oxy-Hb, deoxy-Hb, and total-Hb of each of the 24 channels were obtained 
by multiplying the changes in the absorption of the light by the length of the light path (unit: mmol × mm). 

The analysis focused on changes in oxy-Hb, which were defined as the mean concentrations of oxy-Hb. 
Changes in oxy-Hb were assumed to reflect cognitive activation more directly than deoxy-Hb changes, as shown 
by their stronger correlation with blood-oxygenation level dependent signals measured by functional magnetic 
resonance imaging (fMRI) (Strangman et al., 2002). Mean hemoglobin changes were determined using the 
paired t-test to examine whether the signal changes due to activation were statistically significant. Further, mea- 
surement positions with significant mean values were identified as activation positions. 

The optical signal measured in each trial was transformed into a time series of optical topography signals 
based on the modified Beer-Lambert law (Maki et al., 1995). We used oxy-Hb signals as the representative opti- 
cal topography signals in this study. The continuous stream data were divided into blocks that each consisted of 
a 30-s pre-task period, a 900-s task period, and a 70-s post-task period for further analysis. Furthermore, we 
smoothed the data points using a moving average filter with a time window of 5 s and estimated the first-degree 
baseline value for each block and each channel. The obtained data were analyzed using the ‘‘integral mode”. 
The pre-task baseline was determined as the mean across the last 10-s of the 30-s pre-task period; the post-task 
baseline was determined as the mean across the last 5-s of the 70-s post-task period. Linear fitting was applied to 
the data between these two baselines. For each subject, the mean change in the concentration of oxy-Hb was 
calculated for each sound condition and each channel. The average changes in oxy-Hb during each task were 
used for statistical analysis. The comparison of means among the four groups was performed by one-way fac- 
torial ANOVA. It was followed by a post hoc Dunnet two-sided comparison.  

The grand average waveforms of the oxy-Hb concentration changes were obtained for all the subjects, based 
on each subject’s waveforms in all 24 channels. 

All analytical values were considered significantly different at p < 0.05. Statistical analyses were performed 
using PASW Statistics 18.0 software (SPSS Japan Inc., Tokyo, Japan). 

3. Results 
All subjects were able to perform the serial arithmetic task. The mean number of correct answers per line on the 
serial arithmetic task is shown in Figure 2. The mean number of correct answers per line with the hubbub sound, 
forest sound, traffic noise, and silent control condition was 70.7 ± 2.8, 70.6 ± 2.4, 72.1 ± 2.7, and 68.1 ± 2.9, re- 
spectively. There were no significant differences between the three environmental sounds or the silent control 
condition. 

All channel positions yielded statistical significance, indicating cortical activation, and reached the 5% level 
of significance with the t-test. 
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Figure 2. The mean numbers of correct answer per line on 
the serial arithmetic task (mean ± SE) grouped for sound 
condition. The scores of individuals in the hubbub sound, the 
forest sound and the traffic noise were not significantly 
higher than those in the silent control conditions.            

 
The grand average waveforms of hemodynamic changes with a serial arithmetic task are shown in Figure 3. 

In the serial arithmetic task, the hubbub sound, the forest sound, and traffic noise were associated with a signifi- 
cantly higher number of left lateral activation positions in the frontal cortex (Figure 3).  

Oxy-Hb measurements are shown in Figure 4. The hemodynamic changes in Channels 2, 4, 7, and 9 with the 
hubbub sound, forest sound, and traffic noise were significantly higher than with the silent control condition 
(Figure 4(a)). ANOVA revealed a significant main effect for the mean oxy-Hb concentration change. The main 
effect of environmental sounds suggests that notable increases of oxy-Hb occurred during the serial arithmetic 
task compared to silence in Channel 2 (F = 3.076, d.f. = 3, p < 0.05), Channel 4 (F = 3.662, d.f. = 3, p < 0.05), 
Channel 7 (F = 2.820, d.f. = 3, p < 0.05), and channel 9 (F = 4.017, d.f. = 3, p < 0.05). On the other hand, there 
were no significant differences in the mean values in the right frontal cortex in Channels 13, 16, 18, 21 at a 
symmetrical position to Channels 2, 4, 7, 9 (Figure 4(b)). 

4. Discussion 
In terms of cognitive and performance outcomes, there is strong evidence that short-term noise exposure nega- 
tively affects cognitive functioning, especially attention (Tomei et al., 2006; Trimmel & Poelzl, 2006). It is 
known that the prefrontal region is related to attention to tasks (Jueptner et al., 1997). However, it is not known 
whether short-term exposure to environmental sounds facilitates or obstructs mental task performance. Further- 
more, there is little information on regional cerebral blood flow that occurs in response to environmental sounds, 
and, to our knowledge, no studies have examined cortical responses in relation to environmental sounds and 
mental task performance. This study aimed to clarify the most suitable environment for mental task performance 
by clarifying cortical responses in relation to environmental sounds during mental task performance. 

This study considered the nervous activity of the brain and the relation to oxy-Hb, deoxy-Hb, and total-Hb. 
Oxy-Hb is the most sensitive indicator of changes in regional cerebral blood flow in NIRS measurements (Hoshi 
et al., 2001). Regional cerebral blood flow assessed with positron emission tomography or fMRI mainly reflects 
neuronal, and more specifically, (pre-) synaptic activity (Jueptner & Weiller, 1995). Our results suggest that en- 
vironmental sounds increase neuronal activity compared with silence. We used a serial addition test as the task 
in the present study. Most subsequent mathematical processing tests have used addition and/or subtraction of 
single digits (Wetherell, 1996). Such a mathematical processing test was used mainly to assess mental workload 
(Chiles et al., 1979). It was suggested that the simple addition of two numbers entails specific processes (van 
Harskamp & Cipolotti, 2001). One of them is the implementation of supporting arithmetic procedures like car- 
rying. Carrying refers to breaking down the number (i.e., 5 into 2 and 3), bridging to 10, maintaining the first di- 
git in working memory, and then adding the remaining addend to complete the calculation. According to the  
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Figure 3. Grand averaged waveforms of oxygenated and deoxygenated hemoglobin concentration changes ([oxy-Hb], red 
line and [deoxy-Hb], blue line, respectively) in the forest sound during a 900-s serial arithmetic task (between the two 
green lines) measured using the 24-channel NIRS machine over the frontal regions. The red frames indicate the channel 
showing significant higher hemodynamic peak changes compared to a silent control condition.                         
 
previous study (van Harskamp & Cipolotti, 2001), working memory load seems to be influenced by the load of 
our task. Furthermore, in a previous study on mental arithmetic, it was reported that working memory load was 
accompanied by brain activation in inferior frontal areas as measured by fMRI (Ischebeck et al., 2009). Working 
memory-load-related increases in brain activation in the inferior frontal gyrus suggest increased attentional 
modulation in these brain regions during louder noises (Tomasi et al., 2005). These areas might have a general 
role for attention, and commonly activate during verbal and visuospatial working memory tasks (LaBar et al., 
1999), as well as visual attention tasks (Chang et al., 2004). In addition, it was reported that the short-term noise 
exposure negatively affects cognitive functioning, especially attention (Tomei et al., 2006; Trimmel & Poelzl, 
2006). Therefore, environmental sounds might lead to an increased requirement for attentional modulation to 
perform a serial arithmetic task, causing corresponding increases in NIRS signals. 

Interestingly, however, the performance under environmental sounds did not differ from performance under 
silence. These results are in contrast to those reported in a previous study, that showed a detrimental effect of 
sound (noise and music) on task performance compared with silence (Cassidy & MacDonald, 2007). This dif- 
ference may be due to the difference type of tasks examined in our studies. For example, the two-part Stroop 
Neuropsychological Screening Test, the Rivermead Behavioural Memory Test, and the free recall task consist- 
ing of 20 everyday six-letter words were assessed as cognitive tasks in a previous study (Cassidy & MacDonald, 
2007), whereas a serial arithmetic task was used in the present study. In the present study, all subjects were re- 
quired to perform a serial arithmetic task according to the Uchida-Kraepelin performance test. The Uchida- 
Kraepelin test has been widely used in clinical psychology, psychiatry, and occupational mental health practice 
in Japan (Kato et al., 1999; Kurahashi et al., 1957; Yamada, 1996). Therefore, a serial arithmetic task was suita- 
ble to evaluate whether students exposed to environmental sounds might show significant differences in neu- 
ro-psychological profiles. The Uchida-Kraepelin performance test requires focused effort and attention by the 
subject, making this test useful for the assessment of mental stress (Li et al., 2004; Negoescu et al., 1997). 
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(a) 

 
(b) 

Figure 4. (a) The changes in oxy-Hb level in the serial arithmetic task in left side of frontal cortex. The means ± SD of 
Channel 2, 4, 7, 9 are shown. The mean values in the hubbub sound, the forest sound and the traffic noise were significant- 
ly higher than those in the silent control conditions (*p < 0.05). (b) The changes in oxy-Hb level in the serial arithmetic task 
in right side of frontal cortex. The means ± SD of Channel 13, 16, 18, 21 are shown. No significant differences in hemo- 
dynamic change were seen between groups.                                                                 
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Although we thought that attention and mental stress would strongly influence our results, there were no signifi- 
cant differences in the mean number of correct answers per line in any sound condition. Another study that re- 
ported the effect of noise on attention examined differences in the distracting noise at a either a relatively high 
volume (85 dB) or a low volume (75 dB), which is meant to simulate what a person may experience in a crowd 
in a busy urban setting (Tregellas et al., 2012). In contrast, the volume of the environmental sound used in our 
study was 50 dB, which is around the sound level of “quiet” outdoor courtyards. Gidlöf-Gunnarsson’s study 
suggested the influence of the physical environmental quality (degree of naturalness) and utilization of “quiet” 
outdoor courtyards (defined as LAeq,24h ≤ 48 dB, façade reflex included) in a sample of 385 residents 
(Gidlof-Gunnarsson & Ohrstrom, 2010). They found that access to a “high quality” quiet courtyard was asso- 
ciated with less noise annoyance among the residents. In addition, Fuchino’s study concluded that fMRI acoustic 
noise has an influence on the left hemisphere at the highest sound pressure level (65 dB); however, hemody- 
namic changes did not differ significantly between the non-noise condition and the two lower noise levels (46 
dB, 56 dB) in their study (Fuchino et al., 2006). In other words, it is likely that the sound level around 50 dB did 
not influence emotion. Furthermore, it is likely that the sound level of 50 dB was not high enough to facilitate 
hemodynamics changes. Therefore, to exclude the influence of the sound itself on emotion or hemodynamics 
changes, we chose environmental sounds of 50 dB in the present study. However, future studies should test dif-
ferent volumes of both pleasant and unpleasant sounds.  

We showed that groups under environments with noise had greater increases in oxy-Hb levels in many frontal 
cortical regions. Previous studies on the influence of noise on attention have demonstrated that low-intensity 
background noise is associated with energy consumption, and that impaired performance in spatial attention or 
long-term exposure to noise has long-lasting detrimental effects on attention control (Kujala et al., 2004; 
Trimmel & Poelzl, 2006). Trimmel’s research suggested that noise-related changes reflect mental processes re- 
lated to perceptual defense, which in turn consume mental resources (Trimmel & Poelzl, 2006). Consistent with 
these previous studies, results of our study also showed that the frontal cortical regions showed a greater in- 
crease in oxy-Hb levels during the task in noisy environments in healthy subjects. 

Evidence from brain-imaging studies indicates that parietal lobe areas are central in calculating and pro- 
cessing of numbers (Dehaene, 1992; Dehaene et al., 2003), whereas the frontal lobe areas are involved in recal- 
ling numerical knowledge and working memory (Dehaene, 1992; Wu et al., 2009). The present study showed 
the lateral dominance of extensive activation in arithmetic tasks. A previous study showed that for the superior 
temporal gyrus, inferior frontal gyrus, and thalamus, there was extensive left-hemispheric activation for addition 
tasks but not for subtraction tasks (Abd Hamid et al., 2011). The arithmetic task in our study centered on addi- 
tion. Our results showing extensive activation in the left frontal lesion correspond to these previous studies. 

The present study had several limitations. First, physiological effects were not assessed. A previous study 
showed that blood pressure and heart rate were positively correlated with noise level (dB) for industrial laborers, 
showing the undesirable effects of noise on cardiovascular health during work (Lusk et al., 2004). Noise may 
also have a positive effect on performance. As the cardiovascular system becomes activated, so does the cogni- 
tive system, to a certain degree. Studies have shown that during low mental load tasks, noise can have a positive 
effect on performance (Stansfeld et al., 2005). Second, noise can have a strong effect on performance (Stansfeld 
et al., 2005), especially for noise-sensitive individuals (Weinstein, 1978). For these persons, performance during 
noise exposure is lowered (Pawlaczyk-Luszczyniska et al., 2005; Sandrock et al., 2009; Waye et al., 2002), in- 
dicating the importance of controlling for noise sensitivity. In our study, noise sensitivity was not controlled. 
Third, underlying processes were not conducted in our study. A major challenge is to connect the effects of 
noise and cognitive performance with the many short-term experimental effects shown in various studies 
(Chiovenda et al., 2007; Westman & Walters, 1981). One main concern is the focus in mainstream psychology 
on group comparisons rather than investigation of underlying processes (Bergman & Magnusson, 1997). To as- 
sess this problem, a more advanced mathematical framework needs to be applied, especially as many areas of 
psychology are heading into research focused on biological processes that interact with and create various psy- 
chological phenomena. Considering these problems, it is thought that there were no differences between groups 
in our study because we adopted a serial arithmetic task as a method.  

The detrimental effects of noise on attention have long been established in humans (Smith, 1991). This study 
aimed to evaluate if students exposed to environmental sounds, including urban traffic noise, might show sig- 
nificant differences in neuro-psychological profiles. The noise environments in our study had significantly dif- 
ferent effects on the activation positions in the frontal cortex, demonstrating that low intensity background noise 
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is associated with energy consumption expressed as an increase of blood flow volume. In other words, the re- 
sults of the present study suggest that the task of addition performed under the presence of environmental sounds 
(compared with quiet) promoted apparent extended activation of the prefrontal cortex in regard to more attention 
required (expressed as energy consumption). Furthermore, apparent extended activation was shown in the left 
hemisphere of the brain in the present study. However, extended activation in the frontal cortex did not impact 
results of a serial arithmetic task. Future studies are needed to clarify these findings. 
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