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Abstract 
A spectral method based on Hermite cubic splines expansions combined with a collocation scheme 
is used to develop a solution for the vector form integral S-model kinetic equation describing ra-
refied gas flows in cylindrical geometry. Some manipulations are made to facilitate the computa-
tional treatment of the singularities inherent to the kernel. Numerical results for the simulation of 
flows generated by pressure and thermal gradients, Poiseuille and thermal-creep problems, are 
presented. 
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1. Introduction 
Research in the field of rarefied gas dynamics (RGD) involving the analysis and description of micro and 
nanoflows has been fundamental for the development of micro devices and new technologies, specially in the 
field of micro-electro-mechanical systems (MEMS) [1]-[5]. 

The Boltzmann equation is the fundamental mathematical model for dealing with problems in RGD [6]. 
Investigations of its solution and associated kinetic models have found much attention in the last few years 
[7]-[13]. Numerical and analytical approaches have been developed, mainly in Cartesian coordinates [14] [15]. 
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The solution of Boltzmann-like problems is even more challenging in multidimensional and complex geome- 
tries, particularly, if one seeks for analytical approaches. In cylindrical coordinates, to overcome such difficulties, 
the integral form of the kinetic equations has been employed. In this context, several approaches have been 
proposed in the past years [16]-[19], particularly related to the solution of the BGK model [20], as, for example, 
the use of classical Legendre polynomials expansions [21]. A special approach used in an earlier work of 
Ferziger [22], is based on a transformation proposed by Mitsis [23], which allows us to recast the problem in 
cylindrical coordinates into a much simpler problem in plane Cartesian coordinates. The transformation, 
however, is restricted to some specific (simpler) physical cases. 

Mitsis’ transformation [23] was used by Siewert and Valougeorgis [24] to develop a solution for the integral 
form of the S-model [25] kinetic equation, which is a vector equation, while the BGK kinetic equation is a scalar 
problem. It has been addressed in the literature, however, that the S-model is more appropriate than the BGK 
model to deal, for instance, with nonisothermal flows [24] [26]. 

In this work, we use an spectral approach based on Hermite cubic splines expansions along with a collocation 
scheme to solve the vector integral form of the S-model kinetic equation for flow in cylindrical tube. Numerical 
results are obtained for the Poiseuille and thermal-creep problems. As in other analytical approaches [24] the 
solution is explicit, in terms of the spatial variable. However, the technique proposed in this work, that has been 
also effective to deal with the BGK integral equation [27], may be extended to deal with the problems which 
include reflexive boundary conditions. 

2. The Formulation 
The initial formulation of the problems we treat in this work, is the integro-differential formulation associated 
with the kinetic S-model [24], for describing the behavior of gas flows in a cylindrical tube of radius R , with 
no variation in the axial direction, such that the distribution of particles and the boundary conditions depends on 
the spatial variable ( )0,r R∈ , written in dimensionless units, and the particle velocity vector c , also given in 
dimensionless units, expressed in the cylindrical coordinates. Still, in the initial formulation, the flow is subject 
to reflexive boundary conditions at r R= . In Ref. [24], the authors follow a previous derivation regarding to 
the BGK model [28] to derive in details the integral form of the equation for the S-model, which describes the 
flow of a rarefied gas in a straight cylindrical duct of radius R , which will be our starting point of this work. 
Since the derivations were done in details in [24] [28], we do not repeat it here. We start, already, from 
considering the integral vector equation [24]  

( ) ( ) ( ) ( )
0

d ,
R

r r t t r t t= + + →∫ΓZ B K Z                               (1) 

for ( ]0,r R∈ . In Equation (1) the inhomogeneous term Γ  is given by  

( )1 21 2
2

1

π 15 2 ,
2

k
k

 
= −  

  
Γ                                      (2) 

where the constants 1k  and 2k  are defined so that 1 1k =  and 2 0k =  for the so-called problem of Poiseuille 
flow while 1 0k =  and 2 1k =  for the thermal-creep problem. Still, the kernel of integral equation is  

( ) ( ) ( )2

01 2 20

2 de , ,
π

t r F t rτ ττ τ τ
τ

∞ −→ = ∫ ΔK                             (3) 

where  

( ) ( ) ( )0 0 0, , F t r I t K r t rτ τ τ τ= <                              (4) 

and  

( ) ( ) ( )0 0 0, , .F t r K t I r t rτ τ τ τ= >                              (5) 

Here ( )0I x  and ( )0K x  are the modified Bessel functions of zero order, first and second kind [29], 
respectively. Furthermore, in Equation (3),  

( ) 2 4
0 2 4 ,τ τ τ= + +Δ Δ Δ Δ                                  (6) 

with  
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( )
( )

1 2

0 1 2

3 10 1 30
,

1 30 1

 −
 =
 − 

Δ                                  (7) 

( )
( )

1 2

2 1 2

2 15 2 15

2 15 0

 −
 =
  

Δ                                   (8) 

and  

4

2 15 0
.

0 0
 

=  
 

Δ                                       (9) 

Now, if we define [24],  

( ) ( ) ,r r= −ΓG Z                                      (10) 

we can evaluate the quantities of physical interest for the gas flow, such as the velocity profile [24]  

( ) ( )1 20 πu r r− =  G                                  (11) 

and the heat-flow profile  

( ) ( ) ( )1 215 2π 0 .q r r =  G                               (12) 

Consequently, we write the particle-flow rate as  

( )3 0

4 d
R

U u r r r
R

= ∫                                   (13) 

and the heat-flow rate  

( )3 0

4 d .
R

Q q r r r
R

= ∫                                  (14) 

The Equations (11) to (14) are used for both problems, Poiseuille and thermal-creep, depending on the 
specified values of the constants 1k  and 2k  which define the expression used for the source term given in 
Equation (2). 

Finally, we note that, in Equation (1), the term ( )rB  brings the information from the boundary condition, 
and it is not really an inhomogeneous term when reflexive boundary conditions are applied. For this reason, the 
only case considered in Ref. [24] was the diffuse reflection, where, at the end ( )r =B 0 . At this point, in this 
work, we also disregard this term in our formulation and will comment on that later on in this text. 

3. The Solution 
Firstly, we rewrite Equation (1) as,  

( ) ( ) ( )1 2
0

d ,Rx yR Ry Rx Ry y= + →∫ΓZ K Z                           (15) 

for [ ]0,1x r R= ∈ , [ ]0,1y t R= ∈  and for the case with no specular reflection, ( )r = 0B . 
We then propose a solution to Equation (15) in terms of a truncated expansion of Hermite cubic splines 

functions [30], as  

( ) ( )
0

,
L

Rx xα α
α =

= ℑ∑Z v                                     (16) 

where αv  are vectors  
[ ]Ta bα α α=v                                         (17) 

whose components (constants) aα  and bα  are to be determined. In regard to the splines functions ( )xαℑ ,  

first of all, we consider there to be 1M +  knots αζ  defined on the interval [ ]0,1x∈ , such that 2 1L M= +   
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(see Appendix for details). 
If we now substitute Equation (16) into Equation (15) we obtain  

( ) ( ) ( ){ }1 2
0

0
d

L
x yR Ry Rx y yα α α α

α =
ℑ − → ℑ =∑ ∫ Γv K v                       (18) 

which still can be expressed in the form  

( ) ( ) ( ){ }2

0

L
x R x xα α α α

α =
ℑ − + =  ∑ Γv U V                           (19) 

with  

( ) ( ) ( )
0

d
x

x y Ry Rx y yα α α= → ℑ∫U K v                             (20) 

and  

( ) ( ) ( )1
d .

x
x y Ry Rx y yα α α= → ℑ∫V K v                             (21) 

At this point, we introduce a collocation scheme, such that, if we evaluate Equation (19) at the collocation 
points  

2

, 0,1, 2, , ,i
ix i L
L

 = = 
 

                                 (22) 

we end up with  

( ) ( ) ( ){ }2

0

L

i i ix R x xα α α α
α =

 ℑ − + = ∑ Γv U V                         (23) 

for 0,1, 2, ,i L=  , which is a ( )2 1 4 4L M+ = +  linear system to the constants aα  and bα  used in expansion 
given by Equation (16). 

4. Computational Aspects 
The procedure described in Section 3 may be considered quite straightforward. However the solution of the  
linear system given by Equations (23), depends on the explicit evaluation of the integrals ( )ixαU  and  

( )ixαV , which are written in terms of the kernel, Equations (3) to (9), which clearly includes singularities  
that introduce numerical difficulties. In this way, a series of computational steps have to be taken into account. 

As a first step, as used in previous works [24] [31], for computational reasons, the modified Bessel functions 
are rewritten as  

( ) ( ) ( ) ( )0 0 0 0
ˆ ˆe   and  e ,x xI x I x K x K x−= =                         (24) 

such that Equations (4) and (5) are now expressed as  

( ) ( ) ( ) ( )
0 0 0

ˆ ˆ ˆ, e y x RF Ry Rx I Ry K Rx ττ τ τ τ −=                         (25) 

for <y x  and  

( ) ( ) ( ) ( )
0 0 0

ˆ ˆ ˆ, e x y RF Ry Rx K Ry I Rx ττ τ τ τ −=                      (26) 

for >y x . To be consistent, from now on, we consider the previously given integral equation kernel, Equation 
(3), expressed in the form  

( ) ( ) ( )2

01 2 20

2 dˆe , .
π

Ry Rx F Ry Rxτ ττ τ τ
τ

∞ −→ = ∫ ΔK                     (27) 

Continuing, if we look back to Equations (6) to (9), we can see that  

( ) ( ) ( ) ( )0 0 2 2 4 4 ,Ry Rx y x y x y x→ = → + → + →K   ∆ ∆ ∆                 (28) 
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with  

( ) ( )2

0 01 2 20

2 dˆe , ,
π

y x F Ry Rxτ ττ τ
τ

∞ −→ = ∫                       (29) 

( ) ( )2

2 01 2 0

2 ˆe , d
π

y x F Ry Rxτ τ τ τ
∞ −→ = ∫                        (30) 

and  

( ) ( )2 2
4 01 2 0

2 ˆe , d ,
π

y x F Ry Rxτ τ τ τ τ
∞ −→ = ∫                      (31) 

where, again, the (constant components) matrices 0Δ , 2Δ , 4Δ  are defined in Equations (7) to (9). More 
importantly, in writing the kernel as above, it is to point out that in these definitions, the only expression which 
effectively involves the term ( )21 τ  which induces a singular behavior, is the first one in the right hand-side. 
We note, however, that this same expression was part already of the BGK model kernel we had to deal in a 
previous work [21]. 

Finally, for future use, later on in this text, we can also express the kernel of the integral equation, in a matrix 
form,  

( ) ( ) ( )
( ) ( )

11 12

21 22

, ,
,

, ,
k y x k y x

y x
k y x k y x
 

→ =  
 

K                           (32) 

following, of course, the previous definitions given in Equations (7) to (9) and Equations (29) to (31). Here,  

( ) ( ) ( ) ( )11 0 2 4
3 2 2, ,

10 5 15
k y x y x y x y x= → − → + →                     (33) 

( ) ( ) ( ) ( )
1 2 1 2

12 21 0 2
1 2, ,
30 15

k y x k y x y x y x   = = − → + →   
   

                 (34) 

and  

( ) ( )22 0, .k y x y x= →                             (35) 

Going back to the definition of the linear system we need to solve, Equations (23), we now focus our  
attention in the definition of the functions ( )ixαU  and ( )ixαV  given in Equations (20) and (21).  

Considering that [ ],d eα α  is the support of the spline function ( )xαℑ , in other words, ( ) [ ]0, ,x x d eα α αℑ = ∉ ,  
we note that  

( ) 0,ixα =U                                   (36) 

if ix dα≤  and  

( ) ( ) ( ), d ,in
i id

x y Ry Rx y yα

α
α α α= → ℑ∫U K v                        (37) 

if >ix dα  with  

( ), min , .i in x eα α=                                  (38) 

In an analogous form,  

( ) 0,ixα =V                                  (39) 

if ix eα≥  and  

( ) ( ) ( )
,

d ,
i

e
i im

x y Ry Rx y yα

α
α α α= → ℑ∫V K v                       (40) 

if <ix eα  with  
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( ), max , .i im x dα α=                                   (41) 

In fact, to be more specific, we can express the vector ( )ixαU , in terms of its components  

( ) ( )
( )

1

2

i
i

i

u x
x

u x

α

α α

 
=  
  

U                                     (42) 

such that  

( ) ( ) ( )1 1,1 1,2i i iu x a g x b g xα α α
α α= +                              (43) 

and  

( ) ( ) ( )2 2,1 2,2 ,i i iu x a g x b g xα α α
α α= +                              (44) 

where aα  and bα  are the constants to be defined in the proposed expansion, Equation (16), obtained as the 
solution of the linear system Equations (23). The terms ( ),p q ig xα , for { }, 1, 2p q = , are defined in terms of 
expressions ( ),pq ik y x  given in Equations (33) to (35),  

( ), 0,p q ig xα =                                    (45) 

if ix dα≤  and  

( ) ( ) ( ),
, din

p q i pq id
g x yk Ry Rx y yα

α

α
α= → ℑ∫                        (46) 

if >ix dα . Similarly, the vector ( )ixαV , defined by Equations (39) and (40), is rewritten in a matrix form  

( ) ( )
( )

1

2

,i
i

i

v x
x

v x

α

α α

 
=  
  

V                                  (47) 

with  

( ) ( ) ( )1 1,1 1,2i i iv x a h x b h xα α α
α α= +                             (48) 

and  

( ) ( ) ( )2 2,1 2,2 .i i iv x a h x b h xα α α
α α= +                             (49) 

Here  

( ), 0,p q ih xα =                                     (50) 

if ix eα≥  and  

( ) ( ) ( )
,

, d ,
i

e
p q i pq im

h x yk Ry Rx y yα

α

α
α= → ℑ∫                         (51) 

if <ix eα . Considering the explicit derivations above, at this point, we can rewrite the linear system defined in 
Equations (23), in the following form  

( ) ( ) ( ){ }2 2
1,1 1,2 1

0

L

i i ia x R A x b R A x Bα α α
α =

 ℑ − − = ∑                     (52) 

and  

( ) ( ) ( ){ }2 2
2,1 2,2 2

0
,

L

i i ia x R A x b R A x Bα α α
α =

 ℑ − − = ∑                     (53) 

for 0,1, ,i L=  , where  

( ) ( ), , , ,p q p q i p q iA g x h xα α= +                                (54) 

for { }, 1, 2p q = , ( ),p q ig xα  and ( ),p q ih xα  are given by the expressions shown in Equations (41)-(46) and  
(50)-(51). Still, the terms 1B  and 2B  are defined by the components of the source term Γ , so that  
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1 21 2

1 2
π 15
2 2

B k = −  
 

                                  (55) 

and  
1 2

2 1
π ,
2

B k= −                                     (56) 

depending on the problem, as mentioned earlier: 1 1k =  and 2 0k =  for the Poiseuille flow; 1 0k =  and 
2 1k =  for the thermal-creep problem. 
The linear system given by Equations (52) and (53), is of order 2 2L +  (or 4 4)M + , which solution, the 

constants aα  and bα , allow us to evaluate the quantities of physical interest such as velocity profile  

( ) ( )1 2 1

0
π

2

L ku r b r Rα α
α

−

=

= ℑ +∑                              (57) 

and the heat flow profile  

( ) ( )
1 2

2
0

15 15 .
2π 4

L
q r a r R kα α

α =

 = ℑ + 
 

∑                           (58) 

Numerical Quadrature Schemes 
Searching for a general procedure, as much as possible, the basic approach for evaluating the integrals involved 
in this derivation was based on the use of the Gauss-Legendre quadrature scheme [29] with nodes nµ  and 
weights nω  defined in the interval [ ]1,1− . In this form, convenient mappings, according to the integration 
interval, were used. 

In this way, we define  

1
ln

2
n

n
µ

τ
+ = −  

 
                                   (59) 

and we consider a quadrature scheme with 
it

N  nodes and weights for evaluating the integrals defined in 
Equations (27) to (29) as  

( ) ( )
1

0 01 2 2
1

1 eˆ , ,
π

n
Nt

n n n
n n

y x F Ry Rx
τ

ω τ τ
τ

−

−
=

→ = ∑                     (60) 

( ) ( )
2

2 01 2
1

1 ˆ , e ,
π

n

Nt

n n n
n

y x F Ry Rx τω τ τ −

=

→ = ∑                      (61) 

and 

( ) ( )
3

2
4 01 2

1

1 ˆ , e .
π

n

Nt

n n n n
n

y x F Ry Rx τω τ τ τ −

=

→ = ∑                     (62) 

At this point, however, a special remark has to be done in regard to the evaluation of Equation (60). While  
the general procedure described above works well as long as Ry Rx−  is not small—in fact, using 

1
50tN =   

one obtains results which agree in seven digits with results obtained by the software Maple—the case 
Ry Rx→  has to be treated more carefully, if ones search for more accurate results as a general case. 

To deal with that, we subtract (and add) from Equation (29) the expression  

( ) ( )1 01 2 20

2 dˆ, , .
π

S y x F Ry Rx ττ τ
τ

∞
= ∫                          (63) 

In the resulting integral expression, we introduce the change of variables  

1 ,
1

s
τ

=
+

                                      (64) 
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and, subsequently, once more, we add (and subtract) the integral term  

( )1
2 01 2 0

2 ˆe d .
π

sS K s s−= ∫                                 (65) 

To be clear, when Ry Rx→  (we considered typically 0.05Ry Rx− ≤ ) we evaluate ( )0 y x→  as  

( ) ( ) ( )0 1 2, ,y x S y x S y x S→ = + −                             (66) 

with  

( ) ( ) ( )( )
( )

( )
( )

2
1 1

0 01 2 2 1 20 0

2 e 1 2ˆ ˆ, , d e d ,
π π1

q s
sS y x F Ry q s Rx q s s K s s

s

−
−−

= +
−

∫ ∫              (67) 

and  

( ) 1 .sq s
s
−

=                                       (68) 

The reasons for doing that is, firstly, the use of these additional functions results in a smoother function when 
approaching 0τ = . In addition to that, ( )1 ,S y x  can be expressed as  

( )
( )
( )

1 2

1 1 2

ˆ2π ,
, ,

ˆ2π ,

E y x Rx y x
S y x

E x y Ry y x

−

−

 <= 
>

                           (69) 

where ( )Ê x  is the elliptic integral of the first order, that can be evaluated numerically by applying the 
algorithm given by [29]. Still, 2S , can be evaluated by using Maple, such that 2 1.4020222280980703S = . The 
integral ( ),S y x , given by Equation (67), can be then evaluated without much difficulty by applying the 
scheme of Gauss-Legendre quadrature, by mapping [ ]0,1  into [ ]1,1− . 

Therefore, in regard to the computational scheme, we note that ( )0 y x→  is evaluated either by Equation 
(60) if 0.05Ry Rx− ≥  or Equation (66), if < 0.05Ry Rx− . This procedure is, in fact, analogous to the one 
we used to deal with the BGK model [21] [27] and it was implemented once we seek for increasing the accuracy 
of the final results, as we will comment later on in this text. 

To all other integrations processes needed in this formulation, more specifically, the expressions given by 
Equations (46) and (51) as well as Equations (13) and (14), linear mappings from the integration interval to the 
interval [ ]1,1−  were performed, to the use of the Gauss-Legendre quadrature scheme. Clearly, in the case of 
Equations (46) and (51) the dependence of the integration limits on the interval definition of the splines functions 
have to be taken into account to improve the computational results. In this way, we evaluate these equations as  

( ) ( ) ( ), , , , , , , ,
0

,
yN

a a a a
p q i i m i m pq i m i i m

m
g x c S k RS Rx Sα

α α α α αω
=

= → ℑ∑                   (70) 

if >ix dα  and  

( ) ( ) ( ), , , , , , , ,
0

,
N y

b b b b
p q i i m i m pq i m i i m

m
h x c S k RS Rx Sα

α α α α αω
=

= → ℑ∑                   (71) 

if <ix eα . Here we used  

( ),
, 2

ia
i

n d
c α α
α

−
=                                     (72) 

( ),
, ,

2
ib

i

e m
c α α
α

−
=                                    (73) 

( ), ,
, , 2

i m ia
i m

n d d n
S α α α α
α

µ− + +
=                               (74) 

and  
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( ), ,
, , .

2
i m ib

i m

e m d m
S α α α α
α

µ− + +
=                            (75) 

With this, we conclude the evaluation of the elements of the system given by Equations (52) and (53). 

5. Numerical Results 
As input data in our program we need to specify the radius of the duct, R , the order of the quadrature schemes 
( ), ,

it y rN N N  and the number M  of knots (associated to the splines functions) which will define L  in the 
linear system given by Equations (52) and (53). We implemented a FORTRAN program and subroutines from 
LINPACK [32] were used to solve the linear system. The solution was then used to obtain the physical 
quantities of interest, the velocity and heat-flow profiles, Equations (57) and (58), and subsequently Equations 
(13) and (14). 

As a first test, to check and to have confidence in our approach, we reproduced all the results listed in Ref. 
[24], for the velocity and heat-flow profiles (case 2R = ), as well as velocity slips and particle flow rates for 
values of R  ranging from 0.001=R  to 100R = . We do not repeat the results here since they were already 
reported in [24]. 

As we mentioned earlier, the approach used in that work can be very accurate, since it works with a Cartesian 
coordinates problem associated with a very accurate discrete ordinates solution, after using Mitsis’ transfor- 
mation [23]. In order to get agreement in six to seven digits, for all cases, with Siewert and Valougeorgis’ results  
(listed with seven digits) [24], we used 300M = , 

1 2 3
60t t tN N N= = = , 80yN =  and 50rN = , for  

0.001R =  to 10R = . If we use, for instance, lower order approximations as 10M = , 
1 2 3

30t t tN N N= = = ,  

30yN =  and 30rN =  results can also be reproduced, in general, with two to three digits of agreement with 
[24], particularly for < 1R . 

We then investigated additional cases. To provide the results we list in Table 1 and Table 2, we used the first 
set of parameters listed above. In regard to Table 2, we remark that, the Onsager reciprocity relation [33] [34], 

T PU Q=  is verified. Still, the results listed in Table 2 have some agreement with Ref. [26], within the accuracy 
 
Table 1. Velocity and heat flow profiles in a duct with R = 1.                                                     

r R  ( )pu r−  ( )pq r  ( )Tu r  ( )Tq r−  
0.00 9.85725(−1) 2.73671(−1) 2.64663(−1) 1.04388(0) 
0.05 9.84648(−1) 2.73381(−1) 2.64404(−1) 1.04312(0) 
0.10 9.81416(−1) 2.72509(−1) 2.63627(−1) 1.04084(0) 
0.15 9.76014(−1) 2.71049(−1) 2.62325(−1) 1.03701(0) 
0.20 9.68422(−1) 2.68987(−1) 2.60489(−1) 1.03160(0) 
0.25 9.58609(−1) 2.66308(−1) 2.58103(−1) 1.02456(0) 
0.30 9.46533(−1) 2.62988(−1) 2.55148(−1) 1.01581(0) 
0.35 9.32139(−1) 2.58999(−1) 2.51600(−1) 1.00525(0) 
0.40 9.15359(−1) 2.54301(−1) 2.47425(−1) 9.92763(−1) 
0.45 8.96106(−1) 2.48849(−1) 2.42585(−1) 9.78205(−1) 
0.50 8.74269(−1) 2.42582(−1) 2.37028(−1) 9.61381(−1) 
0.55 8.49707(−1) 2.35426(−1) 2.30690(−1) 9.42050(−1) 
0.60 8.22242(−1) 2.27283(−1) 2.23491(−1) 9.19905(−1) 
0.65 7.91638(−1) 2.18030(−1) 2.15326(−1) 8.94546(−1) 
0.70 7.57578(−1) 2.07498(−1) 2.06054(−1) 8.65440(−1) 
0.75 7.19622(−1) 1.95456(−1) 1.95483(−1) 8.31853(−1) 
0.80 6.77128(−1) 1.81567(−1) 1.83333(−1) 7.92722(−1) 
0.85 6.29081(−1) 1.65304(−1) 1.69168(−1) 7.46392(−1) 
0.90 5.73681(−1) 1.45731(−1) 1.52223(−1) 6.89979(−1) 
0.95 5.06946(−1) 1.20787(−1) 1.30821(−1) 6.17220(−1) 
1.00 4.08449(−1) 7.98670(−2) 9.64522(−2) 4.97276(−1) 
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Table 2. Flow rates.                                                                                      

R  pU−  pQ  TU  TQ−  

0.1 1.40902(0) 6.20876(−1) 6.20876(−1) 2.88006(0) 

0.5 1.40054(0) 4.78435(−1) 4.78435(−1) 2.13603(0) 

1.0 1.47644(0) 3.96750(−1) 3.96750(−1) 1.67455(0) 

 
declared in that paper (0.5%). In addition to provide accurate results, it is important to remark that, the approa- 
ch proposed in this work may be used to simulate the case which includes specular reflection at the surface 

( )( )0r ≠B , as we show in a subsequent work, and, a better description of the boundary effects is a relevant 
issue when it comes to the modeling of microflows. 

6. Conclusion 
In this work, we have used a classical spectral approach, based on the use of Hermite cubic splines combined 
with a collocation scheme, to obtain a solution, in a closed-form, to the S-model kinetic integral vector equation 
relevant to describe rarefied gas flow in cylindrical coordinates. The main purpose of this work was to verify the 
performance of this approach as an extension of an earlier work related to a simpler integral model equation, the 
BGK model, trying to derive, as much as possible, a general approach which can be now, in a subsequent work, 
extented to include the treatment of reflexive boundary conditions. The numerical results obtained showed good 
agreement with accurate results available in the literature. 
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Appendix 
The Spline Functions 
We follow here the Hermite cubic splines functions as defined by Schultz [30]. In this way, we first consider the 

1M +  knots αζ , defined in the interval [ ]0,1  as,  

( ) , 0,1, , ,mM Mαζ α α= =                                (76) 

where, in this work, we use 2m = . To express a function ( )F x , for [ ]0,1x∈ , in terms of the spline functions, 
we write  

( ) ( )
0

,
L

F x a xα α
α =

= ℑ∑                                  (77) 

where aα  are constants to be determined and 2 1L M= + . In fact, associated with each one of the knots, there 
are two spline functions ( )xαℑ , which are defined differently for even or odd values of α ,  

( ) ( ) ( ) ( )2 2 1  and  ,x x x xβ β β βψ ϕ+ℑ = ℑ =                         (78) 

for 0,1, , Mβ =  . Here, we introduce  

( ) 1

1

,
x

f x α
α

α α

ζ
ζ ζ

−

−

−
=

−
                                    (79) 

( ) 1

1

,
x

g x α
α

α α

ζ
ζ ζ

+

+

−
=

−
                                    (80) 

and we consider that the spline functions are zero unless otherwise, to write  

( ) ( ) ( ) [ ]2
0 0 0 0 13 2 , , ,x g x g x xψ ζ ζ= − ∈                             (81) 

( )
( ) ( ) [ ]
( ) ( ) [ ]

2
1

2
1

3 2 , ,

3 2 , ,

f x f x x
x

g x g x x
α α α α

α
α α α α

ζ ζ
ψ

ζ ζ
−

+

 − ∈   = 
− ∈   

                         (82) 

for 1, 2, , 1Mα = − , and  

( ) ( ) ( ) [ ]2
13 2 , , .M M M M Mx f x f x xψ ζ ζ−= − ∈                           (83) 

Similarly, we write  

( ) ( ) [ ]2
0 0 0 1, , ,x xg x xϕ ζ ζ= ∈                                (84) 

( ) ( ) ( ) [ ]
( ) ( ) [ ]

2
1

2
1

, , ,
, , ,

x f x x
x

x g x x
α α α α

α
α α α α

ζ ζ ζ
ϕ

ζ ζ ζ
−

+

 − ∈=  − ∈
                          (85) 

for 1, 2, , 1Mα = − , and  

( ) ( ) ( ) [ ]2
1, , .M M M M Mx x f x xϕ ζ ζ ζ−= − ∈                           (86) 
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