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Abstract 
Several approximate methods have been used to find approximate solutions of elliptic systems of 
first order equations. One common method is the Newton imbedding approach, i.e. the parameter 
extension method. In this article, we discuss approximate solutions to discontinuous Riemann- 
Hilbert boundary value problems, which have various applications in mechanics and physics. We 
first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order com-
plex equations in multiply connected domains and its modified well-posedness, then use the pa-
rameter extensional method to find approximate solutions to the modified boundary value prob-
lem for elliptic complex systems of first order equations, and then provide the error estimate of 
approximate solutions for the discontinuous boundary value problem. 
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1. Introduction 
Let D  be an ( )1 1N N+ ≥ -connected bounded domain in   with the boundary 

( )1
0 0 1N

jjD Cµ µ
=

∂ = Γ = Γ ∈ < <


. Without loss of generality, we assume that ( )0D D∈  is a circular domain  
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in 1z < , bounded by the ( )1N + -circles : , 0,1, ,j j jz z r j NΓ − = =   and 0 1 : 1N z+Γ = Γ = . In this article, 
the notations are the same as in references [1]-[12]. If the first order elliptic system with 2n  unknown real 
functions  

 ( )1 2 1 2 1 2, , , , , , , , , , 0, 1, , 2 inj n x nx y nyx y u u u u u u j n DΦ = =              (1.1) 

satisfies certain conditions, then (1.1) can be transformed into the complex form  
 ( )1 1, , , , , , , 1, , ,kz k n z nzw F z w w w w k n= =  

                  (1.2) 

where ( ) ( ) ( ) , 1, ,k k k nw z u z iu z k n+= + = 
 (see Section 4, Chapter 2 in [5]). Its vector form is as follows:  

 ( ) ( ) ( )1 1, , , , , , , , ,z z n nw F z w w w w w F F F′ ′= = =                           (1.3) 

where ( ) ( )T
1 1, , , ,n nw w w w′ =   is the transposed matrix of ( )1, , nw w

. We discuss the first order complex 
system (1.3) in the form  

 ( ) 1 2 1 2 3, , , ,z z z zw F z w w F Q w Q w A w A w A= = + + + +                  (1.4) 

in which ( )j j
kmQ Q=  with ( ), ,j j

km km zQ Q z w w= , ( )j j
kmA A=  with ( ), , 1, 2,j j

km kmA A z w j= =  

( )3 3 3
1 , , nA A A ′=   with ( )3 3 , ,k kA A z w=  , 1, , .k m n=   

We assume (1.4) satisfies the following conditions: 
Condition C 1) ( ) ( ) ( ) ( )3, , , , , , 1, 2, , 1,...,j j

km km kQ z w U A z w A z w j k m n= =  are continuous in nw∈  for 
almost every point , .nz D U∈ ∈  

2) The above functions are measurable in z D∈  for all systems of continuous functions ( )w z  in 
*D D Z=   and any systems of measurable functions ( )U z  in *D  and satisfy  

 ( ) ( )3
0 2, , , 1 2, , , , 1 , ,j

p km p kL A z w D k j L A z w D k k m n   ≤ ≤ ≤ ≤ ≤ ≤                (1.5) 

 ( ) 1, , , 1 2, 1 ,j
p kmL A z w D k j k m n  ≤ ≤ ≤ ≤ < ≤               (1.6) 

where Z  is as stated in (1.8) below, ( )2p >  and ( )0,1,2jk j =  are non-negative constants. 
3) The complex system (1.4) satisfies the following ellipticity condition  

 

( ) ( )1 1 2 2 1 2 1 2

1 1

0 3 0
1 1 1

0 3 0
1 1 1

, , , , ,

1, , 1 ,

, , 1 ,

n n

k k km m m km m m
m m

n n n

km k km
k m k

n n n

km k km
k m k

F z w U F z w U q U U w w

q q q q k k k m n

k k k k m n

κ

κ κ κ

= =

= = =

= = =

  − ≤ − + −   
 = ≤ < ≤ ≤ ≤ < ≤



= ≤ ≤ ≤ ≤ < ≤


∑ ∑

∑∑ ∑

∑∑ ∑

          (1.7) 

where ( ) 0 0 3, , , , 1, , , , ,km k km kq q k m n q k kκ κ = 
 are non-negative constants. 

For convenience, ( ) ( ) ( )R z w z C Dβ∈  and ( ) ( ) ( ) ( )0pR z R z U z L D∈  are used to indicate 

 ( ) ( ) ( )kR z w z C Dβ∈  and ( ) ( ) ( ) ( )0
,k pR z R z U z L D∈  respectively, 1, , ,k n=   and we define the following:  

0 0
1 1

, , , , , ,
n n

k p p k
k k

C Rw D C Rw D L RRU D L RRU Dβ β
= =

      = =       ∑ ∑   

in which ( ) ( )1 1, , , , , ,n nw w w U U U′ ′= =   and ( ) ( ),R Z R Z  are stated as in (1.12), (2.1) below, and 

( )0 1β β< <  and ( )0 02p p p< ≤  are non-negative constants. 
The so-called Riemann-Hilbert boundary value problem for the complex system (1.4) may be formulated as 

follows. 

Problem A Find a system of continuous solutions ( ) ( ) ( )( )1 , , nw z w z w z ′=   in *D D Z=   of (1.4), 
which satisfies the boundary condition  
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 ( ) ( ) ( ) *Re , ,z w z r z z Zλ  = ∈Γ = Γ                            (1.8) 

in which ( ) ( )( )kmz zλ λ=  with 1kmλ =  for ,1 , ,z k m n∈Γ ≤ ≤  ( ) ( ) ( )( )1 , , ,nr z r z r z ′=   and  

{ }1 2, , , mZ t t t ′= 
 are the first kind of discontinuous points of ( )km zλ  on Γ . 

Denote by ( )0km jtλ −  and ( )0km jtλ +  the left limit and right limit of ( )km zλ  as 
( )1,2, , , , 1, ,jz t j m k m n′→ = = 

 on Γ , and  

 

( )
( )

( )
( )

0 01e , ln ,
π π0 0

, 0 or 1, 1, , , 1 , ,
π

kmj km j km ji kmj
kmj kmj

km j km j

kmj
kmj kmj kmj

t t
K

it t

K J J j m k m n

φ λ λ φ
γ

λ λ

φ

 − −
 = = = −

+ +  
 

′= + = = ≤ ≤ 
 



                  (1.9) 

where 0 1kmjγ≤ <  when 0kmjJ = , and 1 0kmjγ− < <  when 1, , 1, , , 1, ,kmjJ k m n j m′= = =  . There is no 
harm in assuming that the partial indexes kK  of ( )zλ  on ( )( )01, ,k k N NΓ = ≤  are not integers, and the 
partial indexes kK  of ( )zλ  on ( )00, 1, ,k j N NΓ = + 

 are integers. Set  

 ( )
1

1 arg , 1, , ,
2π 2

m
kkj

k kk
j

K
K z k nλ

′

Γ
=

= ∆ = =∑ 
                       (1.10) 

and we call ( )1, , nK K K ′=   the index of Problem A. 
For problem A, we will assume ( ) ( ) ( ), , 1, ,km kz r z k m nλ = 

 satisfy the conditions  

 
( )

( )1

0 4

1 5

ˆ ˆ, , 1, , , , , 1 ,

ˆ, , 1 , 1, , ,kkj kkj

kkj j kmj j

j j k j

C z k k n C k k m n

C z t z t r z k k n j m

α α

β β

α

λ λ

−

−

   Γ ≤ = Γ ≤ ≤ < ≤   
  ′− − Γ ≤ ≤ ≤ =  





                    (1.11) 

in which jΓ  is an open arc from the point 1jt −  to jt  on Γ  ( )1 2 1 ,α α< <  4 5,k k  are non-negative 
constants, 1, 1, , , , 1, ,kmj kmj j m k m nβ γ ′+ < = =  . Moreover, we require that the solution ( )w z  possess the 
property  

( ) ( ) ( ) ( ) ( )
2

1 11 12 1, ,, , max , , , , , 1, , ,

, for 0, and 0, ,
, 1, , ,

, for 0, , 1, , ,

jm
j j j j j n nj n nj

kmj kmj kmj kmj kmj
kmj

kmj kmj kmj kmj

R z w z C D R z z t j m

k m n
j m

η τ

δ η η η η η

β τ γ γ β γ
η

γ τ γ β γ

−′
= − ′= = Π − = =

 + ≥ < ≥= =
′+ < < =

 





(1.12) 

in *D , where ( ) 1R z ≤  in ,D  and ( )( )0, min ,1 2 pδ τ α< −  are small positive constants. 
In general, Problem A may not be solvable. Hence we propose a modified problem as follows. 
Problem B Find a system of continuous solutions ( )w z  of the complex equation (1.4) in *D , which 

satisfies the modified boundary condition  

 ( ) ( ) ( ) ( ) *Re , .z w z r z h z z Zλ  = = ∈Γ = Γ                       (1.13) 

Here  

( ) ( )
( )

( ) ( )

0

1 2 1
2

0 0
1

0, ,
if 0,

, , 1, , ,

1, , ,, , 1, , ,
if 0,

1 1 Re , ,
k

k

k
kj j

k k
kj j

k
K

kK m
k km km

m

z
K

h z j N
h z z

k nh z j N
X z

K
h h ih z z

λ

 + − 
+ −

=

 ∈Γ  ≥ ∈Γ =  
= =∈Γ = 

 < + − + + ∈Γ   
∑






(1.14) 

in which ( )( )21 1 2, , ,kK
kjh j N = − −    ( ), 1, , 1 2 1, 1, ,km km kh h m K k n+ −  = + − =    are unknown real  
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constants to be determined appropriately, and ( ), 1 0 0k N kh h+ = = , if 2 kK  is an odd integer. More description 
on ( )k zλ  and ( )kX z  are given below. We begin with the following function  

( ) ( ) ( )
,0

,

0

, ,10 0
,0

1 10 0 00 0

1
1

1 1 1 1

1 1 11

k m j
k m klj

k m k mj jN
k

N N N

mm N K j
k j l

j l l j m

m mN m
Nj j j

j m j m j mN N N N

z t z tY z z t z z
z z z z

z tz t z t z t
z z z z z z z z

γ
γ

γ γ
γ+

− −

 − 

= = = +

= + = + = ++

− ′   −
= − −    − −  

′     −− − − 
×             − − − −      

∏ ∏ ∏

∏ ∏ ∏



 ,m j

 

where 
1 1

l

l

m
kl kjj mK K

−= +
= ∑  denotes the partial index on ( )1, ,l l NΓ = 

, ( )0, 1, ,l lt l N′ ∈Γ = 
 are fixed points,  

which are not the discontinuous points from Z . Note that the positive direction applies to the boundary circles 
( )0,1, ,j j NΓ = 

. Similarly to (1.7)-(1.12), Chapter V, [2], we see that  

( )
( )

( )
( )

( )
( )

π0 0 0
e 1, , 1, , .

0 0 0
kjkk j k j kk j i

kk j k j kk j

t Y t t
k j m

t Y t t
γλ λ

λ λ
−

 − − −
  = = ± =

+ + +  
  

Clearly, with certain modification on the symbols on some arcs on Γ , ( ) ( ) ( )kk k kz Y z Y zλ  on Γ  is seen  

to be continuous. In this case, its index  

( ) ( ) 01 , 1, ,
2π 2k kk k k

N
z Y z K k nκ λΓ

 = ∆ = − =  
 

are integers. And we have the following:  

( )
[ ] ( )

( ) ( )
( ) ( )

( )
( ) [ ] ( )
( ) ( )

( )

0

0

e ( ), ,
Im 0, , 1, , ,

e e , , 1, , ,

arg arg arg , ,
Re Im 1 0, 1, , ,

arg arg , , 1, , ,

k k

kj k

iS z
k

k k ki iS z
k j

kk k k
k k

kk k kj j

iz Y z z
X z z X z z k n

i Y z z j N

z z Y z z
S z S k n

z Y z z j N

κ

θ
λ

λ κ

λ θ

 ∈Γ  = = ∈Γ =  ∈Γ =
 − − ∈Γ= = =   − − ∈Γ =









 

in which ( ) ( )1, ,kS z k n= 
 are solutions of the modified Dirichlet problems with the above boundary 

conditions for analytic functions, ( )1, , , 1, ,kj j N k nθ = = 
 are real constants, and 

( )0 2 1, ,k kK N k nκ = − = 
. 

In addition, we may assume that the solution ( )w z  satisfies the following point conditions  

 ( ) ( ) { }Im , 1, , 2 1 , if 0, 1, , ,j j kj k k ka w a b j J K K k nλ  = ∈ = + ≥ =  
                 (1.15) 

where ( )0j ka j J∈Γ ∈  are distinct points, and ( ), 1, ,kj kb j J k n∈ = 
 are all real constants satisfying the 

conditions  

 6 , , 1, , ,kj kb k j J k n≤ ∈ =                     (1.16) 

for a positive constant 6k . Problem B with ( )3 , 0A z w =  in D , ( ) 0c z =  on Γ  and 
( )0 , 1, ,kj kb j J k n= ∈ = 

 is called Problem 0B . 
If ( ) 1, 0, 1, , ,kk kmz k m nλ λ= = ≠ = 

 then Problem B for (1.4) is the modified Dirichlet boundary value 
problem for (1.4). It is easy to see that the solutions of (1.4) include the generalized hyperanalytic functions as 
special cases. In fact, if (1.4) is linear, and 2 0, 1 , ,kmQ k m n= ≤ ≤  1 1 2 0, 1km km kmQ A A k m n= = = ≤ < ≤  and 

1 1
1, 2, 1,k k k kQ Q+ + +=  1, 2, 1, 1 1,j j

k k k kA A k N+ + += ≤ ≤ −  then the solutions of (1.4) are called generalized hyperanalytic 
functions. 

2. Parameter Extension Method of the Discontinuous Riemann-Hilbert Problem 
for Elliptic Systems of First Order Complex Equations 

We begin with the following estimates of the solution for problem B. 
Theorem 2.1 Suppose that the complex system (1.4) satisfies Condition C and the constants 1 3 4, ,k k k  in  
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(1.6), (1.7), (1.11) are small enough. Then any solution ( ) ( ) ( )( )1 , , nw z w z w z ′=   of Problem B for (1.4) 
satisfies the estimate  

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ){ }
0

0 1 *
1

, ,

, , ,

p z z

n

k p kz kz
k

C R z w z D L R z R z w w D

C R z w z D L R z R z w w D M k

β

β
=

   + +   

  = + + ≤   ∑





              (2.1) 

where ( )
21

1
m
j jR z z t

τ′
== Π −  with ( ) 1R z ≤  in D , ( ) ( )0 0 0min ,1 2 , 2 ,p p p pβ α= − < ≤  

* 2 5 6 ,k k k k= + +  ( )1 1 0 0 0, , , , ,M M q p k K Dβ=  with ( )1, , nK K K ′=   are non-negative constants. 
Proof There is no harm in assuming that * 2 5 6 0.k k k k= + + ≠  Let ( ) ( ) * .W z w z k=  It can be seen that 
( )W z  is a solution of the following boundary value problem  

 1 2 1 2 3
* , ,z z zW Q W Q W A W A W A k z D= + + + + ∈                     (2.2) 

 ( ) ( ) ( ) ( ) *Re , ,z W z r z h z k zλ  = + ∈Γ                       (2.3) 

 ( ) ( ) *Im , , 1, , ,j j j ka W a b k j J k nλ  = ∈ =  
                    (2.4) 

in which  

 ( )3
* * *, 1, , 1, 1, , 1, , .p k k kj kL A k D C r z k b k j J k nα  ≤ Γ ≤ ≤ ∈ =                  (2.5) 

Following the proof of the Theorem 2.1 of Chapter VI in [1], we can derive the estimate  

 
( ) ( ) ( ) ( )( )
( )

0 1

1 0 0 0

,

, , , , , .
p z zC R z W z D L R z R z W W D M

M q p k K D
β

β

   + + ≤   
=



             (2.6) 

From the above estimate, it immediately follows that the estimate (2.1) is true. 
In addition, we assume that (1.4) satisfies the following condition: For any continuous vectors ( ) ( )1 2,w z w z  

and any measurable vector ( ) ( )0
,pU z L D∈   

 
( ) ( )
( ) ( )( )

1 2

1 2 1 2 1 2

, , , ,

, , , , , , ,

F z w U F z w U

Q z w w U U A z w w U w w

−

= + − 

                         (2.7) 

where ( ) ( ),km kmQ Q A A= =     satisfy the condition  

 

0 0

0 3 0
1 1 1

0 1 0

, 1, , 1 , lim

, , 1 , , , , 1 ,

n n n

km km km k km xk m k

p km p km

Q q q q q q k k k m n

L A D k k m n L A D k k k m n
→∞= = =

≤ = ≤ < ≤ ≤ ≤ < ≤

   ≤ ≤ ≤ ≤ ≤ ≤ < ≤   

∑∑ ∑

 

             (2.8) 

in which ( )0 0 0 12 , ,p p p k k≤ ≤  are non-negative constants. 
Now, we prove that there exists a unique solution of the modified Riemann-Hilbert problem (Problem B) for 

analytic vectors by the parameter extensional method. 
Theorem 2.2 Let 4k  in (1.11) be a sufficiently small positive constant. Then Problem B for analytic vectors 

has a solution.  
Proof We consider the modified Riemann-Hilbert problem (Problem B′ ) for analytic vectors with the 

boundary conditions  

 ( ) ( ) ( ) ( ) ( ) ( )ˆRe Re , ,w z t z w z r z h z zζ   Λ + ∆ = + ∈Γ                 (2.9) 

 ( ) ( ) ( ) ( )Im Im , , 1 ,j j j j j ka w a t a w a B j J k n   Λ + ∆ = ∈ ≤ ≤      
             (2.10) 

where  
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( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

, ,
, on ,

0, ,

0, ,
, on ,

, ,

km
km km

km km
km

z k m
z z z

k m

k m
z z z

z k m

λ

λ

 ≥Λ = Λ Λ = Γ
<
≥∆ = ∆ ∆ = Γ <

 

in which ( )0 1t t≤ ≤  is a real parameter, and ( ) ( ) ( )( )1ˆ ˆ ˆ, , nr z r z r z ′=   is any vector of real functions, 

( ) ( ) ( )11 1
1 ˆ , 0 1, 1, , , 1, , ,kjk j

j j k jz t z t r z C j m k n
β β

α α−− −

− ′− − ∈ Γ < < = =   and ( )1, ,j j jnB B B ′=   is any  

vector of constants. When 0t = , it is clear that Problem B′  for analytic vectors has a unique solution (see [1]). 
If Problem B′  with ( )0 00 1t t t= ≤ <  for analytic vectors is solvable, we shall prove that there exists a 
positive number δ  independent of 0t , such that Problem B′  for every { }0 ,0 1, 0t E t t tδ δ∈ = − ≤ ≤ ≤ >  
has a unique solution. In fact, the boundary conditions (2.9), (2.10) can be rewritten in the form  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

Re Re

ˆRe , ,

z w z t z w z

t t z w z r z h z z

   Λ + ∆   
 = − ∆ + + ∈Γ 

                         (2.11) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
0

0

Im Im

Im , ,1 .

j j j j

j j j k

a w a t a w a

t t a w a B j J k n

   Λ + ∆      
 = − ∆ + ∈ ≤ ≤  

                         (2.12) 

Substituting the zero vector ( ) ( )0 0, ,0w z ′=   into the position of ( )w z  on the right hand side of (2.11) 
and (2.12), by the hypothesis, the boundary value problem (2.11), (2.12) for analytic vectors has a unique  
solution ( ) ( ) ( )( )1 1 1

1 , , nw z w z w z=   and ( ) ( ) ( )1 , 1, , .kR z w z C D k nα∈ =   Using the successive iteration,  

we can find a sequence ( ){ }nw z  of analytic vectors, which satisfies the boundary conditions  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
0

0

Re Re

ˆRe , ,

n n

n

z w z t z w z

t t z w z r z h z z

+ +   Λ + ∆   
 = − ∆ + + ∈Γ 

                         (2.13) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
0

0

Im Im

Im , ,1 .

n n
j j j j

n
j j j k

a w a t a w a

t t a w a B j J k n

+ +   Λ + ∆      
 = − ∆ + ∈ ≤ ≤  

                         (2.14) 

From (2.13) and (2.14), we have  

 
( )( ) ( )( )

( ) ( )( ) ( )

1 1
0

1
0

Re Re

Re , ,

n n n n

n n

z w w t z w w

t t z w w h z z

+ +

−

   Λ − + ∆ −   
 = − ∆ − + ∈Γ 

                         (2.15) 

 
( )( ) ( )( ){ }

( ) ( )( )

1 1
0

1
0

Im Im

Im , , 1 , 1,2, .

j

j

n n n n

z a

n n
j k

z a

z w w t z w w

t t z w w B j J k n n

+ +

=

−

=

   Λ − + ∆ −   

 = − ∆ − + ∈ ≤ ≤ =  

             (2.16) 

In accordance with Theorem 2.1, we can conclude  

 

( ) ( ) ( ) ( )

( )
( )

1
2 0 1

1
2 0 0

1
2 0 0

, ,

,

, ,

n n
n n

n n

n n

C R w w D M C t t z R w w

M t t k C R w w

M k t t C R w w D

α α

α

α

+
−

−

−

  − ≤ − ∆ − Γ   
 ≤ − − Γ 
 ≤ − − 

                   (2.17) 
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where ( )2 2 , , ,M M k K Dβ′=  with ( )0 1 4, , ,k k k k′ = 
, and ( )1, , .nK K K ′=   Choosing a positive constant 

δ , such that 2 0 1,M kδ <  it is not difficult to see that  

( ) ( )1 1 11 1, , , ,
2 2

n n n n
NC R w w D C R w w D C Rw Dα α α

+ −     − ≤ − ≤       

and  

( ) 11, ,
2

n m
NC R w w D C Rw Dα α

   − ≤     

for ,n m N≥ >  where N  is a positive integer. This shows that  

( )( ) 0 as , .n mC R w w n mα − → →∞  

Hence, there exists an analytic vector ( ) ( ) ( )( )* * *
1 , , ,nw z w z w z=   such that  

 ( )* , 0 as .nC R w w D nα
 − → →∞                           (2.18) 

Thus ( )*w z  is a solution of Problem B′  with t E∈ . From this we can derive that Problem B′  with 
( ) ( ) ( )1, 3011, ,1 ,j j kt R z r z B b j J k n= = = ∈ ≤ ≤  i.e. Problem B for analytic vectors is solvable. 

Next we prove the solvability of Problem B for the system (1.4). 
Theorem 2.3 Let the nonlinear elliptic system (1.4) satisfy Condition C, and 1 3 4, ,k k k  in (1.6), (1.7), (1.11) 

be sufficiently small positive constants. Then Problem B for the complex system (1.4) is solvable.  
Proof We consider the nonlinear elliptic complex system with the parameter [ ]0,1t∈ :  

 ( ) ( ), , ,z zw tF z w w A z− =                                (2.19) 

where ( ) ( ) ( )( )1 , , nA z A z A z ′=   is any measurable vector in D  and 

( ) ( ) ( ) ( )0
, 1, , .j pR z R z A z L D j n∈ =

  Applying Theorem 2.2, we see that Problem B for (2.19) with 0t =  is  

solvable, and the solution ( )w z  can be expressed as  

 ( ) ( ) ( ) ( ) ( )
0

1, d ,
π D

A
w z w z z z TA

z ζ

ζ
σ

ζ
= +Ψ Ψ = −

−∫∫                          (2.20) 

where ( )0w z  is an analytic vector satisfying the boundary conditions  

 ( ) ( ) ( )( ) ( ) ( )0Re , ,z w z z r z h z zλ +Ψ = + ∈Γ                           (2.21) 

 ( ) ( ) ( )( )0Im , , 1 .j j j j ka w a a b j J k nλ +Ψ = ∈ ≤ ≤  
                         (2.22) 

Suppose that when ( )0 00 1t t t= ≤ < , Problem B for the system (2.19) has a unique solution. Then we shall 
prove that there exists a neighborhood of { }0 0: , 0 1, 0 ,t E t t tδ δ= − ≤ ≤ ≤ >  so that for every t E∈  and any 
function ( ) ( ) ( ) ( )0

,pR z R z A z L D∈  Problem B for (2.19) is solvable. In fact, the complex system (2.19) can 
be written in the form  

 ( ) ( ) ( ) ( )0 0, , , , .z z zw t F z w w t t F z w w A z− = − +                          (2.23) 

Suppose that Problem B for (2.13) with ( )0 00 1t t t= ≤ <  is solvable, by using the similar method as in the 
proof of Theorem 2.2, we can find a positive constant δ , so that for every { }0 ,0 1t E t t tδ∈ = − ≤ ≤ ≤ , there 
exists a sequence ( ){ }nw z  of solutions satisfying  

 ( ) ( ) ( ) ( )1 0 1 1 0, , , , , 1, 2, .n z n n z n nzw t F z w w t t F z w w A z n+ + +− = − + = 
                   (2.24) 

The difference of the above equations for 1n +  and n  is as follows:  

 
( ) ( ) ( )
( ) ( ) ( )

1 0 1 1

0 1 1

, , , ,

, , , , , 1, 2, .
n n n n z n nzz

n nz n n z

w w t F z w w F z w w

t t F z w w F z w w n
+ + +

− −

 − − − 
 = − − =  

                   (2.25) 
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From Condition C, we can derive that  

( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )0

1 1

1 1 1 1

1 1 1 1

1 0 1

, , , ,
, , , , , , , ,

,

1, , 1, 2, ,

n n z n nz

n n z n nz n nz n nz

n n n n n nz

n n p

F z w w F z w w
F z w w F z w w F z w w F z w w

Q z w w A z w w

Q z q A z L D n

+ +

+ + + +

+ + + +

+ +

−

= − + −

= − + −

≤ < ∈ =

 

 



 

and  

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )
( )

0

0

0

1 1

0 1 0 1

0 0 1 1 1

0 0

, , , , ,

, ,

, ,

.

p n nz n n z

p n n n nz

n n p n n n nz z

n

L RR F z w w F z w w D

q L RR w w D nk C R w w D

q nk C R w w D L RR w w w w D

q nk L

β

− −

− −

− − −

 − 
   ≤ − + −  

   ≤ + − + − + −    
= +







 

Moreover, ( ) ( )1n nw z w z+ −  satisfies the homogeneous boundary conditions  

 ( ) ( ) ( ) ( )1Re , ,n nz w z w z h z zλ +
 − = ∈Γ                             (2.26) 

 ( ) ( ) ( )( )1Im 0, , 1 .j n j n j ka w a w a j J k nλ +
 − = ∈ ≤ ≤  

                         (2.27) 

Similarly to Theorem 3.3, Chapter I, [1], we have  

( ) ( ) ( )( )
( )

01 1 1 1

3 0 0 0

, ,

,
n n n p n n n nz z

n

L C R w w D L RR w w w w D

M t t q nk L
β+ + + +

  = − + − + −   
≤ − +



                         (2.28) 

where ( ) ( )( )3 3 0 0 0 2 5 6, , , , , , , ,M M q p k K D k k k k kα′ ′= =  are positive constants. Provided ( )0δ >  is small  
enough, so that ( )3 0 0 1,M q nkη δ= + <  we can obtain  

 ( ) ( )( )01 1 1 1 1, ,n n
n n p z zL L L C Rw D L RR w w Dβη η η+

 ≤ ≤ = + + 
                          (2.29) 

for every .t E∈  Thus  

( ) ( ) ( ) ( )( )
( )

( )

0

1 2
1 1 1

1
1 1

1 1 1

, ,

11
1 1

n m n m p n m n mz z

n n m
n n m

n m N
m n m N

S w w C R w w D L RR w w w w D

L L L L

L L L

β

η η η

η ηη η η η
η η

− −
− +

− +
− − +

  − = − + − + −   
≤ + + + ≤ + + +

−
= + + + ≤ ≤

− −



 



 

for ,n m N≥ >  where N  is a positive integer. This shows that ( ) 0n mS w w− →  as , .n m →∞  Thus there 
exists a system of continuous functions )(* zw  in *D , such that  

( ) ( ) ( ) ( )( )0* * * *, , 0 as .n p n nz z
S w w C R w w D L RR w w w w D nβ

  − = − + − + − → →∞   
  

By Condition C, it follows that ( )*w z  is a solution of Problem B for the system (2.23), i.e. (2.19) for t E∈ . 
It is easy to see that the positive constant δ  is independent of ( )0 00 1t t≤ < . Hence Problem B for the system 
(2.19) with 0 0t t= =  is solvable. Correspondingly we can derive that when [ ], 2 , , 1 ,1t δ δ δ δ= 

, Problem B 
for (2.19) is solvable. Especially Problem B for (2.19) with 1t =  and ( ) ( ) ( )1 ,0,0A z t F z= − , namely 
Problem B for the system (1.4) has a solution. 

3. Error Estimates of Approximate Solutions of the Discontinuous Riemann 
Hilbert Problem for Elliptic Systems of First Order Complex Equations 

In this section, we shall introduce an error estimate of the above approximate solutions. 
Theorem 3.1 Under the same conditions as in Theorem 2.3, let ( )w w z=  be a solution of Problem B for the 
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complex system (1.4) satisfying Condition C in D , and ( ),t
n nw w z t=  be its approximation as stated in the 

proof of Theorem 2.3 with ( ) ( ) ( )1 ,0,0 .A z t F z= −  Then we have the following error estimate  

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

0

0
0 0

0

, ,

1
1 1 ,

1

t t t t
n n p n nz z

n
n

S w w C R w w D L RR w w w w D

t t
k t t t t

t t

β

γ
γ γ

γ

  − = − + − + −    
 − −
 ≤ − + − −

− −  



                   (3.1) 

where ( ) ( )3 0 0 3 2 5 6,M q nk k M k k kγ = + = + +  with 3 0,M q  as in (2.28), and ( )2,5,6jk j =  as in (1.6),(1.7), 
(1.11) and (1.16).  

Proof From (1.4) and (2.24) with ( ) ( ) ( )1 ,0,0A z t F z= − , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( )
( )

1 0 1 1 0

0 1 1

0

0 1 1 1 1 1

, , , , , , 1 ,0,0

1 , , ,0,0 , , , ,

, , , ,

, , , , , ,

1

t t t t t
n z n n z n nzz

t t
z z n n z

t t
z n nz

t t t t t
z n n n n z nz

w w F z w w t F z w w t t F z w w t F z

t F z w w F z t F z w w F z w w

t t F z w w F z w w

t Q z w w w w w A z w w w w w

t

+ + +

+ +

+ + + + +

− = − − − − −

 = − − + −    
 + − × − 

 = − + − 

+ −

 

( ) ( ) ( ) ( ) ( )0, , ,0,0 , , , , .t t
z z n nzF z w w F z t t F z w w F z w w − + − −    

             (3.2) 

It is clear that 1
t
nw w +−  satisfies the homogeneous boundary conditions  

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
1

1

Re , ,

Im 0, , 1, , .

t
n

t
j j n j k

z w z w z h z z

a w a w a j J k n

λ

λ

+

+

 − = ∈Γ 
 − = ∈ =  



             (3.3) 

Noting that ( ) ( )1 1 1, , , , , , ,t t t
z n n n zQ Q z w w w A A z w w w+ + += =     satisfy 

00 01, ,pQ q L A D k ≤ < ≤ 
  , and  

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )( ) ( )( )

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

, , ,0,0 ,

, ,

( ) , ,

,

, , , , ,

, ,

, ,

p z

p z

p z

t t
p z n nz

t t
p n nz

t t
p n nz

L RR F z w w F z D

q L RRw D nk C Rw D

q nk L RRw D C Rw D

q nk S w

L F z w w F z w w D

q L RR w w D nk C R w w D

q nk L RR w w D C R w w D

 − 
   ≤ +   

 ≤ + + 
≤ +

 − 
   ≤ − + −  

 ≤ + × − + −  

≤











( ) ( )0 0 ,t
nq nk S w w+ −

 

and then 0
tw w−  is a solution of Problem B  for the complex equation  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0 0 0

0 0 0 0

0 0 0 0

, , , , 1 ,0,0

, , , , 1 , , ,0,0

1 , , ,0,0 ,

t t t
z zz

t t
z z z

t t
zz

w w F z w w t F z w w t F z

t F z w w F z w w t F z w w F z

t Q w w A w w t F z w w F z

− = − − −

 = − + − −   

= − + − + − −  

                   (3.4) 

hence we have  

 
( ) ( ) ( ) ( )

( )( ) ( ) ( )
00 3 0 0 0

3 0 0 0 0

1 , ,

1 1 ,

t
p zS w w M t q L RRw D nk C Rw D

M q nk t S w t kγ

 − ≤ − + 
≤ + − ≤ −



                   (3.5) 
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in which  

 ( ) ( )3 2 5 6 ,S w M k k k k≤ + + =                          (3.6) 

where the non-negative constants 3 2 5 6, , ,M k k k  are as stated in (2.28), (1.5), (1.11) and (1.12). Moreover 
according to the proof of Theorem 2.3, we can derive  

 
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 3 0 0 0 0 0

3 0 0 0

1

1 .

t t
n n

t
n

S w w M t q nk S w t t q nk S w w

M q nk t S w t t S w w

+
 − ≤ − + + − + − 

 = + − + − − 

             (3.7) 

From (3.6) and (3.7), it follows that  

( ) ( ) ( ) ( )
( ) ( )( )

( )

( ) ( ) ( ) ( )

1 0

22
0 0 0

11
0 0

1
10 1

0 0
0

1

1 1

1
1 ,

1

t t
n n

nn

nn t

n
nn t

S w w t S w t t S w w

t S w t t t t t t

t t S w w

t t
t S w t t S w w

t t

γ

γ γ γ γ

γ

γ
γ γ

γ

+

++

+
++

 − ≤ − + − − 

≤ − + − + − + + −

+ − −

− −
≤ − × + − −

− −



 

where ( )3 0 0 ,M q nkγ = +  and ( )0 0,tw w z t=  is the solution of Problem B for (2.24) with 0t t=  and 
( ) ( ) ( )01 ,0,0 .A z t F z= −  Finally, we obtain  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
10 1

1 0 0
0

1
10

0 0
0

1
1 1

1

1
1 1 ,

1

n
nt n

n

n
n

t t
S w w k t k t t t

t t

t t
k t t t t

t t

γ
γ γ γ

γ

γ
γ γ

γ

+
++

+

+
+

 − −
 − ≤ − + − −

− −  
 − −
 = − + − −

− −  

                   (3.8) 

This shows that (3.1) holds. If the positive constant δ  is small enough, so that when 0 0, 1,t t t tδ γ− ≤ − <  
n  is sufficiently large and t  is close to 1, then the right hand side becomes very small. 

Note: The opinions expressed herein are those of the authors and do not necessarily represent those of the 
Uniformed Services University of the Health Sciences and the Department of Defense. 
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