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Abstract 
 
This paper presents algorithmic components and corresponding software routines for extracting shoreline 
features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as 
boundary lines between land objects and water objects. Numerical algorithms have been identified and de-
vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form 
and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-
jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-
line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-
ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and 
ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline 
extraction routines into a software package. This product represents the first comprehensive software tool 
dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral 
image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized 
and combined to extract shoreline features from different types of input data sources: panchromatic or single 
band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely 
available for the public through the internet. 
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1. Introduction 
 
A shoreline is a spatially continuous line of contact be-
tween the land and a body of water (sea or lake). The 
terms “shoreline” and “coastline” are often interchange- 
ably used in geosciences and coastal research communi-
ties [1]. It has been long recognized that information 
about shoreline position, orientation, and geometric 
shape is essential for coastal scientists, engineers and 
managers. Depending on the application context, the re- 
quirements for shoreline information vary in terms of 
shoreline positional accuracy, spatial resolution and cov-
erage, and temporal frequency in survey and mapping. In 
the design of shipping structures, coastal defense and 
protection infrastructure, coastal engineers often need the 
precise geographical position and detailed shape of sho- 

relines within a certain coastal stretch [2]. Coastal man-
agers and land use planners rely on up-to-date shoreline 
information at regional scales for establishing legal 
property boundary definition and building setback lines 
[3,4], estimating recreational beach width and volume [5], 
inventorying wetland and agricultural land resources 
[6,7], delineating flood and hurricane hazard zones, and 
assessing the coastal vulnerability and response man-
agement strategies to climate changes [8-10]. Coastal 
scientists and geomorphologists have utilized multi-tem- 
poral shoreline data for estimating sediment transport 
and budgets [11], examining coastal erosion and accre-
tion [12,13], quantifying historical shoreline retreating or 
advancing rates [12,14,15], and assessing sea level rise 
and its impacts [16,17]. 

Traditionally, shorelines depicted on nautical charts 
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and topographic maps were compiled through visual in-
terpretation of aerial photographs [18]. High resolution 
aerial photographs contain details of terrain features, and 
shorelines can be observed and delineated with great 
precision. In recent decades, new approaches have been 
developed for shoreline mapping, including the use of 
high-resolution satellite imagery [19], and airborne Li-
DAR technology [20-22]. The era of 1-meter or submeter 
satellite imagery such as IKONOS, QuickBird, World-
View and GeoEye, present new and exciting opportuni-
ties for geosciences and coastal research community. The 
advent of airborne LiDAR technology offers an alterna-
tive means for mapping coastal topography and shoreline 
features with unprecedented accuracy and flexibility. 
When the LiDAR data are acquired at a low water level, 
it is possible to derive various shoreline indicators with 
reference to different tidal datums [22,23]. This repre-
sents a major advantage of the LiDAR data over the re-
mote sensing imagery. 

One important technical challenge for shoreline map-
ping is to accurately and efficiently interpret and extract 
shoreline features from remote sensing imagery and Li-
DAR data onto a vector representation in a map format. 
Traditionally, shorelines were manually delineated with a 
pencil on vellum paper overlaid on top of aerial photo-
graphs or traced with a cursor from digital remote sens-
ing images on the computer screen. The manual tracing 
method is tedious, subjective, time-consuming, and labor 
intensive, contributing to long periods between succes-
sive shoreline maps. In the past decades, a great deal of 
research effort has been devoted to the automation of 
shoreline extraction from remote sensing data. Lee and 
Jurkevich [24] presented an edge detection algorithm for 
extracting shorelines from a satellite Synthetic Aperture 
Radar (SAR) image. Ryan et al. [25] proposed an image 
segmentation approach to the shoreline extraction prob-
lem and tested their method on scanned USGS aerial 
photographs. Mason and Davenport [26] employed an 
edge detection method with a coarse-fine resolution 
processing strategy and applied their approach to satellite 
SAR images. Liu and Jezek [27,28] developed an auto-
mated shoreline extraction method based on a locally 
adaptive thresholding algorithm, and its effectiveness has 
been demonstrated with both optical and radar images. In 
recent years, numerical techniques have also been de-
veloped to process LiDAR data for extraction of shore-
lines. Stockdon et al. [29] determined the shoreline posi-
tion by fitting regression lines on cross-shore LiDAR 
elevation profiles. The contouring method has been used 
by many researchers to derive shorelines from the Li-
DAR data [21,30,31]. Liu et al. [22] developed a seg-
mentation-based method for extracting tidal datum ref-
erenced shorelines from LiDAR data. Despite the pro- 

gresses described above, very few studies have been 
conducted for a comprehensive analysis and assessment 
of algorithmic foundation for extracting shoreline fea-
tures from both remote sensing imagery and LiDAR ele-
vation data. To our knowledge, no dedicated software 
tools exist at present for automated shoreline extraction. 

Based on our previous research and application ex-
periences [22,23,27,28,32], we made a critical assess-
ment of existing algorithms for shoreline extraction. This 
paper aims to identify the best algorithmic components 
for shoreline extraction and to present methods for im-
plementing these algorithms into re-usable software rou-
tines. The algorithms and software routines presented in 
this paper are object-based in the sense that shoreline 
features are treated as boundary lines between land ob-
jects and water objects. Numerical algorithms are de-
vised and combined to create continuous land and water 
objects and then trace the boundaries between land and 
water objects into vector shoreline representations. Fur-
ther, an optimized contouring routine is developed as an 
alternative approach to shoreline delineation from Li-
DAR data. The software routines and the graphical user’s 
interfaces are implemented using the object-oriented 
programming (OOP) languages C++ and VB.NET in 
conjunction with ESRI ArcObjects. While most core 
numerical algorithms are implemented using the compu-
tationally high performance C++ programming language, 
some are realized using available functions of Ar-
cObjects in the ArcGIS environment. A graphical user’s 
interface has been developed for each routine by pro-
gramming ArcObjects through VB.NET language. Con-
sequently, the software has been integrated as an ArcGIS 
extension module named as “ShorelineExtractor”. In this 
paper, Radarsat SAR image, QuickBird multispectral 
image, and airborne LiDAR data have been used to illus-
trate how software routines can be utilized and combined 
to automate shoreline extraction from different data 
sources: panchromatic or single band imagery, color or 
multi-spectral image, and LiDAR elevation data. We 
believe that this paper and the corresponding software 
package will provide the geosciences and coastal re-
search community with a powerful tool for efficiently 
processing high-resolution remote sensing imagery and 
LiDAR for frequent and timely shoreline measurements. 
 
2. Algorithmic Foundations for Shoreline  

Extraction 
 
Shoreline extraction from imagery is a complicated 
process. Because of frequent lack of sufficient contrast 
between the land and water bodies on images and the 
difficulty in distinguishing shoreline features from other 
linear features, most general-purpose algorithms for edge 
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and linear feature detection are not adequate for the 
automated coastline extraction. Previously, two ap-
proaches have been employed for shoreline extraction 
from images. One approach treats shoreline extraction as 
an edge detection problem. This approach is based on the 
observation that image intensity (gray) values across the 
shoreline change abruptly, so that spatial differentiation 
operators and edge detectors may be used to locate 
meaningful intensity variations and discontinuities on the 
image as candidate shoreline pixels. The other approach 
treats the shoreline as the boundary between two rela-
tively homogeneous objects (land and water objects), 
each with a distinct average intensity value. The 
edge-based approach suffers from the fact that the edge 
pixels produced by edge detectors are often discontinu-
ous and seldom characterizes a shoreline completely 
[24,26,28]. To assemble and link edge pixels separated 
by small breaks is a computationally intensive task, even 
for a crude approximation [24,33]. In contrast, the ob-
ject-based approach has the advantage of creating a con-
tinuous boundary between the land and water objects 
[23,28]. Therefore, we adopt the object-based approach 
for the development of shoreline extraction algorithms 
and software routines for image data. 

Different from remote sensing imagery, the LiDAR 
data are elevation measurements rather than the reflected 
intensity of radiation. The shorelines cannot be visually 
interpreted from LiDAR data, but can be inferred from 
the elevation values with reference to a tidal datum. We 
adopt two approaches to the processing of LiDAR data 
for shoreline extraction. The first is object-based, similar 
to the one used for processing image data. By comparing 
the LiDAR DEM with the tidal datum surface, grid 
cells/pixels with an elevation value higher than the tidal 
datum can be grouped into land objects, while grid 
cells/pixels with an elevation below the tidal datum can 
be grouped into water objects. The second approach is 
contouring-based. The idea is that after the LiDAR ele-
vation values are adjusted with reference to a tidal datum, 
the grid cells/pixels on the shoreline should assume a 
value of zero. Thus, the shorelines can be derived by 
contouring zero elevation pixels. 

As indicated above, the object-based approach is ap-
plicable to both remote sensing image data and LiDAR 
elevation data. This approach is implemented with four 
groups of algorithms and software routines: preprocess-
ing, land/water segmentation, object post-processing, and 
shoreline generalization. With the object-based approach, 
algorithms and software routines used for processing 
image data and LiDAR data are almost the same, except 
for those used for land/water segmentation. The pre-
processing algorithms aim to suppress data noise and 
enhance the contrast between land and water bodies. The  

segmentation algorithms partition an image into homo-
geneous land and water objects. The post-object proc-
essing algorithms are designed to differentiate the shore-
line features from other linear features, and trace the 
shoreline pixels into a vector representation. The con-
touring based approach is only applicable to LiDAR data. 
This approach consists of three groups of algorithms and 
software routines: preprocessing, shoreline contouring 
with a specified reference tidal datum, and shoreline 
generalization. Our goal is to create an effective, opera-
tional software tool that minimizes operator’s interven-
tion and editing efforts and maximizes the reliability, 
repeatability, and accuracy of the derived shoreline fea-
tures. 

We have identified a sequence of key algorithm ele-
ments and implemented 14 software routines to automate 
the coastline extraction process (Figure 1). The shoreline 
extraction process can be decomposed into a sequence of 
processing tasks. The combination of these routines is 
capable of processing panchromatic/single band images, 
color/multi-spectral band images, and LiDAR elevation 
data for shoreline extraction. Each application scenario 
requires a different set of routines as described in the 
following section. We implemented the key algorithms 
as a series of re-usable DLLs (Dynamic-Link Library) 
using the computationally high performance language 
C++.NET. These re-usable algorithm components (DLLs) 
can be easily incorporated into commercial or open 
source GIS and remote sensing software packages as a 
plug-in component, including the open source GIS soft-
ware-GRASS, the proprietary GIS software-ArcGIS, and 
the proprietary remote sensing software-ENVI. 

Considering the widespread use of ArcGIS software 
packages in geosciences and coastal research communi-
ties, in this research we select to seamlessly embed our 
shoreline extraction software routines into ArcGIS as an 
extension module. The combination of the specialized 
shoreline extraction programs with ArcGIS as a single 
integrated software package allows users to take advan-
tage of the powerful ArcGIS functions in data manage-
ment, visualization, and spatial analysis during the 
shoreline extraction process. In this way, the input im-
ages and LiDAR elevation data in ArcGIS compatible 
format can be directly loaded in the shoreline extraction 
module. Intermediate processing results can be immedi-
ately displayed and checked by using the variety of Ar-
cGIS visualization functions. The shorelines extracted 
from remote sensing data are output in ArcGIS data for-
mats and can be further edited and validated using the 
ArcGIS’s editing capabilities. Using ArcGIS spatial 
analysis functions, final shoreline products can be readily 
compared and integrated with other data layers for map 
composition and change analysis. 
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Figure 1. Structure and software routines for shoreline ex- 
traction. 
 

We constructed the shoreline extraction extension 
module using ArcObjects, which are a set of platform 
independent software components designed by ESRI Inc. 
specifically for developing ArcGIS applications. We 
choose VB.NET to program ArcObjects for creating the 
shoreline extraction extension module. The use of 
VB.NET makes it easier to package and deploy the ex-
tension module. In addition, it is possible to make the 
extension module as a standalone application running 
outside ArcGIS using ESRI’s map control. Our extension 
module can be wrapped and distributed as a single pack-
age and installed with a user friendly setup procedure. 
After installation, the shoreline extraction extension 
module appears in ArcGIS as shown in Figure 2.  

For each software routine, we devise its graphical in-
terface through a VB.NET program that calls and wraps 
the relevant ArcObjects and our specialized DLLs de-
veloped using C++ language. The graphical interface for 
each routine is a customized dialogue menu that guides 
the user to load the input data, to set the relevant pa-
rameter values, and to specify the outputs. This elimi-
nates the needs for the user to remember the command 
syntax and relevant parameter values. 

3. Algorithm Components and Software  
Routines 

 
Our shoreline module is capable of handling various 
types of remote sensing images and LiDAR elevation 
data. The commonly used remote sensing image sources 
for shoreline mapping include panchromatic aerial pho-
tographs, natural color aerial photographs, near infrared 
color aerial photographs, panchromatic satellite images, 
multi-spectral satellite images, and synthetic aperture 
radar (SAR) images. The input images need to be geo- 
referenced and orthorectified before the shoreline extrac-
tion operation. The LiDAR data need to be prepared in a 
raster grid format and be vertically referenced to a tidal 
datum surface in order to derive tide coordinated shore-
line. In the following sections, we describe algorithms 
and routines implemented in our extension module, with 
the emphasis on the technical improvements. 
 
3.1. Algorithms and Routines for Preprocessing 
 
The purpose for preprocessing the images and LiDAR 
data is to reduce data noise and enhance the contrast be-
tween land and water masses for shoreline edge detection. 
The noise in images and LiDAR data can result in nu-
merous isolated, small, insignificant or spurious edges 
other than real shoreline features. This imposes great 
complications in subsequent image processing. To ad-
dress the noise issue, we select and implement several 
specific noise-reduction filters from the filters published 
in the literature. For the shoreline extraction purpose, the 
filters used in the preprocessing stage should have an 
edge-preserving property, namely, the ability to remove 
data noise while preserving the precise position of shore-
line edges. We select and implement four of such filters 
for handling different types of input data: Gaussian filter, 
Lee Sigma filter, median filter, and anisotropic diffusion 
operator. It should be noted that although the mean (av-
erage) filter is widely available, it should not be used in 
the shoreline extraction process because the use of the 
mean filter blurs the land-water boundary edges and in-
creases the shoreline positional error. 

1) Gaussian filter: it uses a weight kernel that repre-
sents the shape of a Gaussian (bell-shaped) hump and 
outputs a weighted average of pixels in the kernel 
neighborhood, with a higher weight assigned to pixels 
closer to the central pixel. The Gaussian filter provides 
gentle smoothing of data noise without seriously blurring 
of major edge features. We implement the Gaussian filter 
through a VB.NET program to call ArcObjects and in-
voke C++ programs. The Gaussian filter is applicable to 
both optical images and LiDAR data. Two parameters, 
the window size and the standard deviation of the Gaus-  
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Figure 2. Graphical interface of the ArcGIS shoreline extraction extension module-shoeline extractor. 
 
sian, need to be specified by the user. This parameter 
determines the degree of smoothing. A Gaussian filter 
with a large standard deviation requires a proportionally 
large convolution kernel to represent the weights pre-
cisely. 

2) Lee Sigma Filter: This filter has been specifically 
designed to reduce speckle noises in radar images. Spec- 
kle is the grainy salt-and-pepper noise (exceptionally low 
or high pixel intensity values) in radar imagery due to 
random constructive and destructive interference of co-
herent radar signals from target scatters. Basically, radar 
speckle has the nature of a multiplicative noise. The Lee 
Sigma filter [34] assumes that a certain percentage of 
random samples within the range of m  k are free from 
speckle contamination, where m is the mean and  is the 
standard deviation (sigma). This filter replaces each pixel 
with the mean of all DN values in the moving kernel that 
fall within the designated standard deviation range (m  
k), in which the pixels beyond the standard deviation 
range are regarded as speckle-contaminated and hence 
not used to calculate the mean. The Lee Sigma filter is 
capable of reducing radar noise and speckle without de-
grading the sharpness of the shoreline edges. This filter 
is implemented by a VB.NET program calling the raster 
ArcObjects and invoking the C++ program that imple-
menting the algorithm. Two parameters, kernel window 
size (with a default value of 3) and sigma multiplier (k) 
(with a default value of 2), need to be specified by the 

user. If the window size is larger or the sigma multiplier 
(k) is smaller, the noise filtering effect is stronger. 

3) Median filter: The median filter replaces each pixel 
in the image with the median of those values within the 
moving kernel. The median filter is applicable to optical 
images, radar images as well as LiDAR data. It is effec-
tive in removing white noise and salt-and-pepper radar 
speckles, while preserving sharp shoreline edges. It is 
implemented through a VB .NET program calling the 
ArcObject. Only one parameter, the kernel window size 
(with a default value of 3) needs to be specified by the 
user. 

4) Anisotropic diffusion operator: The nonlinear ani-
sotropic diffusion operator was originally proposed by 
Perona and Malik [35] for suppressing image noise and 
unwanted edges. It computes the diffused pixel value 
within a 3 × 3 kernel in an iterative fashion [27,35]. The 
directional diffusion coefficients are determined by the 
gradients between the central processing pixel and its 
four immediate horizontal and vertical neighbor pixels. 
By specifying a gradient threshold value (K), the diffu-
sion operator retains and enhances strong edges with a 
gradient greater than K while suppressing and smoothing 
noise and weak edges with a gradient smaller than K. We 
implement the anisotropic diffusion algorithm using the 
C++ language as a DLL. The software routine is devel-
oped through a VB.NET program calling the DLL file 
and the relevant ArcObjects. Its dialogue menu is shown 
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in Figure 3(a). The two parameters, the gradient thresh-
old (K) (with a default value of 8) and the iteration num-
ber (with a default value of 5), need to be specified by 
the user. The larger the gradient threshold value or the 
iteration number, the stronger the smoothing effect. The 

appropriate choice of the gradient threshold value can 
achieve the intended objective of enhancing the major 
edges along the shoreline features while suppressing 
noise, interior variations, and unimportant weak edges 
inside land or water objects [27]. 

 

 

Figure 3. Graphical interfaces for selected shoreline extraction routines. (a) anisotropic diffusion routine; (b) locally adaptive 
thresholding routine; (c) ISODATA classification routine; (d) LiDAR/tidal datum intersection; (e) morphology operator rou-
ine; (f) object formation and removal routine; (g) shoreline contouring routine; and (h) shoreline generalization. t 
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3.2. Algorithms and Routines for Segmenting  

and Classifying Land and Water Pixels 
 
Forming homogenous land and water objects for shore-
line extraction requires an accurate and reliable differen-
tiation of land pixels from water pixels. The border pix-
els between segmented land/water objects can be then 
delineated as the shorelines. The separation of an image 
or a LiDAR DEM into constituent land and water parts is 
the most important step in the object-based approach. 
Three algorithms and software routines are implemented 
for this purpose. Those include the locally adaptive 
thresholding, ISODATA classification followed by a 
recoding operation, and intersection of LiDAR grid and 
the selected tidal datum. The locally adaptive threshold-
ing routine is designed to segment a panchromatic or 
single band image into land and water pixels. The ISO-
DATA classification routine can classify a color or 
multi-spectral imagery into a number of land cover clus-
ters, which can be subsequently combined into two 
categories (land and water pixels) through the recoding 
routine. The LiDAR grid and tidal datum intersection 
routine compares LiDAR elevation values with the cor-
responding tidal datum values and classify LiDAR ele-
vation grid cells into land and water pixels. 

1) Locally adaptive thresholding: it is the key algo-
rithm component for segmenting a panchromatic or sin-
gle band image into land and water pixels. The underly-
ing concept is that the histogram of a small image region 
that contains a shoreline can be characterized by a mix-
ture of double Gaussian distributions. First, the entire 
image is subdivided into a set of small, overlapping, 
square regions. For each small region, we examine the 
bi-modality and analytically determine a local threshold 
value to separate the land pixels from the water pixels. If 
the small image region consists solely of land or water 
pixels, the probability distribution of the intensity values 
will be uni-modal. If the image region consists of both 
land and water pixels, namely, the region contains shore-
line features, the intensity values of land pixels and water 
pixels will be grouped into two dominant modes 
(bi-modality) with distinct mean values. The overall his-
togram for this region would exhibit two peaks and a 
valley. The lowest histogram valley point is used as a 
threshold value to reliably classify the pixels into land 
and water pixels. 

To computationally determine the valley point, the 
bimodal histogram is modeled with a mixture of two 
Gaussian (normal) distribution functions, in which there 
are five unknown parameters to be determined [28,36]. 
The Levenberg-Marquardt algorithm is used to itera-
tively compute the optimal estimates for the five pa-
rameters based on the observed histogram [28], and op-

timal threshold value can be computed analytically. 
For all the small image regions whose histograms have 

appreciable bi-modality [28,36], optimal local thresholds 
can be computed using the process described above. As a 
result of processing all the image regions, a set of ir-
regularly distributed threshold values are obtained. Next, 
an Inverse Distance Weighted (IDW) interpolation 
method [28] is employed to interpolate these irregularly 
distributed threshold values into a threshold grid. In other 
words, a threshold value is estimated for every pixel 
based on the threshold values of adjacent image regions 
using spatial interpolation. Subsequently, all the image 
pixels are segmented into land and water pixels by com-
paring their intensity values with corresponding local 
threshold values. If a pixel has an intensity value above 
its local threshold, it is flagged as a land pixel. Otherwise, 
it is designated as a water pixel. The locally adaptive 
thresholding algorithm can be summarized into the fol-
lowing computational steps: 

1) Divide the input image into a set of small, overlap-
ping, square image regions; 

2) Construct an observed histogram for each image re-
gion, and optionally smooth the histogram using a one- 
dimensional Gaussian filter; 

3) Estimate initial values for the five parameters of the 
bimodal Gaussian curve and use the Levenberg-Mar- 
quardt algorithm to iteratively fit the bimodal Gaussian 
parameters for each region; 

4) Test the resulting Gaussian curve for bi-modality; 
5) Based on the fitted estimates for the five bimodal 

Gaussian parameters, calculate the optimal local thresh-
old for any region whose histogram passes the bi-mo- 
dality test; 

6) Repeat steps (2)-(5) until all image regions are 
processed; 

7) Interpolate local thresholds into a threshold grid 
with the IDW algorithm; and 

8) Segment the entire image into land or water pixels 
by comparing the intensity values with their local thresh-
old values. 

If a single global threshold were used for the entire 
image, some shoreline edges would remain undetected 
due to the heterogeneity of the intensity contrast, causing 
discontinuous shoreline edges in low contrast areas and 
inconsistency of shoreline edge positions between high 
contrast and low contrast areas [28]. Since the locally 
adaptive thresholding algorithm sets the threshold value 
dynamically according to the local image statistical 
properties, a good separation between the land and water 
can be achieved. 

We implement the locally adaptive thresholding algo-
rithm using the C++ language as a DLL. A VB.NET 
program is written to call this DLL and relevant Ar-
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cObjects for the development of a graphical interface. 
The dialogue menu is shown in Figure 3(b). Two critical 
parameters need to be specified by the user for this rou-
tine. One is the width of the square image regions used to 
subdivide the image. The width of the regions is speci-
fied in pixels with a default value of 32. The width 
should be small enough so that only one or two catego-
ries of pixels exist in the region. It also should be big 
enough to ensure reliable statistical analysis of the histo-
gram. Normally, the larger the width, the more general-
ized the resulting land and water objects. The other pa-
rameter is the bi-modality criterion indicated by a mini-
mum value of the valley/peak ratio (valley height/lower 
peak height). Optimal local threshold values would be 
analytically determined only for those image regions 
whose histograms have a valley/peak ratio larger than the 
minimum value. The default value for the bi-modality 
criterion is set as 0.8. A lower criterion value will result 
in fewer but more reliable optimal thresholds to be com-
puted. The smoothing of the histogram can speed up the 
convergence of the iterative computation of the Leven-
berg-Marquardt algorithm, if the image is noisy. Whether 
or not to smooth the observed histogram for each image 
region is controlled by a check button on the dialogue 
menu. 

2) ISOADATA classification and recoding operator: 
The Iterative Self-Organizing Data Analysis Technique 
(ISODATA) [37] is a popular unsupervised classification 
method. With the ISODATA classification algorithm, a 
color or multi-spectral remote sensing image can be clas-
sified into a number of surface cover types, which can be 
further merged into two broad categories, land and water 
pixels, by using a recoding operator. 

ISODATA classification performs an iterative, opti-
mization clustering of a multi-spectral image. First, it 
arbitrarily assigns initial mean values for a specified 
number of clusters with equal interval that is defined by 
the mean and standard deviation of each band of the 
multi-spectral image. The region in the spectral space is 
defined using the mean and standard deviation of each 
band. In the first iteration, the multi-spectral values of 
each candidate pixel are compared to the mean values of 
different spectral bands of each cluster. The Euclidean 
distance between the multi-spectral values of each pixel 
and the mean values of each cluster is calculated. The 
candidate pixel is assigned to the cluster whose Euclid-
ean distance is the shortest from the pixel. In the second 
iteration, new mean values are re-calculated for all the 
spectral bands of each cluster based on the pixels actu-
ally assigned to each cluster using the minimum Euclid-
ean distance rule in the first iteration. The formed clus-
ters are then diagnosed to decide whether or not they 
need to be merged or split. If a cluster contains less than 

the minimum percentage of pixels, it would be merged 
with the nearest cluster. If the Euclidean distance be-
tween the mean values of two clusters is below a thresh-
old (default value of 3), these two clusters will be 
merged. If the standard deviation for a cluster exceeds a 
specified maximum standard deviation (typically be-
tween 4.5 and 7) or the number of pixels in a cluster is 
greater than the specified maximum number, the cluster 
will be split into two clusters. Mean values for the two 
new clusters are calculated as the mean of the original 
single cluster plus or minus the standard deviation. After 
the merging and splitting process, the mean values for 
new clusters are calculated. In the next iteration, every 
pixel in the image is once again assigned to a cluster us-
ing the minimum Euclidean distance rule. This iterative 
process is repeated until there is little change in class 
assignment between iterations or the maximum number 
of iterations is reached. At the final iteration, pixels are 
assigned to clusters using a maximum-likelihood deci-
sion rule based on the means and standard deviations of 
the spectral bands of each cluster. 

We implement the ISODATA classification algorithm 
through a VB.NET program calling the available func-
tions of ArcObjects. The dialogue menu for this routine 
is shown in Figure 3(c). Four parameters need to be set 
to run this routine: the number of output clusters, the 
number of iterations, minimum cluster size in pixel, and 
sample interval in pixel. The specified number of clusters 
(default value is 3) is the maximum number of clusters to 
be identified in the iterative clustering process. It is ad-
vised to enter a conservatively high number, analyze the 
resulting clusters, and to then re-run the function with a 
reduced number of classes. The number of the iterations 
(the default is 20) specifies the number of rounds to clas-
sify pixels and recalculate cluster mean values. The 
ISODATA algorithm terminates when this number is 
reached. This number should be large enough to ensure 
that after running the specified number of iterations, the 
migration of pixels from one cluster to another is mini-
mal, and the clusters have become stable. Minimum 
cluster size (the default is 20) specifies the number of 
pixels to form a valid cluster, and clusters containing 
pixels fewer than this number will be merged with other 
clusters. This minimum cluster size should be about 10 
times larger than the number of bands in the 
multi-spectral imagery in order to obtain reliable statis-
tics. The sample interval (the default is 10) specifies the 
row and column interval between pixels that are actually 
sampled and used in the iterative computation of the 
mean and standard values of the spectral bands of the 
clusters. Larger sample intervals reduce the computation 
time but may introduce bias in the statistics. 

The output of ISODATA routine is a classified image, 
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and each pixel has an integer value to indicate the identi-
fication number of each cluster. A recoding routine is 
developed using a VB.NET program calling the relevant 
ArcObjects. The recoding routine can load and display 
the classified image from the ISODATA classification, 
and on the dialogue menu the user can specify which 
clusters should be categorized as land pixels and which 
as water pixels through visual inspection of the classified 
image. Therefore, the combination of ISODATA classi-
fication and the recoding operation creates a binary im-
age consisting of land and water pixels. 

3) LiDAR/tidal datum intersection: This routine aims 
to segment LiDAR elevation grid cells into land and wa-
ter pixels by comparing the elevations with a tidal datum 
value. If a pixel has an elevation lower than the tidal da-
tum value, it is coded as a water pixel. Otherwise, it is 
coded as a land pixel. The LiDAR elevation grid and the 
tidal datum grid must be referenced to a common datum 
[22]. This routine is implemented through a VB.NET 
program calling relevant ArcObjects. On the dialogue 
menu for this routine (Figure 3(d)), the input tidal datum 
surface can be specified as a constant value or loaded as 
a grid with varying values. For a small study area, the 
tidal datum can be treated as a constant valuable obtained 
from the nearest tidal gauge station. For a large study 
area, a tidal datum grid should be created by interpolat-
ing the tidal datum values measured by all tidal gauge 
stations in the study area. 
 
3.3. Algorithms and Routines for  

Post-Processing Land and Water Objects 
 
As described above, we can obtain a classified binary 
image consisting of land and water pixels by applying 
locally adaptive thresholding routine to a panchromatic 
or single band image, or by applying the ISODATA 
classification to a color or multi-spectral image followed 
by the recoding operation, or by intersecting a LiDAR 
DEM with a tidal datum surface. In the binary image, 
spatially connected land pixels form homogenous land 
objects, and spatially connected water pixels constitute 
homogeneous water objects. Misclassifications may oc-
cur, due to data noise, insufficient or inconsistent con-
trast between land and water, and the complexity of the 
scene. For instance, wet surfaces, cloud shadows, and 
building shadows are often misclassified as water objects, 
and whitewater, foam, ships, oil rigs, and clouds are of-
ten misclassified as land objects. The primary character-
istic of these misclassified objects is that their areal size 
is significantly smaller than that of true land or water 
objects. To correct misclassifications and achieve a reli-
able shoreline, land and water objects need to be further 
processed before extracting the boundaries as shorelines. 

Three software routines are devised to achieve this goal: 
morphology operator, object identification and spurious 
object removal, and object boundary tracing. The mor-
phology operator [38,39] aims to smooth the boundaries 
of land and water objects. The object identification and 
spurious object removal routine is intended to explicitly 
form image objects and then eliminate misclassified and 
unwanted objects. The object boundary tracing routine is 
used to delineate the boundaries between land and water 
objects as shoreline features and output them as ArcGIS 
vector data (ERSI Shape files or geodatabase feature 
class). 

1) Morphology operator: Because of data noise and 
resolution limitation, land and water objects created in 
the segmentation and classification stage often exhibit 
noisy and jagged boundaries. Many tiny inlet- and pen-
insular-like features along the boundaries are spurious. 
The morphology operator is designed to smooth the 
boundaries and eliminate erroneous small-scale inlet- 
and peninsular-like features. The morphology operator is 
based on two fundamental operations: dilation and ero-
sion [33,38,39]. Dilation adds pixels to the perimeter of 
each image object, generally increasing the size of ob-
jects, thus potentially filling small holes and broken areas, 
and connecting disjoint objects that are separated by 
spaces smaller than the size of the structuring element. 
Erosion etches pixels away from the perimeter of each 
image object and therefore shrinks the object. The opera-
tions of dilation and erosion can be combined into more 
complex sequences. The most useful combinations for 
morphological filtering are known as opening and clos-
ing. Opening consists of an erosion followed by a dila-
tion and can be used to eliminate all pixels in regions that 
are too small to contain the structuring element. Closing 
consists of a dilation followed by erosion and can be 
used to fill in holes and close small gaps. We implement 
the morphology operator using the C++ language as a 
DLL. A VB.NET program is developed to call this DLL 
and relevant ArcObjects. The dialogue menu for this 
routine is shown in Figure 3(e). Closing, opening, and 
any sequential combination of dilation and erosion op-
erations can be specified on this menu. In addition, two 
simple morphology operations, fill and trim, are also 
added as alternative options on the menu. The fill opera-
tion fills single-pixel interior holes or single-pixel dents 
and cavities on the boundary. The trim operation cuts off 
single pixel protrusions and overhangs on the boundary. 

2) Object formation and spurious object removal: The 
fundamental observation is that real land and water 
(ocean) masses usually form large, continuous image 
objects. Erroneous and misclassified image objects 
commonly have a significantly smaller size. Explicitly 
grouping connected land and water pixels into individual 

Copyright © 2011 SciRes.                                                                                 JGIS 



H. X. LIU  ET  AL. 108
 

 

image objects and deriving their geometric properties 
renders the capability of discriminating erroneous and 
misclassified objects from true land and water objects 
based on the heuristic knowledge about the size and con-
tinuity of land and water bodies in the study area. A land 
object consists of a set of spatially connected land pixels. 
Two land pixels are defined to be connected if one is 
located in the immediate neighborhood of the other. A 
recursive expansion algorithm is used to identify and 
index image objects [28,33]. First, the image is scanned 
in a row-wise manner, and a seed is set at the first land 
pixel, which is treated as a single pixel land object. This 
single pixel object is expanded to include all land pixels 
located in the immediate neighborhood of the current 
land pixel. The expansion is continued recursively until 
all connected land pixels are included. This recursive 
expansion process may be repeated to identify other land 
objects. The land objects are indexed with a unique inte-
ger, starting with 1. During the object formation and in-
dexing process, the areal size and other geometric prop-
erties of each object are also calculated. Small non-water 
objects scattered in the water bodies often correspond to 
ships, oil rigs, ice bergs, clouds, whitewater, foam, or 
image noise. Since the boundaries of these small image 
objects are not true shorelines, they should be selected 
with an area threshold and eliminated by fusing them 
into the water bodies. Similarly, water objects can be 
explicitly identified and indexed, and small noisy water 
objects corresponding to wet surfaces, building and 
cloud shadows, and data noise can be dissolved into the 
land with another user specified areal threshold value. 

We implement the object identification and spurious 
object removal routine using the C++ language as a DLL. 
The software routine is developed through a VB.NET 
program invoking the DLL and calling ArcObjects. The 
dialogue menu for this routine is shown in Figure 3(f). 
The user needs to specify the object value and back-
ground value. The parameter of the areal size threshold 
value in pixel needs to be specified by the user to remove 
small noisy image objects. In practice, this routine is run 
in two passes. Assume that in a segmented image the 
land pixels are coded by the value of 255 and water pix-
els are coded by the value of 0. In the first pass, by 
specifying the object value to be 255 and background 
value to be 0, land objects are identified and spurious 
objects specified by the size threshold value are removed. 
In the second pass, by specifying the object value to be 0 
and the background value to be 255, water objects are 
identified and small water objects specified by the size 
threshold value are eliminated. After two passes of selec-
tive removal of small, isolated, and noisy image objects, 
only large continuous land and (ocean) water objects are 
left, which define true shorelines. This routine can effec-

tively eliminate unwanted, misclassified objects whose 
boundaries are not shorelines. This greatly reduces the 
editing cost for cleaning up the final shoreline product. 

3) Boundary tracing and vectorization: with the object 
based approach, the shoreline is defined as the boundary 
between land and water objects. Each land pixel in an 
image object is scanned by a 3 × 3 neighborhood win-
dow to examine its four immediate neighbors (horizontal 
and vertical). If one or more neighbors of the land pixel 
belong to water (background) pixels, this land pixel will 
be flagged as a boundary pixel. In this way, all land pix-
els immediately adjacent to the water pixels are extracted 
as boundary pixels. Then, a recursive algorithm is used 
to trace boundary pixels into a set of vector lines. The 
output of this routine is an ArcGIS Shape file containing 
vector shorelines, which can be directly displayed, vali-
dated and edited in the ArcGIS environment. 
 
3.4. Algorithm and Routine for Contouring  

LiDAR Data for Shorelines 
 
Shorelines can be derived from LiDAR data alternatively 
by using a contouring method. First, the LiDAR data 
need to be adjusted with reference to the tidal datum 
surface. After subtracting the tidal datum from the Li-
DAR DEM, the resulting zero elevation cells can be 
contoured to represent the tidal-datum referenced shore-
lines. Although the contouring routine is available in 
most GIS software packages, it is designed for a general 
topographical mapping purpose. To use such a routine, 
the user has to specify a base contour line and contour 
interval, resulting in a series of contour lines with incre-
mental elevation values. Since these contouring routines 
are not optimized for shoreline extraction, they often 
produce many short, broken, and noisy shoreline seg-
ments when applied to LiDAR data [21,30,31]. There-
fore, a great deal of manual editing or re-digitizing work 
was involved in creating the final clean shoreline repre-
sentation [21,30,31]. 

To overcome the difficulties, we develop a dedicated 
contouring routine for shoreline extraction. This routine 
only traces connected cells with a specified elevation 
value (zero in most cases). A constraint on the length of 
the traced shoreline segments is also imposed for the 
contouring process. Noisy and broken dangle lines will 
be dropped automatically as long as their length is 
shorter than a user specified threshold value. We develop 
this software routine using the VB .NET to call Ar-
cObjects. The dialogue menu for this routine is shown in 
Figure 3(g). Two parameters can be specified by the 
user. One is the elevation to be contoured, and its default 
value is zero. The other one is the minimum length of 
shorelines to be kept. The output of this routine is a 
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shape file of shorelines, which can be display and edited 
further in ArcGIS. 
 
3.5. Algorithms and Routines for Shoreline  

Generalization 
 
Two algorithm options are included in the shoreline 
smoothing and generalization routine. The first is the 
Douglas-Peucker algorithm for line simplification. It 
keeps the critical points that depict the essential shape of 
the shoreline and removes redundant details such as ex-
traneous bends, fluctuations, small intrusions and extru-
sions. The algorithm connects the end-nodes of a curve 
segment with a trend line. The distance of each vertex to 
the trend line is measured perpendicularly. Vertices with 
a distance to the line less than the specified tolerance are 
eliminated. The algorithm is efficient for data compres-
sion, but the resultant shorelines may contain unpleasant 
sharp angles and spikes which reduce the cartographic 
quality. The second algorithm simplifies the bends on the 
shorelines. It analyzes the shape of the shorelines and 
identifies the high-curvature bends. Insignificant extra-
neous bends are then removed, and too narrow bends are 
slightly widened to satisfy the tolerance. Compared with 
the Douglas-Peucker algorithm, the bend simplification 
algorithm tends to produce smoother and hence carto-
graphically more appealing shorelines. We implement 
this software routine through a VB.NET program calling 
the ArcObjects. Through the dialogue menu, the user can 
make a selection between the Douglas-Peucker algorithm 
and the bend simplification algorithm. The only parame-
ter that the user needs to specify is the weeding tolerance 
value, which determines the degree of generalization. 
 
4. Shoreline Extraction Scenarios 
 
4.1. Data Sources and Application Requirements 
 
From the data processing perspective, the possible input 
remote sensing data for shoreline extraction can be 
grouped into three categories: single band imagery, mul-
ti-band imagery, and LiDAR DEMs. The single band 
imagery can be panchromatic image, near infrared image, 
and Synthetic Aperture Radar image acquired by satellite 
or airborne sensors. Multi-band imagery can be natural 
color image, false color near infrared image, multi-spec- 
tral image, multi-polarimetric SAR image from satellite 
or airborne sensors. 

In practice, the choice of data sources for shoreline 
mapping at a specific site is often dictated by the avail-
ability and cost of data. The land cover types in the coast 
zone and the requirements for spatial coverage and reso-

lution of shoreline also influence the data selection. Al-
though relatively small coastal areas are involved, most 
of coastal engineering applications require highly de-
tailed and precise shoreline information, which can be 
only satisfied by aerial photographs in the past. The suc-
cessful launches of IKONOS satellite in September 1999, 
QuickBird satellite in October 2001, WorldView-1 satel-
lite in September 2007, and GeoEye-1 Satellite in Sep-
tember 2008 have produced 1-meter or sub-meter satel-
lite imagery, which can be used for high resolution 
coastal mapping applications. For coastal resource in-
ventory and management, flood and hazard zone delinea-
tion, and other environmental applications, satellite im-
ages at fine or moderate spatial resolution, such as 
Landsat, SPOT, ASTER, and Radarsat SAR images, can 
be a good choice due to their extensive ground coverage 
and the repetitive acquisition. Coastal erosion and his-
torical shoreline change studies require multi-temporal 
shoreline information. Historical data are limited or 
nonexistent at the great majority of coastal sites. Satellite 
image data did not exist until 1970s, while aerial pho-
tography began to be available for many areas of the 
coast in the 1940s [1,40], which is the most common 
data source for determining past shoreline positions. For 
coasts with sandy beaches or exposed rocks, all types of 
image data are applicable for discerning and mapping 
shoreline features. For shallow coastal waters with high 
concentration of suspended sediments or underwater 
features, shorelines can be mapped more easily and ac-
curately from near infrared images and radar images than 
from panchromatic and natural color images, because the 
land-water contrast is much stronger on the infrared and 
radar images. For the low-lying coasts with wetlands, 
mangroves and other types of vegetation, the use of color 
near infrared aerial photographs and multispectral satel-
lite images would make the separation of water from 
land easier and more accurate, with a result of better de-
termination of shoreline position. 

Airborne LiDAR promises an accurate and cost-ef- 
fective approach to coast and shoreline mapping [20,21]. 
Airborne LiDAR data have been increasingly available 
for the coastal applications since 1990s. The NOAA 
Coastal Services Center (CSC) has collected topog-
raphical LiDAR data at 1 m - 2 m resolution along the 
United States coasts through a partnership program with 
the USGS Center for Coastal and Regional Marine Stud-
ies and the NASA Goddard Space Flight Center 
(http://www.csc.noaa.gov/crs/tcm/missions.html). For a 
number of US coastal states, LiDAR data have been ac-
quired for multiple time periods. The shoreline position 
is constantly changing, because of cross-shore and 
alongshore sediment movement in the littoral zone and 
especially because of the dynamic nature of sea water 
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bination of software routines largely depend on the type 
of input data. In the data preprocessing stage, Gaussian 
filter can be applied to optical images and LiDAR data 
but are not recommended for radar images. Median filter 
is applicable to optical and radar images as well as Li-
DAR data. Lee Sigma filter is specially designed for re-
moving speckle noise of radar images. Anisotropic diffu-
sion operator can be applied to image data but not Li-
DAR data. In the land-water segmentation and classifica-
tion stage, the locally adaptive thresholding routine is the 
choice for panchromatic aerial photographs, panchro-
matic or single band optical satellite images, and single 
band radar/SAR images. If the input data are natural 
color aerial photographs, color infrared aerial photo-
graphs, multispectral satellite images, multi-channel or 
multi-polarimetric SAR images, the ISODATA classifi-
cation routine should be chosen to classify images into a 
number of land cover clusters, and then the recoding 
routine should be used to combine the land cover clusters 
into land and water pixels. When the input data are Li-
DAR elevation grid, the LiDAR/tidal datum intersection 
routine can be used to separate LiDAR elevation grid 
cells into land and water pixels, or the contouring routine 
can be directly applied to extracting the shoreline. 

levels (e.g., waves, tides, river discharges, storm surge, 
etc.) [30]. Since aerial photographs and satellite images 
are rarely taken at a water level of desired tidal datum 
elevation, it is often difficult to obtain tidal-datum refer-
enced shorelines from image data.  If LiDAR data are 
collected when the water level of sea surface is close to a 
minimum elevation (e.g. neap tide) with low wave en-
ergy, a set of shorelines with reference to various tidal 
datums, namely Mean High Water (MHW), Mean 
Higher High Water (MHHW), Mean Sea Level (MSL), 
Mean Low Water (MLW), or Mean Lower Low Water 
(MLLW), can be derived. Airborne LiDAR data not 
merely provide an efficient approach to the shoreline 
mapping and shoreline change detection [21,22,29], but 
also allow for the detailed calculation of volumetric 
changes for coastal erosion analysis [41-44]. High-reso- 
lution airborne LiDAR data should be used to replace or 
complement image data for shoreline mapping, where 
and when they are available. 
 
4.2. Selection of Software Routines and  

Parameter Setting 
 
The data flow diagram in Figure 4 illustrates how the 
software routines could be utilized and combined for 
processing different types of input remote sensing data 
sources for shoreline extraction. The selection and com- 

Setting up the parameters for software routines largely 
relies on the noise level of input data, the scene com-
plexity, and the desired generalization level and scale of  

 

 

Figure 4. Data flow chart for processing different types of remote sensing image data and LiDAR data.  
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the shoreline products. For the very noisy input data, 
filters with a large window size should be applied to en-
hance the noise smoothing effect. A filter can also be 
applied to the noisy input data for multiple rounds to 
achieve the desired smoothing effect. For a simple 
coastal scene containing only a few types of land cover, 
the width of the image region for histogram analysis in 
the locally adaptive thresholding routine should be set to 
a relatively large number, while the number of the output 
clusters in the ISODATA classification routine can be set 
to a relatively small number. In contrast, if the coastal 
scene is complex and contains many different land cover 
types, it is advisable to set the width of the image region 
in the locally adaptive thresholding routine to a relatively 
small number, and to set the number of the output clus-
ters in the ISODATA classification routine to a conser-
vatively high value. 

The detail level of extracted shorelines depends 
largely on the spatial resolution of the original image or 
LiDAR data. Some applications may not need too much 
detail. In this case, the derived vector shorelines can be 
simplified and generalized to reduce data volume, to 
eliminate redundant and unnecessary details, and to im-
prove the visual smoothness for cartographic representa-
tion. To increase the level of shoreline generalization, we 
can increase the size threshold in the spurious object re-
moval routine, apply Douglas-Peucker routine or the 
bend simplification routine. Douglas-Peucker routine is 
efficient for data compression, but the resultant shore-
lines may contain unpleasant sharp angles and spikes. 
The bend simplification routine tends to produce smoo- 
ther and hence cartographically more appealing shore-
lines.  

In the following section, we will use Radarsat SAR 
image data, multi-spectral QuickBird data, and airborne 
LiDAR data to demonstrate how to use the shoreline 
extraction software routines and how to set up appropri-
ate parameters for these routines. 
 
4.3. Application Examples 
 
4.3.1. Shorelines from Single-Band Imagery 
A Radarsat SAR image over Galveston Bay, Texas is 
used to show how the software routines in the extension 
module can be used to derive shorelines from a sin-
gle-band remote sensing image. The radar image was 
acquired on August 31, 2008 by a C-band SAR sensor on 
board Radarsat-2 satellite with an ultra-fine beam. The 
radar image has a spatial resolution of 3 m. The SAR 
image was rigorously orthorectified and projected into 
the UTM (zone 15N) coordinate system with reference to 
WGS84 ellipsoid. The radar image shows sufficient con-
trast between land features and ocean water (Figure 5). 

The data processing steps and software routines are as 
follows: smooth the Radarsat SAR image with the Lee 
Sigma filter routine (kernel window size = 5, and sigma 
multiplier k = 2); apply the anisotropic diffusion operator 
to enhance the shoreline edges and suppress the internal 
intensity variations inside the land and water bodies (the 
iteration number = 5, and the gradient threshold value = 
20); apply the locally adaptive thresholding routine to 
segment the image into land and water pixels (with the 
width of the image regions = 128 pixels); apply the 
morphology operator with the option of the close, trim, 
and fill operation) to the segmented image; apply object 
formation and spurious object removal routine to identify 
water objects and eliminate water objects with an areal 
size less than 5,000 pixels; apply the object formation 
and spurious object removal routine for the second pass 
to identify land objects and eliminate land objects 
smaller than 5,000 pixels; apply the object boundary 
tracing routine to create the shorelines as an ArcGIS 
Shape file, and apply shoreline generalization routine 
with the band simplification option (with weed tolerance 
value of 10 m). Figure 5 shows the processing results for 
an enlarged portion of the image. Visual examination 
shows that the detailed shoreline features such as small 
inlets, islands, lakes, docks, piers and other subtle fea-
tures have been faithfully and accurately marked out. To 
evaluate the positional accuracy, we compared the algo-
rithm-derived shorelines with those visually interpreted 
by a careful human operator for three selected shoreline 
segments, each with a length of 150 m. For these three 
shoreline segments, the algorithm derived shorelines 
closely matches those obtained from human visual inter-
pretation, the Root Mean Squares Error (RMSE) for the 
derived shoreline position is 1.37 pixels, 4.1 m in this 
case. It should be noted that manually traced shorelines 
are generally robust and reliable without gross error, but 
less precise than numerically derived results. 
 
4.3.2. Shorelines from Multi-Band Imagery 
A multi-spectral QuickBird imagery over the North 
Sound, Antigua is used to demonstrate how the software 
routines can be applied to a multi-band image for shore-
line extraction. The multi-spectral QuickBird image 
contains four bands (blue, green, red, and near-infrared) 
with a spatial resolution of 2.44 m. The image was ac-
quired on January 15, 2005. The full image scene covers 
about 16.5 km × 16.5 km ground area. We performed the 
orthorectification of the basic imagery product using the 
supplied Rational Polynomial Coefficients (RPCs) and 
the SRTM DEM data. The orthorectified image has a 
horizontal position accuracy of about 15 m. 

The following data processing steps and software rou-
ines are used to process the multi-spectral QuickBird  t  
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Figure 5. Shoreline extraction from Radarsat SAR image. (a) Original SAR image; (b) After applying Lee Sigma filter and 
anisotropic diffusion operation; (c) thresholding result; (d) After removal of small and noisy water objects with a threshold 
value of 5000 pixels; (e) After removal of small and noisy land objects with a threshold value of 5000 pixels; (f) Derived 
shorelines. 
 
image: smooth the image with the Gaussian filter routine 
(the window size = 5, the standard deviation = 1); clas-
sify the multi-spectral image into 12 different types of 
clusters using the ISODATA classification routine (clus-
ter number = 12, iteration number = 30, minimum size of 
cluster = 2000 pixels, sample interval = 10); combine 
different land cover clusters into land and water pixels 

using the recoding operator; apply the morphology op-
erator with the option of the close, trim, and fill opera-
tion to the segmented image; apply object formation and 
removal routine to identify land objects and eliminate 
land objects smaller than 100 pixels; apply object forma-
tion and removal routine for the second pass to identify 
water objects and eliminate the water objects smaller 
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than 2 000 pixels; apply object boundary tracing routine 
to create the shorelines as an ArcGIS shape file, and ap-
ply the shoreline generalization routine with the band 
simplification option (with a weed tolerance value of 3 
m). Figure 6 shows the processing results for an 
enlarged portion of the image. We compared the algo-
rithm-derived shorelines with those visually interpreted 
by a human operator for three selected shoreline seg-
ments, each with a length of 100 m. The average accu-
racy (RMSE) of the derived shoreline position is 1.21 
pixels, within 2.95 m in this case. 
 
4.3.3. Shorelines from Airborne LiDAR Data 
An airborne LiDAR DEM data set over the coastal zone 
of the Galveston Bay, Texas is used to illustrate the Li-
DAR data processing procedure for shoreline extraction 
with our software routines. The LiDAR data were ac-
quired on October 16, 1999 by NASA’s Airborne To-
pographic Mapper (ATM) laser instrument. Raw meas-
urements of the LiDAR points used in this research have 
a horizontal accuracy of 0.8 m (RMSE) and a vertical 
accuracy of 0.15 m over the bare beach, and the spacing 
between original LiDAR sample points is between 1 and 
2 m on the ground. The surveyed swath covers the 
beaches, foredunes, and a few rows of houses landward. 
The LiDAR DEM is projected to the UTM (zone 15N) 
coordinate system, horizontally referenced to the WGS84 
ellipsoid. The elevation values of LiDAR DEM are ad-
justed to be referenced to the orthometric datum-the 
North American Vertical Datum of 1988 (NAVD88). 
Based on precise measurements of the horizontal and 
vertical positions of the benchmarks near tide gauge sta-
tion-Galveston Pier 21, the tidal datum values (relative to 
NAVD88) for this area are determined as follows: 0.36 
m for MHW, 0.387 m for Mean MHHW, 0.21 m for 
MSL, 0.048 m for MLW and −0.043 m for MLLW. For 
this small study area, the tidal datum surface is assumed 
to be a level plane with a constant elevation. 

First, the object-based approach is applied to the proc-
essing of the LiDAR DEM. The data processing chain is: 
apply a 3 × 3 median filter to reduce data noise; apply 
the LiDAR/tidal datum intersection routine to segment 
the LiDAR DEM into land and water pixels with the 
MHW tidal datum (0.36 m); apply the morphology op-
erator with the option of the close, trim, and fill opera-
tion to the segmented image; apply the object formation 
and removal routine to identify land objects and elimi-
nate the land objects smaller than 500 pixels; apply the 
object formation and removal routine for the second pass 
to identify water objects and eliminate the water objects 
smaller than 3 000 pixels; apply the object boundary 
tracing routine to create the shorelines as an ArcGIS 
shape file, and apply the shoreline generalization routine 

with the band simplification option (with weed tolerance 
value of 3 m). Figure 7 shows the processing results for 
the MHW datum referenced shorelines. 

The second approach is contouring-based. The data 
processing sequence consists of the following steps: ap-
ply a 3 × 3 median filter to remove data noise; apply the 
contouring routine to trace the elevation values of the 
MHW datum (0.36 m) with a length threshold (1000 m) 
and save it as a ArcGIS shape file; and apply the shore-
line generalization routine with the band simplification 
option (with weed tolerance value of 3 m). Figure 8 
shows the processing results with the contouring-based 
approach. Clearly, directly contouring without a length 
threshold creates many noisy, short line segments (Fig-
ure 8(b)) that are not true shorelines. With an appropri-
ate length threshold (1,000 m), the noisy and erroneous 
shorelines can be avoided (Figure 8(d)). We repeat the 
above the processing steps with other two different tidal 
datums and produced the shoreline indicators for the 
MHHW (0.388 m) and MSL (0.21 m) datums as well 
(Figure 8(f)). For this LiDAR data set, the MLW (0.048 
m) and MLLW (−0.043 m) shorelines cannot be deter-
mined because the water level (0.134 m) on the LiDAR 
data acquisition day was above the MLW and MLLW 
datums. 

It should be pointed out that the use of a constant tidal 
datum value for a large region could lead to the error in 
shoreline position determination. In the case of a large 
coastal region, a two-dimensional tidal datum surface 
should be computed by interpolating the tidal datum ob-
servations of available tidal gauge stations in the study 
area or modeled by a numerical hydrodynamic model 
[45]. Our accuracy analysis for the Upper Texas Gulf 
Coast suggests that the horizontal position of the shore-
lines derived from 1 m resolution LiDAR DEMs is ac-
curate within 4.5 m at the 95% confidence level [22]. 
 
5. Conclusions 
 
Coastal scientists have long recognized the importance of 
a rapid, accurate method for providing frequent and 
timely shoreline measurements, e.g. [46,47]. This paper 
identified the key algorithm components for automated 
shoreline extraction and implemented them as a series of 
software routines within an ArcGIS extension module - 
“ShorelineExtractor”. The combination of these soft- 
ware routines provides a powerful and flexible software 
tool, capable of processing various types of remote sens-
ing imagery and LiDAR elevation data for shoreline ex-
traction. Compared with conventional manual delinea- 
tion methods, our automated shoreline extraction algo-
rithms and software tools enjoy the advantages in effi-
ciency, robustness, repeatability and objectivity. To our 
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Figure 6. Shoreline extraction from multi-spectral QuickBird imagery. (a) Multi-spectral QuickBird image; (b) classification 
result (12 classes); (c) Recoding result; (d) After removal of small and noisy land objects with a threshold value of 100 pixels; 
(e) After removal of small and noisy water objects with a threshold value of 2000 pixels; (f) Derived shorelines. 

 
best knowledge, our product is the first dedicated, com-
prehensive software package for extracting shorelines 
from remote sensing data. 

We have presented insights and guidelines for select-
ing and combining different algorithm elements and 
specifying appropriate parameters for different software  
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Figure 7. Shoreline extraction from LiDAR using object-based approach. (a) original LiDAR DEM; (b) LiDAR DEM 
after applying median filter; (c) LiDAR/tidal datum intersection result; (d) After removal of small and noisy land ob-
jects with a threshold value of 3000 pixels; (e) After removal of small and noisy water objects with a threshold value 
of 4000 pixels; (f) Derived MHW shorelines. 
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Figure 8. Shoreline extraction from LiDAR using contouring approach. (a) Hill-shaded LiDAR DEM; (b) MHW shore-
lines from contouring without a length threshold; (c) MHW shorelines from contouring with a length threshold of 100 m; 
(d) MHW shorelines from contouring with a length threshold of 1000 m; (e) Generalized shoreline with bend simplifica-
tion option for the area in white box in A; (f) Three sets of shorelines respectively referenced to MHHW, MHW and 
MSL tidal datums for the area in black box of (a).    
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routines under various shoreline processing scenarios. 
The customized graphical interfaces for all the software 
routines allow the user to specify and change relevant 
parameters. The adjustment of these parameter values 
can be useful for tuning the tool to a particular coastal 
environment or to a particular type of data source. As we 
demonstrated, the use of our shoreline extraction soft-
ware tool can avoid the tedious and labor-intensive 
on-screen delineation, while producing shorelines with 
high precision, approaching the spatial resolution of 
source images or LiDAR data. It should be pointed out 
that our software package can be also used to extract 
river channels from remote sensing imagery with an ap-
propriate selection of parameters for software routines. 
To achieve shoreline products with a high absolute posi-
tional accuracy, the following conditions are also re-
quired: the high spatial resolution data, sufficient con-
trast between land features and water bodies, the geo-
metric integrity of the image, and accurate georeferenc-
ing and rectification of input images and LiDAR DEMs. 

Our software development experiences show that the 
strategy of implementing and integrating the shoreline 
extraction routines as a plug-in extension module in the 
ArcGIS environment has two major advantages. First, 
many core GIS functions offered by the ArcObjects can 
be directly utilized to facilitate the development of the 
software routines. Secondly, embedding the shoreline 
extraction routines into the ArcGIS allows the user to 
take advantages of a wide spectrum of data management, 
visualization and spatial analysis capabilities during the 
shoreline extraction and quality control process. For a 
large shoreline mapping project, shorelines derived with 
the automated approach unavoidably contain some errors. 
These errors can be easily detected and corrected with 
the visualization and editing tools of the ArcGIS soft-
ware. Our key algorithms for shoreline extraction have 
been implemented using the computationally high per-
formance C++ programming language as a series of 
re-usable DLLs. Besides ArcGIS, these re-usable algo-
rithm components would be useful in the open source 
GIS domain like GRASS and can be optionally incorpo-
rated into other commercial software packages like the 
remote sensing software ENVI as a plug-in component. 
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