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Abstract 
We simulate ultra-cold interacting bosons in quasi-one-dimensional, incommensurate optical lat- 
tices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can 
potentially lead to Anderson localization. We use the Hartree-Fock-Bogoliubov formalism in the 
Bose-Hubbard model to explore the parameter regimes that lead to exponential localization of the 
ground state in a 3-colour optical lattice and investigate the role of repulsive interactions, har- 
monic confinement and finite temperature. 
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1. Introduction 
Cold atoms in optical lattices provide a great tool to study many theoretical models from solid-state physics as 
they allow for unique control of normally unmodifiable parameters [1]-[6]. Interactions can be tuned by a Fesh- 
bach resonance [7] or spatial confinement [8]-[10]. Disorder with known statistical properties can be introduced 
in a controlled manner which is usually done by purely optical means using either a laser speckle potential [11]- 
[13] or a secondary optical lattice incommensurate with the primary one [14]-[22]. It can be also formed by lo- 
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calized impurity atoms [23]. 
Incommensurate lattices belong to a special class of potentials. Being completely deterministic, they can lead 

to the phenomena generic for random potentials. One of the famous examples is Anderson localization which 
can be understood as the effect of destructive interference of randomly scattered waves [24]. Several experi- 
mental groups have studied localization effects in ultra-cold Bose gases in incommensurate optical lattices [14]- 
[22]. In the ideal Bose gas, they are determined by the properties of the eigenstates of the single-particle Hamil- 
tonian which were theoretically studied in Refs. [25]-[33]. Weakly interacting regime was investigated using the 
Gross-Pitaevskii equation in discrete [34] [35] and continuum models [19] [36] [37] as well as Bogoliubov 
theory [38]. The strongly correlated regime which may lead to quantum phase transitions was studied within the 
Gutzwiller mean-field approximation [39]. Exact numerical results for one-dimensional systems were obtained 
by quantum Monte Carlo [40], density matrix renormalization group [41]-[44], as well as by Bose-Fermi map- 
ping in the limit of infinitely large interactions [40] [45] [46] [47]. Recently, the bichromatic model was numer-
ically investigated in the presence of a synthetic gauge field, providing contrast to the two interference pheno-
mena [48]. All previous theoretical studies mentioned above were performed at zero temperature. Only recently 
were finite-temperature properties of the Bose gas in a bichromatic optical lattice considered in the limit of va-
nishing tunneling or vanishing interaction [49]. 

The aim of the present work is to study weakly interacting Bose gas in an incommensurate optical lattice at 
finite temperature. We extend mean-field treatments [50] and their finite temperature generalizations [51]-[53], 
which have been extensively developed for the dilute Bose gas, including their application to the optical lattice 
[38] [54] [55], to include disorder. 

2. The System 
The setup we use for our simulations is taken from Ref. [16]. We consider an ultracold atomic sample in an 
elongated magnetic trap with longitudinal and transverse frequencies tω  and ω⊥ , respectively. If all energy 
scales do not exceed ω⊥ , atoms occupy only the ground-state mode of the transverse confining potential and 
the system becomes effectively one-dimensional. The inter-particle interaction in the longitudinal direction can 
be well approximated by an effective two-body potential [8] 

( ) ( )
12

int 2

4
1 1.4603 ,sa aV x x x x

ama
δ

−

⊥⊥

 
′ ′− = − − 

 

                         (1) 

where sa  is the three-dimensional scattering length and 2a
mω⊥

⊥

=
  is the size of the ground state for the  

harmonic potential with the frequency ω⊥ . Depending on the ratios tω ω⊥ , sa a⊥ , and the density of atoms, 
the system can be in a quasi-one-dimensional regime which is well described by the mean-field theory, or in the 
Tonks-Girardeau regime where quantum fluctuations may be significant. Precise conditions for the Tonks-Gi- 
rardeau regime were formulated in Ref. [9]. We note that in the experiment of Ref. [16], the quasi-one-dimen- 
sional regime was realized. 

The potential of the primary optical lattice is  

( ) ( )2
0 cos 2π ,L LV x V x λ=                                  (2) 

where 0V  is the lattice depth and Lλ  is the lattice wavelength. The disorder potential is of the form:  

( ) ( ) ( )0 2 2
dis dis cos 2π cos 2π ,L LV x V x xα λ β λ = +                         (3) 

where L αα λ λ=  and L ββ λ λ=  are the ratios between the primary and secondary lattice wavelengths. For 
irrational values of α and β, the resulting potential is pseudo-random. In experiment, however, it is hard to make 
the wavelength ratios precisely irrational, so the potential exhibits an additional level of quasi-periodicity. If α 
and β are ratios of large coprime integers, however, the period of the potential will be larger than the system 
size. 

2.1. The Bose-Hubbard Model 
The wave function is expanded in Wannier functions localized at the minima of the primary lattice potential in 
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the lowest Bloch band. This tight-binding approximation leads to the Bose-Hubbard Hamiltonian for atoms in a 
one-dimensional optical lattice of N  sites,  

( ) ( )
1

† †
, 1 1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 1 ,
2

N N N
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= − + + −∑ ∑ ∑                       (4) 

with tunneling energies , 1i iJ + , on-site interaction parameter U , and on-site energy i , which contains both the 
trapping potential and the disorder potential. These parameters are determined by the lattice and disorder poten- 
tial and are obtained by taking integrals over the Wannier functions [1] [41]. The resulting expressions, using a 
Gaussian approximation1 [56] for the Wannier functions, are:  
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The on-site interaction parameter can be tuned by varying sa , the scattering length of the atoms, using a 
magnetic field at a Feshbach resonance; or, by varying ω⊥ , the transverse trap’s angular frequency. 

The disorder potential also leads to pseudo-random shifts in the tunneling energy given by:  
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            (8) 

Our simulations show that this site-dependence has no influence on the effects we study in the present work; 
thus, we omit it for simplicity such that , 1i iJ J+ ≡ . This is well established in the literature for such models (see 
e.g., Refs. [17] [40] [41]). 

2.2. The Hartree-Fock-Bogoliubov Formalism 
In this section, we briefly describe a lattice formulation [54] [55] of the finite-temperature HFB [51]-[53] for- 
malism which assumes the existence of BEC. This requirement is fulfilled in the quasi-one-dimensional regime 
below the critical temperature for finite-size systems as well as in the thermodynamic limit. In the Tonks-Gi- 
rardeau regime, the global phase coherence is destroyed due to long wavelength fluctuations and the BEC exists 
only in finite-size systems. 

We can therefore assume, in the limit of low temperature, a macroscopic occupation of the ground state such 
that the Bose annihilation operator can be written as ( )ˆˆ e i t

i i ia z µδ −= +  , where iz  is a complex mean-field 
part and îδ  the fluctuation operator [54]. The condensate density is given by 2

,c i in z=  and the non-conden- 
sate density by †ˆ ˆ

i i in δ δ= . 
From this, we can derive a discretized, generalized Gross-Pitaevskii equation  

( ) ( )1 1 , 2 ,i i i i i c i i iz z J z z U n n zµ + −= − + + +                          (9) 

coupled to Bogoliubov-de Gennes equations  

( ) 2
, 1 12q q q q q

q i c i i i i i i i iu U n n u J u u Uz vω µ + −   = + − + − + −  
   

and  

 

 

1In this approximation, the Wannier functions in the expectation-value integrals are replaced by Gaussians. This gives accurate results for 
the on-site energies while overestimating the tunneling energy. Since results are given in terms of the tunneling energy J, this is of no con- 
cern if one keeps in mind that a given value for J does not exactly correspond to the given lattice geometry. 
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( ) 2
, 1 12q q q q q
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through the non-condensate density  
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where q
iu  and q

iv  are the Bogoliubov quasi-particle amplitudes and BEN  is the Bose-Einstein distribution. 
The equations are then solved self-consistently. 

We use the phenomenological two-fluid model to define the superfluidity of the condensate [57]. When an 
external velocity field is applied, via Peierls phase factors on the hopping terms of the Bose-Hubbard Hamilto- 
nian [54] [55], only the inviscid superfluid part will respond; Thus, by comparing the energy of the ground states 
with and without the external velocity field, we may determine the fraction of atoms that is a superfluid. The 
superfluid fraction is defined in terms of the condensate and quasi-particle amplitudes as:  

( ) ( )1 2 ,s s sf f f= −                                     (10) 
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3. Results 
Here we present results for 500 Rb-87 atoms in a system with 100N =  lattice sites in the experimental confi- 
guration of Ref. [16], where 55 64α =  and 165 212β = . In what follows, we will use the unit-less parame- 
ters 0

dis J∆ =  , 0
t tV J=   and effV U J=  so that we need not be concerned with evaluating the integrals 

from experimental parameters. 

3.1. Homogeneous System at Zero Temperature 
To isolate the effects of disorder and interactions, the first simulations are performed without a harmonic trap- 
ping potential at 0T = . We refer to this as a homogeneous system albeit dealing with a finite sized lattice with 
hard wall boundary conditions. 

Figure 1 and Figure 2 show the condensate density for different parameters in linear and logarithmic scale. 
Panel (a) shows the weakly interacting, non-disordered case, which is just the ground-state of a single particle in 
a box. Increased disorder then leads to a narrowly peaked density [(b) and (c)]. The logarithmic plot in Figure 
2(c) indicates an exponential decay of the condensate density, a signature of Anderson localization. The André- 
Aubry model [25], which describes non-interacting bosons in two incommensurate lattices (specifically for irra- 
tional α ), predicts a transition from extended to localized states for 2∆ = . Here we have two secondary lat- 
tices with equal amplitudes instead of one and we find that the ground state attains exponentially decaying tails, 
characteristic of Anderson localization, at 1∆ ≈ ; However, due to the fact that in our calculations α  and β  
are rational and we are dealing with a finite-size system, the transition is broadened [15] [19] and harder to de- 
termine with great precision. 

In the presence of interactions, the condensate fragments into multiple peaks, each single peak appears to re- 
main exponentially localized (Figure 2(d)); however, other peaks obscure the signature of the tails and the 
pseudo-period dominates the fine structure. Limited spatial resolution in experiments might also add to the dif- 
ficulty of characterizing them. 

We find that increasing the disorder strength continuously lowers the superfluid fraction, underlining the lo- 
calizing effect of disorder (Figure 3). The decrease is not dramatic as up to the values of ∆  for those we ob- 
serve exponential localization (Figure 2(c)) the superfluid fraction remains above 0.85. 
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(a)                       (b)                       (c)                       (d) 

Figure 1. Condensate density for various disorder and interaction strengths with no harmonic trap at zero 
temperature. (a) Δ = 0; (b) Δ = 0.68; (c), (d) Δ = 1.13. (a)-(c) 8

eff 10V −= ; (d) 4
eff 6 10V −= × .                   

 

 
(a)                      (b)                       (c)                       (d) 

Figure 2. Condensate density (logarithmic) for various disorder and interaction strengths with no harmonic trap 
at zero temperature. (a) Δ = 0; (b) Δ = 0.68; (c), (d) Δ = 1.13. (a)-(c) 8

eff 10V −= ; (d) 4
eff 6 10V −= × .             

 

 
Figure 3. (Colour online) Superfluid fraction vs. disorder strength at various 
interaction strengths with no harmonic trap at zero temperature.               

 
In the case of weak disorder, the superfluid fraction decreases slightly with increased interaction strength, 

which is explained by repulsive interactions inhibiting superfluidity. In contrast, for increased disorder the su- 
perfluid fraction increases with higher effV . This follows from the interplay between interactions and disorder. 
The disorder localizes the condensate, thereby reducing the superfluid fraction. The interactions delocalize the 
condensate and thus attenuate this effect. We note that for very large interaction strengths, the superfluid frac- 
tion will decrease again [58], which is not described by the HFB formalism. 

Both the superfluid fraction and the lowest excitation energy show a sharp drop in the region where the inte- 
ractions begin to fragment the condensate (Figure 4). The lowest excitation energy approaches zero where the 
energies for the single-peaked state and the fragmented state are equal. This effect results from the competition 
between the on-site energy and the kinetic and interaction energies. The single large peak minimizes the external 
potential energy while a fragmented condensate minimizes the kinetic and interaction energy. Above a critical 
interaction strength, the increased potential energy is compensated by the reduced kinetic and interaction ener- 
gies. As each peak is exponentially localized, the superfluid fraction decreases at the critical interaction strength, 
but afterwards continues to increase as the interactions keep delocalizing the condensate. 

The excitation spectrum is shown in Figure 5 for a weakly interacting condensate with and without disorder. 
In the absence of disorder, we obtain the energy spectrum of a free particle in a sinusoidal potential. In the pres-  
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Figure 4. Superfluid fraction (fs: circles) and lowest excitation energy (E1: 
squares) vs. interaction strength with disorder (Δ = 1.13) and no harmonic trap 
at zero temperature.                                                  

 

 
Figure 5. (Colour online) Energy spectrum of the weakly interacting con= 
densate ( 8

eff 10V −= ) with and without disorder and absent harmonic trap at 
zero temperature.                                                     

 
ence of disorder, the spectrum shows gaps at fractions corresponding to the lattice ratios α and β, demonstrating 
the quasi-periodicity of disorder. In the setup of [16], for example, α is approximately 0.86 and β is approxi- 
mately 0.78. We find gaps, for example, at indices 86 and 100 86 14− =  due to α, at 78 and 100 78 22− =  
due to β and at 35 due to a beating, where ( )

1110.35 2 1α β
−−− = + −  . Our simulations show that effV  has no 

qualitative effect on the energy spectrum. We conclude that the excitation spectrum is primarily governed by 
single-particle effects.  

3.2. Harmonic Trap at Zero Temperature 
The general observations of the previous section remain valid when a harmonic trapping potential is present, 
with the main difference being the additional confinement due to the trap. We choose a trap strength, tV , equiv- 
alent to 10 Hztf =  in the Schulte setup [16]. In this case, only in the logarithmic plots is it possible to distin- 
guish between localization due to the trap, which is Gaussian, and Anderson localization, which is exponential 
(Figure 6). We also note that the trap inhibits the fragmentation of the condensate. This can be seen most clearly 
in the graphs for the superfluid fraction and the lowest excitation energy (Figure 7). In contrast to the homoge- 
neous case, no sharp drops occur and the lowest excitation energy does not approach zero. We conclude that no 
sudden crossing from a single-peak state to a multiple-peak state occurs. Instead, side peaks arise continuously 
over a wide range of interaction strengths. 

3.3. Harmonic Trap at Finite Temperature 
We now discuss the situation for finite temperature. For the mean-field approximation to remain valid, we must 
stay well below the critical temperature where the non-condensate density is low. For our simulations, we take 
the setup from the previous section and vary the temperature such that 8.89Bk T J =  (equivalent to 10 nK in 
the Schulte [16] setup). 
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(a)                      (b)                       (c)                       (d) 

Figure 6. (Colour online) Condensate density (logarithmic) in a harmonic trap ( )33.22 10tV −= ×  for various 

disorder and interaction strengths at zero temperature. (solid black) 8
eff 10V −= . (dashed red) 4

eff 3.7 10V −= × . 

(dotted blue) 4
eff 6.2 10V −= × . (a) Δ = 0; (b) Δ = 0.68; (c), (d) Δ = 1.13.                                    

 

 
Figure 7. Superfluid fraction (fs: solid line) and lowest excitation energy (E1: 
dashed line) vs. interaction strength with no disorder in a harmonic trap at zero 
temperature.                                                          

 
The effect of the finite temperature is to drive atoms out of the condensate into the non-condensate. Thus the 

condensate fraction cf  is lowered and the non-condensate density n  is increased. Because Anderson locali- 
zation is a single-particle effect that does not depend on the total number of atoms in the condensate, we still see 
a Gaussian peak for weak disorder and exponential localization for strong disorder. The non-condensate, while 
being slightly affected by the disorder potential, does not become localized (Figure 8). This is because the non- 
condensate is incoherent and therefore behaves more like a classical gas.  

The interplay between disorder and interactions is more subtle at finite temperature. We first observe that in- 
creasing the interaction strength does not fragment the condensate. Instead, atoms are driven into the non-con- 
densate (Figure 9). This is energetically advantageous as the non-condensate has lower interaction energy due 
to its reduced density. We further see that disorder increases the condensate fraction for weak interactions and 
decreases it for strong interactions. The former is a consequence of the disorder lowering the density of states at 
low energy (Figure 5) thus stabilizing condensation at finite temperature. For strong interactions, in contrast, the 
localizing effect of disorder increases the interaction energy, thereby driving more atoms into the non-conden- 
sate. 

We conclude the treatment of the harmonically confined Bose gas at finite temperature with a discussion of 
the excitation energies. Again, we look at the interplay of temperature, disorder and interactions. 

First, we investigate the temperature dependence. Our simulations show that for weak interactions
( )8

eff 10V −
 , the temperature has essentially no effect on the band structure, regardless of the value of ∆ . This 

is not surprising as temperature does not alter the energy levels or states of a single particle system. In the pres- 
ence of interactions, however, we see that increasing the temperature also increases the lowest excitation energy 
(Figure 10), and this effect becomes more pronounced as effV  increases. This can be explained with the simul- 
taneous decrease in the condensate fraction as temperature and interaction strength increase. Removing atoms 
from the condensate lowers the energy of the ground state via the interaction contribution 2

effcn V  and raises the 
energy of the excited states, thereby increasing the energy difference 1E  between the ground state and the first 
excited state. 
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(a)                      (b)                       (c)                        (d) 

Figure 8. (Colour online) Logarithmically scaled condensate density (solid black) and non-condensate density 
(dashed red) in a harmonic trap ( )33.22 10tV −= ×  for various disorder strengths at 8.89Bk T J =  and weak 

interactions ( )8
eff 10V −= . (a) Δ = 0; (b) Δ = 0.45; (c) Δ = 0.68; (d) Δ = 1.13.                                

 

 
Figure 9. (Colour online) Condensate fraction vs. interaction strength at 

8.89Bk T J =  for various disorder strengths in a harmonic trap.               
 

 
Figure 10. (Colour online) Lowest excitation energy vs. temperature for 
various interaction strengths with no disorder potential in a harmonic trap.       

 
Next, we turn to the interplay between disorder and interactions. We expect that at constant temperature, any 

change that increases 1E  will also increase cf . This is because more thermal energy is required to populate 
the low lying levels. Comparing Figure 9 and Figure 11, this trend seems to hold for varying disorder, however, 
increasing effV  tends to increase 1E  while decreasing cf . This is attributed to the non-linear density depen- 
dence of the interaction energy as discussed above. 

The effect of disorder in the weakly interacting regime is to increase the excitation energy. For higher interac- 
tion strengths, this effect is reversed reflecting the fact that more atoms leave the condensate when it becomes 
localized in the presence of strong interactions. 

3.4. Summary 
In summary, in Subsection 3.1 we studied the ultracold disordered Bose gas in a 1D lattice with hard wall boun-  
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Figure 11. (Colour online) Lowest excitation energy vs. interaction strength 
for various disorder strengths at 8.89Bk T J = .                            

 
dary conditions. We noted that, in the absence of interactions, the André-Aubry model pertains. The main ef- 
fects of interactions over and above those of the disorder were to fragment the condensate as interactions were 
increased and also to reduce the level of localization which could be seen through an increase in the superfluid 
fraction. 

In Section 3.2, these results were extended to the case with a harmonic trap at zero temperature. It was noted 
that it remained possible to distinguish between the Gaussian profile due to harmonic confinement and the Lo- 
rentzian character of the localized states. The sharp fragmentation with increasing interactions observed in 3.1 
was not present in the harmonic trap however, and we argue that this is due to the breaking of the translational 
symmetry which leads to multiple degeneracies in the ground state in 3.1. 

Finally, in 3.3 we investigated the effects of temperature upon the harmonically trapped gas. Qualitatively, the 
effects of disorder (and interactions) upon the condensate were seen to be similar to the case at zero temperature, 
however an interesting interplay between interactions and disorder upon the condensate fraction was observed. 

4. Conclusion 
In this paper, we have discussed the interacting ultra-cold Bose gas in incommensurate optical lattices and high- 
lighted the important role of disorder, interactions, harmonic trapping, and temperature in the quest for Ander- 
son localization. At zero temperature and in the absence of the harmonic trap, we find a transition from extended 
to exponentially localized states for weak interactions. For stronger interactions, the condensate becomes frag- 
mented and exponentially localized fragments ovelap. The superfluid fraction decreases with the interaction in 
the case of weak disorder but increases if the disorder is strong. The presence of the harmonic trap inhibits the 
condensate fragmentation at zero temperature. The main effect of the temperature is to drive atoms into the non- 
condensate which is slightly affected by the disorder and does not become localized. The increase of the interac- 
tion at finite temperature does not fragment the condensate but leads to the growth of the delocalized non-con- 
densate. 
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