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Abstract 
This paper proposes a kind of compact extrapolation schemes for a linear Schrödinger equation. 
The schemes are convergent with fourth-order accuracy both in space and time. Especially, a spe-
cific scheme of sixth-order accuracy in space is given. The stability and discrete invariants of the 
schemes are analyzed. The schemes satisfy discrete conservation laws of original Schrödinger eq-
uation. The numerical example indicates the efficiency of the new schemes. 
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1. Introduction 
Partial differential equations (PDEs) describe many physical phenomena. They are an important research topic 
in many scientific fields, such as hydrodynamics, plasma physics, nonlinear optics, molecular dynamics, celes-
tial mechanics. The numerical investigations of PDEs can be found in [1]-[3] and references therein. To meet the 
demands of massive computation with high accuracy, many compact schemes have been presented recently 
in fluid dynamics, optics and plasma [4]-[6]. The schemes are high-order accurate with small stencil and little 
cost.  

Schrödinger equations are important mathematical physical models [7]. They satisfy some conservation laws 
related to some physical quantities. Numerical preservation of these conservation laws is as important as high 
accuracy of numerical solutions [8]-[10]. So in this paper, we apply compact schemes to Schrödinger equations 
and analyze the discrete invariants of the schemes. 

Consider the initial-boundary problems of the linear Schrödinger equation 

( ) ( ) ( ) ( ) [ ] [ ]4 02 0, ,0 , 0, 2π, , 0, 2π , 0, ,t x
iu u u u x u x u t u t x t Tρ+ + = = = ∈ ∈             (1) 
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where 2 1i = −  and ( )0u x  is a known differential function. For an integer , mx
m u  and mt

u  means the m- 
order partial derivatives of u  with respect to x  and t , respectively.  

Proposition 1. Under the periodic boundary condition, the solution of (1) satisfies the following conservation 
laws: (1) Norm conservation 

( ) ( ) ( )
22

0
, d 0 ,Q t u x t x Q

π
= =∫                              (2) 

(2) Energy conservation 

( ) ( )
22 2

0
d 0 ,xxE t u u x E

π
ρ= + =∫                            (3) 

2. Compact Extrapolation Schemes 
Introduce the following uniform mesh grids 

( ) ( ){ }, , 0,1, , , 0,1, , ,k nx t kh n k N n Mτ= = ⋅⋅⋅ = ⋅⋅ ⋅  

Denote the numerical values of ( ),k nu x t  by n
ku . The symbols ku  and nu  means the numerical solution 

vectors at kx x=  and nt t=  with components n
ku , respectively. Furthermore, we will denote 

( )
1

12 1
2

n n n
k k ku u u
+ += + . 

2.1. Spatial Discretization 
By introducing the following linear operators 

4 1
1 1 1, ,x k k k k k ku u u u u uδ α α−
− − += Α Β Α = + +                         (4) 

( ) ( )3 1 1 3 2 1 1 24 49 16 9 4 6 4 ,
6k k k k k k k k k k k
b au u u u u u u u u u u
h h+ + − − + + − −Β = − + − + + − + − +  

we adopt the formula (4) to approximate 4x
u . A family of fourth-order schemes is derived with 

( )2 1 , 4 1a bα α= − = − . The leading term of the truncation error of the method is ( )8
47 26

240 x k
u h

α− . We are also 

interested in a sixth-order scheme with 7 19 1, ,
26 13 13

a bα = = = . The dominant term of the truncation error is 

( )10
6193

393120 x k
u h . Here, we consider periodic boundary condition. Applying the approximation (4) to Schrödin- 

ger Equation (1), we obtain the following semi-discretization system 

( ) 4 2 , 1, 2, , .t x k kk
i u u u k Nδ ρ= − − = ⋅ ⋅ ⋅                           (5) 

2.2. Temporal Discretization 
We use the central difference operator 

1n n
n k k

t k

u u
uδ

τ

+ −
=                                     (6) 

to approximate the temporal derivative 1

2

,t k
n

u x t
+

 
 
 

. The resulting dominant truncation error is ( )
12
2

24 ttt k

n
u

τ +
.  

Substituting the Formula (6) to (5) results in the full discretization  

4
1 1
2 22 , 1, 2, , .xk k k

n nn
ti u u k Nu δ ρδ

+ +
= − − = ⋅ ⋅ ⋅                           (7) 
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The resulting dominant truncation error is ( ) 8

2 4

7 26
24 240

n
k ttt x

hR u uτ α= + − . The Richardson extrapolation  

method can be used to improve the scheme (7). We adopt the following formula 
31 2

1 2 3 ,njnj njn
k k k kU a u a u a u= + +                                    (8) 

where 31 2, , njnj nj
k k ku u u  are the solutions of (7) with temporal step-sizes 1 2 3, ,j j jτ τ τ , respectively. To ap-

proximate (1) with fourth order in both time and space, the parameters should satisfy the constraints 
3 3 3

2 3

1 1 1
1, 0m m m m m

m m m
a a j a j− −

= = =

= = =∑ ∑ ∑ . 

Clearly, if the scheme (7) has the discrete invariants, the extrapolations (8) are numerical stable. In our numerical 
example, we use two kinds of parameters: 

1
1 2 3 1 2 3, 1 12, 4 3, 9 4; 2 , 1 21, 4 7 , 32 21.n

n nj n a a a j a a a−= = = − = = = = − =  

2.3. Stability Analysis 
Now we consider the stability of (8), which comes from that of (7). According to the Fourier analysis, assume 
the formal wave solution of (7) is en n ik h

ku v β=  with wave number β  and stability factor v . First we can de-
rive 

( ) ( )
( )

2
4

4

4 1 3 2
, , cos .

3 1 2x k k

w a b bw
u u w h

h w
δ µ µ β

α
− + +

= = =
+

                  (9) 

Next, with (7) and (9), we obtain  

2 2 1, , .
2 2
iv h
i

µτ ρτ τ
µτ ρτ

− −
= = ∀

+ +
 

Therefore, the scheme (7) is unconditionally stable. Moreover, by its symmetry, it is non-dissipative. 

3. Invariants Analysis 

Theorem 1. Let 2

2 2n n
k

k
u h u= ∑ . Then 

2

2nu  is the discrete norm invariant of the scheme (7), which implies  

the discrete norm conservation law of (1). 
Proof. Let 0 16 36c b a= + , 1 9 24c b a= − − . Denote two symmetric and cyclic matrices by 

1 0 0
1 0 0

0 1 0 0
,

1 0
0 0 1

0 0 1

A

α α
α α

α α

α α
α α

α α

 
 
 
 
 

=  
 
 
 
 
 

 

 



      

  

 

 

 

0 1 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 1 0

6 0 0 6
6 0 0 6

6 6 0 0
6 6 0 0

0 6 6 0 0

0 0 6 6 0
0 0 6 6

0 0 6 6
6 0 0 6

6 0 0 6

c c a b b a c
c c c a b b a
a c c c a b b

b a c c c a b
b a c c c a b

B
b a c c c a b

b a c c c a b
b b a c c c a
a b b a c c c

c a b b a c c

 
 
 
 
 
 
 
 

= 







 

 

 

 

 



          



 

 

 

 

.








 

Then the matrix form of (4) is 
4 1 .n n
x u A Buδ −=                                        (10) 
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Correspondingly, (7) can be written as  

( ) ( )
1

1 1 1 1
2 1 2, 1 , 1 .

2 2
n n

N N
i iu H H u H i I A B H i I A Bτ ττρ τρ+ − − −= = − − = + +                    (11) 

The Equation (11) implies 
1

1 1
22 22

.n nu H H u+ −≤  According to the properties of A and B, we can see that 

1H  and 2H  are symmetric and their eigenvalues are ( ) ( )1
1 1

2
iH i A Bτλ τρ λ −= − − , 

( ) ( )1
2 1

2
iH i A Bτλ τρ λ −= + + , respectively. Therefore This implies that ( )1

1
2 1H Hλ − = , 

1

1
2 2

1H H− = . Simi-

larly, from 1 1
2 1

n nu H H u− += , we can also get 1

2 2

n nu u +≤ . This completes the proof.  

In fact, we have another proof. Multiplying (7) by 
1
2

n

ku
+

 and summing over k, we obtain 

( )
1 1

2 21 1 1 1 2 20 2 ,
n nn n n n n n

k k k k k k k k
k k

i u u u u u u c u uρτ
+ ++ + + +

    = − + + + +     
∑ ∑               (12) 

where 1c A Bτ −= . By the symmetry of ,c  the second summation term of (12) is real, while the first term is  
purely imaginary, which implies 1

2 2

n nu u += . 

Theorem 2. Denote 

( )1 1 2 1 2
1 , 1 2 1 2 , 1 2 1 2 ,
2

n n n
k kCu a u a u a aα α α α+= + = + + − = + − −  

( ) ( ) ( )3 1 2 1 12 2 2

3 3 3 .
3 2

n n n n n n n n n
k k k k k k k k k

b b av u u u u u u u u
h h h+ + + + −= − + − + − + −  

Then under the periodic boundary condition, 
2 2n n nE v Cuρ= +  is discrete energy invariant of the 

scheme (7), which implies the discrete energy conservation law of (1). 
Proof. Multiplying (7) by ,A  we get 

( )
1 1

1 2 22 .
k k k k

n nn n i u AuA u u B iτ τρ
+ ++ =− +                             (13) 

Multiplying (13) by 1n n
k ku u+ −  and summing over k, we obtain 

( )( )

1 1 1 1

1 1 1 1 1 1

2

.
2

n n n n n n n n
k k k k k k k k

k k

n n n n n n n n n n n n
k k k k k k k k k k k k

k k k

i Bu u Bu u i Au u Au u

i Bu u Bu u i Au u Au u A u u u u

τ τρ

τ τρ

+ + + +

+ + + + + +

   − + −   

    + − + − = − −      

∑ ∑

∑ ∑ ∑
 (14) 

The first two summation terms in above equality are purely imaginary, while the last three summation terms 
are real. Moreover, 

, .n n n n n n n n
k k k k k k k k

k k k k
Au u Cu Cu Bu u v v       = = −       ∑ ∑ ∑ ∑  

Therefore, taking the imaginary parts of (14) we can get 1n nE E += . 

4. Numerical Result 
Denote the schemes (7) with sixth-order and fourth-order in space by CT6 and CT4, respectively. Denote the 
extrapolation schemes (8) with nj n=  and 12n

nj
−=  by RE1 and RE2, respectively. By applying fixed h  

and different τ , we verify the temporal accuracy of the schemes. While the spacial accuracy can be verified by 
fixed τ  and different h . We also investigate the two discrete invariants of the schemes.  
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We use the above schemes to solve the linear Schrödinger equation with periodic boundary condition 

( ) ( ) [ ]4 0, ,0 4 sin cos , 0,2π , 0.t x
iu u u u x x x x t+ + = = + ∈ >  

Its exact solution is ( ) ( )2, 4 sin cos .itu x t e x x= +  
Table 1 lists the numerical results of scheme RE1 combined with CT6 at 3t = . It conforms that the scheme 

is convergent with fourth-order in time. Table 2 lists the numerical results of scheme CT6 at 1t = . We can see 
that scheme CT6 is convergent with sixth-order in space with respect to the 2l  norm and l∞  norm. 

Table 3 lists the numerical results of scheme CT4 at 1t = . We can see that scheme CT4 is convergent with 
fourth-order in space. Table 4 lists the numerical results of scheme RE2 combined with CT4 at 1.5t = . It con-
forms that the scheme is convergent with fourth-order in time. 

Figure 1 and Figure 2 plot the residuals of discrete invariants of scheme CT6 and scheme CT4, respectively. 
In the two figures, we depict the residuals of norm and energy of numerical solutions with π 10h =  and 

0.01τ = , respectively. From the figures, we can see that the two schemes preserve two discrete conservation 
laws. Figure 3 and Figure 4 plot the residuals of discrete invariants of scheme RE1 combined with scheme CT6 
and scheme RE2 combined with scheme CT4, respectively. In the two figures, we depict the residuals of norm 
and energy of numerical solutions with 10h = π  and 0.003τ = , respectively. 

The figures tell us that the two methods preserve two discrete conservation laws too. 
The compact extrapolation schemes established in this paper have some advantages such as compactness, 

 
Table 1. Temporal order test of scheme RE1 combined with scheme CT6 with / 50h = π .                                

τ  e
∞

 order 2
e  order 

0.06 8.69301e−7 - 2.0904e−6 - 

0.03 5.4126e−8 4.0055 1.3108e−7 3.9953 

0.015 3.3449e−9 4.0163 7.9238e−9 4.0481 

 
Table 2. Spatial order test of scheme CT6 with 1/10000τ = .                                                     

h  e
∞

 order 2
e  order 

5π  2.7893e−6 - 5.1073e−6 - 

10π  4.2397e−8 6.0389 7.7631e−8 6.0389 

20π  6.7532e−10 5.9722 1.2214e−9 5.9900 

 
Table 3. Spatial order test of scheme CT4 with 1/10000τ = .                                                       

h  e
∞

 order 2
e  order 

5π  3.0164e−4 - 5.9528e−4 - 

10π  1.7599e−5 4.0993 3.4732e−5 4.0992 

20π  1.1023e−6 3.9969 2.1487e−6 4.0147 

 
Table 4. Temporal order test of scheme RE2 combined with scheme CT4 with /100h = π .                             

τ  e
∞

 order 2
e  order 

0.06 2.1526e−7 - 4.4798e−7 - 

0.03 1.1942e−8 4.1720 2.5879e−8 4.1136 

0.015 6.9185e−10 4.1094 1.1823e−9 4.2521 



X. L. Yin 
 

 
211 

         
Figure 1. Residuals of norm and energy by scheme CT6 with /10, 0.01h τ= π = .                 

 

         
Figure 2. Residuals of norm and energy by scheme CT4 with /10, 0.01h τ= π = .                    

 

                 
Figure 3. Residuals of norm and energy by scheme RE1 combined with scheme CT6 with /10, 0.003h τ= π = . 

 

                    
Figure 4. Residuals of norm and energy by scheme RE2 combined with scheme CT4 with /10, 0.003h τ= π = . 
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high accuracy, less memory and less computational cost. The schemes are also stable, non-dissipative and con-
servative with respect to the charge and energy conservation laws. We can generalize the methods to other kind 
of PDEs. 
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