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Abstract

In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and
Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value prob-
lems with boundary conditions defined at any order derivatives. The numerical results obtained
with a small amount of computation are compared with the exact solutions to show the efficiency
of the method. The results show that the decomposition method is of high accuracy, more conve-
nient and efficient for solving high-order boundary value problems.
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1. Introduction

In the beginning of the 1980°s, Adomian [1]-[4] proposed a new and fruitful method (hereafter called the Ado-
mian Decomposition Method or ADM) for solving linear and nonlinear (algebraic, differential, partial differen-
tial, integral, etc.) equations. It has been shown that this method yields a rapid convergence of the solutions se-
ries to linear and nonlinear deterministic and stochastic equations.

The lower-order boundary value problems have been vastly examined, analytically and numerically, in the li-
terature. In contrast, higher-order boundary value problems have not been studied to the same extent that lower-
order equations have been investigated. Nowadays, higher-order boundary value problems receive an increased

How to cite this paper: Al-Hayani, W. (2014) Adomian Decomposition Method with Green’s Function for Solving Tenth-
Order Boundary Value Problems. Applied Mathematics, 5, 1437-1447. http://dx.doi.org/10.4236/am.2014.510136



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.510136
http://dx.doi.org/10.4236/am.2014.510136
http://www.scirp.org/
mailto:waleedalhayani@yahoo.es
http://creativecommons.org/licenses/by/4.0/

W. Al-Hayani

interest due to the fact that they are noted in many mathematical physics applications. A class of characteristic-
value problems of high order (as high as twenty four) are known to arise in hydrodynamic and hydromagnetic
stability [5]. Tenth-order differential equations govern the physics of some hydrodynamic stability problems.
When an infinite horizontal layer of fluid is heated from below, with the supposition that a uniform magnetic
field is also applied across the fluid in the same direction as gravity and the fluid is subject to the action of rota-
tion, instability sets in. When this instability sets in as ordinary convection, it is modelled by a tenth-order ordi-
nary differential equation [5].

Theorems which list the conditions for the existence and uniqueness of solutions of BVPs of higher order are
thoroughly investigated in a book by Agarwal [6]. However, no numerical methods are contained in [6] for
solving such problems.

Different numerical and semi analytical methods have been proposed by various authors to solve tenth-order
boundary-value problems. A few of them are: Tenth degree spline method [7], Modified Decomposition Method
with the inverse operator (MDM) [8], Differential Transform Method (DTM) [9], Eleventh Degree Spline Me-
thod (EDSM) [10], Non-Polynomial Spline Method (NPSM) [11], Variational Iteration Technique (VIT) [12]
and Homotopy Perturbation Method (HPM) [13].

The main objective of this paper is to apply the Standard Adomian with Green’s function (SAWGF) and Mod-
ified Technique with Green’s function (MTwGF) to linear and nonlinear tenth-order boundary value problems
with boundary conditions defined at any order derivatives.

2. Analysis of the Method
Let us consider the general BVP of tenth-order

Y (x)+g(xy)=f(x),a<x<b (1)
with boundary conditions

y"(a)=a;,y" (b)=,i=01234 )
where y=y(x), g(x,y) is a linear or nonlinear function of y, and f(x) are continuous functions de-

fined in the interval x e[a,b] and o, B; (i=0,12,34) are finite real constants.
Applying the decomposition method as in [1]-[4], Equation (1) can be written as

Ly = f(x)-Ny,

10
where L=

v is the linear operator and Ny:g(x, y) is the nonlinear operator. Consequently,
X

y(x)=h(x)+ [ G(x&) f(£)ds [ G (x.£)Nyde, 3)

where h(x) is the solution of Ly=0 with the boundary conditions (2) and G (x,&) is the Green’s function
[14] given by

0,(x,&) if a<x<&<b
G(X!é) = 2 ( ) )
g, (x&) if a<&<x<b

The Adomian’s technique consists of approximating the solution of (1) as an infinite series

y=2Yn 4)
n=0
and decomposing the nonlinear operator N as
Ny =>"A, (®)
n=0

where A, are polynomials (called Adomian polynomials) of y,,v,,---,y, [1]-[4] given by
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i=0

1d S i _
=i (B ]| n-onar

The proofs of the convergence of the series > 'y, and > " A are given in [3] [15]-[19]. Substituting (4)
and (5) into (3) yields

HZ:)yn —h(x)+ [ G(x&) f (f)dg—j:G(x,f)gAng. (6)

From (6), the iterates defined using the Standard Adomian Method are determined in the following recursive
way:

Vo =N(x)+ [, G (x.£) f (£)de,

b
You ==[, G(x€)AdEN=012,-
and the iterates defined using the Modified Technique [20] are determined in the following recursive way:
Yo =h(x),
b b
% =[,6(x &) F(£)de-[[6(x &) Ade,

yn+2 = _,[:G(X’é’g) A1+1d§!n =0111 21

Thus all components of y can be calculated once the A, are given. We then define the n-term approximant
n-1

tothe solution y by ¢ [y]=>" y; with lim_ 4 [y]=Y.

3. Applications and Numerical Results

In this section, the ADM with the Green’s function (Standard Adomian and Modified Technique) for solving li-
near and nonlinear tenth-order boundary value problems is illustrated in the following examples. To show the
high accuracy of the solution results compared with the exact solution, we give the maximum absolute error and
the maximum residual error. The computations associated with the examples were performed using a Maple 13
package with a precision of 40 digits.
3.1. Example 1
Consider the following linear BVP of tenth-order [9]-[12]:

y(lO)(X)—Xy(X):—(89+21X+X2—Xs)ex,—].SXSl (7)

with boundary conditions

~1)=2e",y"? (1) =6, 8

The exact solution of (7), (8) is
Ve (X) = (1— xz)ex.

Applying the decomposition method, Equation (7) can be written as
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Ly :—(89+21x+x2 —x3)eX +xy(x),

10
where L=

v is the linear operator. Consequently,
X

y=h(x)-[" G(x&)(89+215 +&2 - £ )ede
+[,6(x&)éy(&)de,

where h(x) is the solution of Ly =0 with the boundary conditions (8) given by

h(x) = 9; {(5e*—37)x° —(e” ~7)x" —(26¢* ~190) " +(4¢” - 40)x°}

©)

+%{(48e2 ~396) x° —(30e? ~102) x* — (86e? — 418) x3}

+${(4e2 _160) NG +(59@2 _175) X + 2362 +91}

and G(x,¢&) is the Green’s function given by

g (x &) if —1<x<g<1
G(X,g)_{gl(x*f) if -1<&<x<1

where

gl(x,é)( 1 & 1 W+ 1 o5 1 34 1 X_ 1 ]59
654208 516096 245760 221184 294912 725760

1 1x4—1x2+1x—1jz§8
2064384 7368640 | 147456 . 73728 | 80640 294912

CO N S S S SR S 7
x> — X°+ X5 — X |&
516096 92160 36864 18432 20160 73728

1 4 1 1 1 ., 1 j 6
X" - X+ X - ¢
368640 55296 12288 8640 18432 221184

+

+

X5 + 1 X5 — 1 x4+ 1 N 1 )54
147456 12288 5760 8192 36864 245760

1 o, b e 1 s 1 s 1 3
X — x>+ X*— X|&
221184 18432 8640 12288 55296 368640

1 7 1 6 1 4 1 2 1 2
X — X"+ X - ¢
73728 20160 18432 36864 92160 516096

1 W+ 1 5 1 ., 1 1 5
+ x> — X"+ X* = X |&
245760 36864 8192 5760 12288 147456
+[

1 & + 1 7 1 5 1 3 1 j
X' = X+ X* — X |&
294912 80640 73728 147456 368640 2064384

X — 1 8 1 6 1 4 1 2 1
X"+ X = X+ X" =
725760 294912 221184 245760 516096 2654208
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1 1 1 1 1 1 j o
X, &)= + - + - X
92 (%.€) (2654208 &= 516096° | 245760° 221184° ' 294912° 725760
+( 1 o 1 e 1 . 1 ‘e 1 jxa
2064384° 368640° ' 147456° 73728° ' 80640° 204912
7 1 5 1 3 1 2 1 7
+ - + - X
(516096 T92160° T36864° 18432° ' 20160° 73728 éj
( 56 + 1 54 _ 1 53 + 1 52 _ 1 jxﬁ
368640 ° 55296 12288° 8640°  18432° 221184
1 1 1 1
n [ 5_ 4, 3_ )XS
(245760 36864 S Y8192° 5760° ' 12288° 147456°
+( 56 + l 55 _ 1 54 + 1 52 _ 1 jxd
147456 ° 12288 5760° 8192°  36864° 245760
71 e 1 1 1 J 3
+ - + - X
(221184 18432 S T8640° 12288° '55206° 368640°
( 1 57 + 1 56 _ 1 54 n 1 52 _ 1 \JXZ
73728° 20160° ' 18432° 30864° @ 92160° 516096
+[ Pt gL sy 1 e 1 éjx
204912° 80640 73728° 147456  368640° 2064384
£ - £+ A Sy Sy j—
725760 294912 221184 245760° 516096 ° 2654208

Substituting (4) in (9), the iterates defined using the Standard Adomian Method are determined in the follow-

ing recursive way:

[ G(x&)(89+ 215 + &2~ & e,

You = [ G (X E)EY, (£)dEn=01,2,

and the iterates defined using the Modified Technique [20] are determined in the following recursive way:

Yo =h(x),

Y, =[G (x.&)(80+215 + &2 — & )efde + [ G (x.£) €y, (&) de

Yorz = | ;G (X &) EYpun (€)dEn=0,1,2,---

In Table 1, we list the maximum errors obtained by SAWGF and MTwGF with the exact solution. Comparing
them with the DTM [9], EDSM [10], NPSM [11] and VIT [12] results, we notice that the result obtained by the
present method (SAWGF) is very superior (lower error combined with less number of iterations) to that obtained
by the other mentioned methods. Table 2 reproduces the maximum residual error of the SAWGF and MTwGF

for ¢, .

3.2. Example 2

Consider the following linear BVP of tenth-order [9]-[12]:

y* (x)+ y(x) = -10(2xsin x—9cos x),~1< x <1

(10)
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Table 1. Comparison of maximum errors for example 1.

SAWGF MTWGF DTM [9] EDSM [10] NPSM [11] VIT [12]
n=2 n=2 n=13 n=15
H. 1.99E-16 6.69E-14 2.70E-08 3.28E-06 4.72E-06 1.97E-06
I, 1.41E-16 4.56E-14

Table 2. Maximum residual error for example 1.

SAWGF MTWGF
n [E. (2. & (4, & (4. & (4],
2 451E-09 2.94E-09 5.02E-06 3.98E-06
3 4.64E-17 311E-17 223E-14 1.48E-14
4 4.17E-25 271E-25 4.63E-22 3.68E-22

with boundary conditions
y(-1)=0,y(1)=0,
y¥ (-1) = -2cos(1), y” (1) = 2cos (1),
y® (-1) = 2cos(1) - 4sin (1), y'* (1) = 2cos(1) - 4sin (1), (11)
y® (~1) =6cos(1)+6sin (1), y** (1) = —6cos (1) - 6sin (1),
y“ (~1) = ~12cos(1) +8sin (1), y'* (1) = ~12cos (1) + 8sin (1).

The exact solution of (10), (11) is
Yexaet (X) = (x2 —1)005 X.
Applying the decomposition method, Equation (10) can be written as
Ly =—10(2xsin x—9cosx)—y(x),

10

where L= is the linear operator. Consequently,

XmO

y= h(x)—loflG(x,é)(Zésin§—Qcos§)d<§—ﬁlG(x,§)y((f)dé, (12)

where h(x) is the solution of Ly =0 with the boundary conditions (11) given by

h(x)=- L sin1—Lcost |xt [ Lsin1—3cos |x¢ —[ 2sin1—3cost |x*
24 16 24 8 8 4
o 2 sin1+ 2 cos1 x - Zsin1- 2 cost
24 8 3 16
and G (x,§) is the Green’s function given previously in example 1. Substituting (4) in (12), the iterates defined
using the Standard Adomian Method are determined in the following recursive way:

Yo = h(x)—lO_[:G (x,&)(2&sin&-9cos &) d¢&,

You =[G (%)Y, (£)d&n=012,-

and the iterates defined using the Modified Technique [20] are determined in the following recursive way:
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Yo = h(X),
Y =-10[" G(x,&)(2£sin & ~9c0s&)dé ~ [ G (%, &)y, (£)dé,

Yne2 = _.ElG (Xv Qg) Ynet (f)dg,n =012,

In Table 3, we present the maximum errors obtained by SAWGF and MTwGF with the exact solution. Com-
paring them with the DTM [9], EDSM [10], NPSM [11] and VIT [12] results, it can be noticed that the result
obtained by the present method (SAwWGF) is very superior to that obtained by the other mentioned methods.

Table 4 exhibits the maximum residual error of the SAWGF and MTWGF for ¢, .

3.3. Example 3
Consider the following linear BVP of tenth-order [10]:

yt0 (x)—(x2 - 2x) y(x)= —(x—l)3 sinx+10cosx,-1<x <1 (13)
with boundary conditions
y(-1)=2sin(1),y(1) =0,
y¥ (-1) = —2cos(1)—sin (1), y" (1) =sin (1),
(-1)=2cos(1)-2sin(1), y! (1) 2cos(1), (14)
y® (~1) = 2cos (1) +3sin (1), y*® (1) = -3sin (1),
y“ (~1) = —4cos(1)+2sin (1), y'* (1) = —4cos(1).
The exact solution of (13), (14) is
Yeaot (X) = (X—1)sinx.
Applying the decomposition method, Equation (13) can be written as
Ly = —(x—l)3 sin x+10cosx+(x2 - 2x) y(x),
10
where L= P is the linear operator. Consequently,
+[.6(x, g)[—(g ~1)’sin & +10cos §]d§ +[[,6(x.&)(£ -28)y(¢)de, (15)
where h(x) is the solution of Ly =0 with the boundary conditions (14) given by
Table 3. Comparison of maximum errors for example 2.
SAWGF MTwWGF DTM [9] EDSM [10] NPSM [11] VIT [12]
n=2 n=2 n=10 n=18
. 4.98E-14 4.80E-12 1.12E-06 8.85E-08 4.67E-07 4.24E-07
IH, 3.66E-14 3.52E-12 - -

Table 4. Maximum residual error for example 2.

SAWGF MTWGF
n [E (4. & (4, & (4. € (4,
2 2.46E-07 181E-07 237E-05 1.74E-05
3 4.98E-14 3.66E-14 4.80E-12 352E-12
4 101E-20 738E-21 9.69E-19 7.11E-19
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— ml——cosl x° — £sml—icosl x& + 7—gsml—ﬂcosl !
96 32

384 384 384
+ Esml——cosl X8 — ﬁsml—ﬂcosl x> — §sml—ﬂcosl
96 64 64 64 64
+ é ml——co 1(x3+ %sml—ﬂcosl X% — %sml—&cosl
96 96 384 128
sml % ——cosl
384 384

and G (x,f) is the Green’s function given previously in example 1. Substituting (4) in (15), the iterates defined

using the Standard Adomian Method are determined in the following recursive way:

+[6 (x,g)[—(g ~1)°sin & +10cos §]d§,
Yo =[G (x.6)(£2 - 28)y, (£)dEn=0,12,-

and the iterates defined using the Modified Technique [20] are determined in the following recursive way:

Yo = h(x)n
Y, = J'_llG(x,§)[—(§—l)ssin§+1Ocos§]d§+f_11G(x,§)(§2 ~2¢)y,(£)de,
Voo = [ LG (X E)(£ =28)y,1(£)dEn=012,---.

In Table 5, we give the maximum errors obtained by SAWGF and MTwGF with the exact solution. Compar-
ing them with the EDSM [10] results, it can be seen easily that the result obtained by the present method
(SAWGF) is very superior to that obtained by the other mentioned method. Table 6 reproduces the maximum

residual error of the SAWGF and MTwGF for ¢, .

3.4. Example 4
Finally, we consider the following nonlinear BVP of tenth-order [8] [13]:
y* (x)=e™y?(x),0< x <1
with boundary conditions
y®(0)=1,y"(1)=€,i=01234.
The exact solution of (16), (17) is

Table 5. Comparison of maximum errors for example 3.

(16)

(17

SAWGF MTWGF EDSM [10]
n=2 n=3 n=2 n=3 1=0k=>56
H. 7.05E-16 2.29E-23 2.75E-14 1.16E-21 3.73E-08
I, 2.56E-16 1.05E-23 1.86E-14 8.60E-22

Table 6. Maximum residual error for example 3.

SAWGF MTwWGF
n E (4], E.(4)], E (¢)]. E.(4)],
2 2.13E-08 1.47E-08 1.13E-06 8.17E-07
3 4.16E-16 2.56E-16 1.79E-14 1.06E-14
4 1.17E-23 7.77E-24 5.74E-22 3.88E-22
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X

yExact (X) =€
Applying the decomposition method, Equation (16) can be written as
Ly =e "Ny,

10

v . . . .
where L= P is the linear operator and Ny = y? is the nonlinear operator. Consequently,

y=h(x)+[/G(x&)eNy(¢)de, (18)
where h(x) is the solution of Ly =0 with the boundary conditions (17) given by
h(x) =e_—1xg —ixs N 5e-8 o +ix6 N 307e—-472 & +ix4 +12863e—19856 &
9! 8! 30240 6! 43200 41 90720

1 , 171549e—-264704
+=X"+
2 201600

and G(x,&) is the Green’s function given by

X+1

Co,(x &) if 0<x<¢&<1
G(x,(f)_{gl(X'g) if 0<&<x<1

where

1 1 .
X, &)= X—
% (x$) (362880 362880]5
+( L o 1 e, 1 x |&7
30240 10080 15120
( 4 1 X3_ 1 ngS
14400 . 2880 " 2160 5400
( ot L os 1 Xjés
30240 4320 "2160" "1620" ' 2835

( 1 e, 1 o 1 o 1 5 1 Xj

+

+

+

X X+
362880 40320 15120 5400 2835 4725

1 9
gz(x'f)"(3ezsso§ 362880jx
¢ oo o 5)”

30240 10080 15120

+

_ 5
14400 2880 & 2160 & 5400 5)

6 1 5 1 3 1 \J 3
+ - + X
(30240 4320 d 2160 s 1620 s 2835 s

+

1 1 5, 1
- + - X.
362880 40320 & 15120 & 5400 & 2835 d 4725 fJ
Substituting (4) and (5) in (18), the iterates defined using the Standard Adomian Method are determined in the
following recursive way:

+

Yo =h(X), VYo :j;G(x,g)e"fAhdg,n =0,12,--

For the nonlinear term Ny = y* = z::o A, the corresponding Adomian polynomials are:
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Table 7. Comparison of maximum errors for example 4.

SAWGF MDM [¢] HPM [13]
n=2 n=3 n=4

. 4.90E-10 134E-14 4.58E-06 1.45E-05

. 3.47E-10 9.48E-15 :

Table 8. Maximum residual error for example 4.

n E.(¢.), E. (4],
2 4.59E-05 3.25E-05
3 1.30E-09 8.89E-10
4 4.04E-14 2.69E-14
A =Y,
A =2Yo Y1,

A =2y, + Y1,

A =YY ,n2i,n=012,:--.
i=0
In Table 7, we list the maximum errors obtained by SAwWGF with the exact solution. Comparing it with the
MDM with the inverse operator [8] and HPM [13] results, it can be noticed that the result obtained by the
present method (SAWGF) is very superior to that obtained by the other two mentioned methods. Table 8 exhi-
bits the maximum residual error of the SAWGF for ¢, .

4. Conclusion

The ADM with Green’s function (Standard Adomian and Modified Technique) has been applied for solving
linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order deriva-
tives. Comparison of the results obtained by the present method with those obtained by the Tenth degree spline
method, Modified decomposition method with the inverse operator, Differential transform method, Eleventh
degree spline method, Non-polynomial spline method, Variational iteration technique and Homotopy perturba-
tion method has revealed that the present method is superior because of the lower error and fewer required itera-
tions. It has been shown that error is monotonically reduced with the increment of the integer n.
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