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Abstract 
A partial eigenstructure assignment method that keeps the open-loop stable eigenvalues and the 
corresponding eigenspace unchanged is presented. This method generalizes a large class of sys-
tems previous methods and can be applied to solve the constrained control problem for linear in-
variant continuous-time systems. Besides, it can be also applied to make a total eigenstructure as-
signment. Indeed, the problem of finding a stabilizing regulator matrix gain taking into account 
the asymmetrical control constraints is transformed to a Sylvester equation resolution. Examples 
are given to illustrate the obtained results. 
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1. Introduction 
Eigenstructure assignment method plays a capital role in control theory of linear systems. The state feedback 
control law is used in this end, leading to change eigenvalues or eigenvectors of the open loop to desired ones in 
the closed loop. This method is usually realized in order to perform optimal or stabilizing control laws ([1]-[9]). 
These articles and the references therein constitute a comprehensive summary and an important bibliography on 
the control of linear systems with input saturation. Indeed, authors have used different concepts leading to many 
methods for eigenstructure assignment control laws to regulate linear systems with input saturation. 

Throughout this paper, we will be interested in continuous time systems of the form 

( ) ( ) ( ).x t Ax t Bu t= +                                         (1) 

The matrices A and B are real and constant: n nA ×∈  and n mB ×∈  with 1 m n≤ ≤ . The vector ( ) nx t ∈  
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represents the state vector of the system and ( ) mu t ∈  is the control vector. We suppose that the spectrum of 
the matrix A contains n m−  desirable or stable eigenvalues 1, ,m nλ λ+   and m  undesirable or unstable eig- 
envalues 1, , mλ λ . We also suppose that the pair ( ),A B  is stabilizable. 

Presence of undesirable eigenvalues makes System (1) unstable and, in [4] or in [10], methods to overcome 
the instability of System (1), keeping unchanged the open-loop stable eigenvalues and the corresponding eigen- 
space s  and replacing the remaining undesirable eigenvalues by other chosen values, were given. But, in 
these methods, additional conditions on System (1) should be satisfied. 

In this paper, we try to get rid of these additional conditions on System (1). First, we should give some out- 
lines on the methods described in [4] or in [10]. In [4], the method, called the inverse procedure, consists of gi- 
ving a matrix m mH ×∈  with some desirable or stable spectrum and then computing, when possible, a full rank 
feedback matrix m nF ×∈  such that: 

( ) .F A BF HF+ =                                      (2) 

and the kernel of F  is the stable subspace. In this case, the spectrum of the matrix A BF+  is stable since it is 
constituted by the desirable eigenvalues of A and the chosen spectrum of H. In other words, the eigenvalues of H 
will replace, in the closed-loop, the undesirable eigenvalues of A. With the change of variables ( ) ( )z t Fx t=  in 
the initial system, we get 

( ) ( )z t Hz t=                                           (3) 

which allows one to focus on the unstable part of this system. 
The inverse procedure described in [4] ensures the existence of a matrix F that satisfies the conditions men- 

tioned above and gives a way to compute it under the following conditions: 
(a) The matrix H is diagonalizable; that is, there exist linearly independent eigenvectors 1, , mθ θ  of H associ- 

ated to some stable eigenvalues 1, , mµ µ .  
(b) The endomorphism induced by the matrix A on the stable subspace is diagonalizable; that is, there exist li- 

nearly independent eigenvectors 1, ,m nξ ξ+   of A in the subspace s . 
(c) The spectrum of A and the spectrum of H are disjoint. 
(d) The matrix 

( ) ( )1 1
1 1 1, , , , ,n m n m m nM A B A Bµ θ µ θ ξ ξ− −

+
 = − −     

is invertible. 
Under these conditions and according to the method described in [4], the matrix F  is unique and is given by 

[ ] 1
1 1, , ,0 , ,0m m nF Mθ θ −

+=                                 (4) 

where 0i  is the null vector of n . 
In [10], the condition b) is kept and a new assumption should be fulfilled: 
(d’). the matrix [ ]1, , ,m nN B ξ ξ+=   is invertible.  
The method described in [10] consists of computing a matrix V  such that its rows span the orthogonal of the 

stable subspace by taking, for example the first m  rows of 1N −  and then, for a stable matrix m mH ×∈ . 
Then, according to the method described in [10], the feedback matrix F  is given by F KV=  where K  is 
the inverse matrix of the solution of the Sylvester equation  

,X XH VBΛ − = −                                        (5) 
and m m×Λ∈  is a matrix such that VA V= Λ . 

In this paper, we generalize the method described in [10] to a more general class of systems for which the 
condition d’) is not necessary. In fact, no additional condition is needed to deal with System (1). As in [10], the 
feedback matrix F is always given by KV where K is an invertible matrix of m m×  such that 1X K −=  is the 
solution of the Sylvester Equation (5). 

The methods described in [10] or in [4] are, in fact, partial pole placement methods in which the desirable 
eigenvalues of the matrix A are kept in the closed-loop. But, it may happen that these desirable eigenvalues are 
close to the imaginary axis which causes a slow convergence rate to the origin. To overcome this problem, a to- 
tal pole placement is needed. The technique of augmentation (see [5] and [6]) allows one to perform a total pole 
placement when the matrix B needs not be of full rank. This is possible with the inverse procedure [4], but not 



H. Maarouf, A. Baddou 
 

 
161 

with the method described in [10] since, under the condition 1, the matrix B is of full rank. 
So, from one hand, the method that we present constitutes a generalization of the two methods described in 

[10] or in [4] without any other additional condition on the systems and, from another hand, allows one to make, 
if necessary, a total pole placement by the use of the augmentation technique. 

The paper is organized as follows: In Section 1, definitions, notations and some known facts are presented to 
be used in the sequel. The main results are presented in Section 2 together with an illustrative example. Some 
particular cases are presented in Section 3. Section 4 is devoted to the total eigenstructure problem with the il- 
lustrative example of the double integrator. 

2. Preliminaries 
2.1. Notations and Definitions 
• p  is the identity matrix of p p×  for *p∈ .  
• Matrices of the form pλ  are called scalar matrices for λ ∈  and *p∈ .  
• If M  is a p q×  real matrix, for some *,p q∈ , its transpose, the q p×  real matrix, will be denoted by 

TM . 
• When we view n  as an euclidean space, the usual inner product ( )⋅ ⋅  is considered, that is,  

( )
1

,
n

i i
i

x y x y
=

= ∑  

where ( )T
1 nx x x= 

 and ( )T
1 ny y y= 

 are two vectors of n . 
• If S  is a nonempty subset of n , its orthogonal will be denoted by S⊥ , that is,  

( ){ }0 for all .nS x x y y S⊥ = ∈ = ∈  

• For a real number x , we define  

( ) ( )
if 0 if 0

max ,0 and max ,0 .
0 otherwise 0 otherwise
x x x x

x x x x+ −≥ − ≤ 
= = = = − 
 

 

• If M  is a p q×  real matrix, for some *,p q∈ , ,i jM  will denote the coefficient of M  corresponding 
to the ( ),i j  row-column.  

• If M  is a p q×  real matrix, for some *p∈ , cM  is the 2 2p p×  real matrix defined by  

1 2

2 1

,c

M M
M

M M
 

=  
 

  

where [ ] ,
1 ,

,

if ,

if ,
i i

i j
i j

M i j
M

M i j+

== 
≠

 and [ ]2 ,
,

0 if ,

if .i j
i j

i j
M

M i j−

==  ≠
 

• For real matrices (or real vectors) M  and N , we say that M  is less than or equal to N  if every com- 
ponent of M  is less than or equal to the corresponding component of N . We then write M N≤ .  

• If M  is a p q×  real matrix, for some *,p q∈ ,   
(a) ker M  is the kernel of M : the subspace of q  of vectors X  such that 0MX = .  
(b) Im M  is the image of M : the subspace of p  spanned by the columns of M  and also the set of 

vectors of the form MX  with qX ∈ .  
• If M  is a p p×  real matrix, for some *p∈ , ( )Mσ  denotes its spectrum in the field of complex 

numbers  . 
• If λ  is a complex number then ( )Re λ  is the real part of λ .  

2.2. Some Notes on the Stable-Unstable Subspaces 
1. To System (1), we associate:  

(a) The two polynomials  
( ) ( ) ( )1 mP x x xλ λ= − −  
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( ) ( ) ( )1m nQ x x xλ λ+= − −  

that are factors of the characteristic polynomial of A . 
In case of m n= , polynomial Q is just the constant polynomial 1. 
(b) The two subspaces of n ; ( )keru P A=  and ( )kers Q A= . 
In case of m n= , the subspace s  is just the trivial subspace { }ker 0n = .  
Remark 1 
1. Since P  and Q  are coprime, u  and s  are complementary subspaces of n . Moreover, we have  

( ) ( )Im and Im s uP A Q A= =   

and also 

( ) ( ) ( ) ( )T T T TIm ker and Im ker .s uQ A P A P A Q A⊥ ⊥= = = =   

2. Since pair ( ),A B  is stabilizable, we have 

( )
1

0
Im .

n
k

u
k

A B
−

=

⊂ ∑  

2.3. Some Notes on Sylvester Equation 
Many problems in analysis and control theory can be solved using the well known of Sylvester equation. This 
equation is widely studied or used in the literature ([10]-[15]). Since Sylvester equation plays a central role in 
the development of this work, we shall recall conditions under which it has a unique solution. A Sylvester equ- 
ation is any equation of the form  

MX XN C− =                                         (6) 
where M is a p p×  real or complex matrix, N is a q q×  real or complex matrix and C is a p q×  real or 
complex matrix while matrix X stands for an unknown p q×  real or complex matrix. The following well 
known result gives a sufficient condition for the existence and uniqueness of a solution of Sylvester Equation 
(6). 

Theorem 1 
If spectrums of matrices M and N are disjoint, ( ) ( )M Nσ σ = ∅ , then Sylvester Equation (6) has a unique 

solution.  

2.4. System (1) with Constraints on the Control 
Consider System (1) with the assumption that the control u  is constrained to be in the region D  of m  
defined by 

{ }min max
mD u u u u= ∈ − ≤ ≤  

where minu  and maxu  are positive vectors in m . Note that the region D  is a non symmetrical polyhedral 
set as is generally the case in practical situations. Let us first consider the unconstrained case where the regulator 
problem for System (1) consists in realizing a feedback law as 

,u Fx=                                             (7) 

where F  is chosen in m n×  with full rank m . In this case, System (1) becomes  

( ) .x A BF x= +                                       (8) 

The stability of the closed loop System (8) is obtained if, and only if, 

( )Re 0λ <                                           (9) 

for all eigenvalues λ  of the matrix A BF+ . In the constrained case, the approach proposed in ([4]-[6]) con- 
sists of giving conditions allowing the choice of a stabilizing controller (7) in such a way that the state is con- 
strained to evolve in a specified region of n  defined by 
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( ) { }min max min max, , .nD F V V x u Fx u= ∈ − ≤ ≤                      (10) 

Note that the domain ( )min max, ,D F u u  is bounded only in case of m n= . In fact, when m n< , the sub- 
space ker F  has dimension 0n m− >  and is a subset of this domain. Suppose now that there is a matrix 

m mH ×∈  such that  

( ) .F A BF HF+ =                                     (11) 

Hence, by letting z Fx= , we get 
z Hz=                                          (12) 

and then ( ) ( ) ( )exp 0z t tH z= . We would get ( )z t D∈  for all 0t ≥  whenever ( )0z D∈ . We say that D is 
positively invariant with respect to the motion of System (12). More generally, we give the following definition 
of positive invariance. 

Definition 1 
A nonempty subset P  of m  is said to be positively invariant with respect to the motion of System (12) if, 

for every initial state ( )0z  in P , the motion ( )z t  remains in P  for every 0t ≥ . 
The following theorem gives necessary and sufficient conditions for domain D to be positively invariant with 

respect to the motion of System (12). 
Theorem 2 ([6]) 
The domain D is positively invariant with respect to the motion of System (12) if, and only if, 

0cH U ≤                                           (13) 

where 2mU ∈  is the real vector max

min

.
u

U
u
 

=  
 

 

Till now, we have supposed the existence of a matrix H that satisfies Equation (11). The following result, 
which does not take into account the constrained problem, gives necessary and sufficient conditions for its exis- 
tence. 

Theorem 3 ([4]) 
Fker  is positively invariant with respect to the motion of System (12) if, and only if, there is a matrix 
m mH ×∈  such that Equation (11) is satisfied. 

Note that ker F  is positively invariant with respect to the motion of System (12) is the same as ker F  is 
stable by matrix A. If the constrained problem is taken into account, the following theorem gives necessary and 
sufficient conditions for positive invariance of the domain of states ( )min max, ,D F u u .  

Theorem 4 ([6]) 
The domain ( )min max, ,D F u u  is positively invariant with respect to System (8) if, and only if, there is a 

matrix m mH ×∈  such that Equation (11) is satisfied and 

0.cH U ≤  

3. Main Results 
At first, we compute, and fix in the sequel, some matrix m nV ×∈  such that its rows span the subspace s

⊥ . 
Since the dimension of the subspace s

⊥  is m , the matrix V  is of full rank m . 
Proposition 1 There is a unique matrix m m×Λ∈  such that VA V= Λ . This matrix is given by  

( ) 1T TVAV VV
−

Λ =                                  (14) 

and its spectrum is { }1, , mλ λ . 
Proof. 
Let f  be the endomorphism of n  canonically associated to matrix TA , that is, 

T

:

.

n nf
x A x
→



 
 

The subspace s
⊥  is stable under f (that is, f(x) belongs to s

⊥  whenever x is in s
⊥ ). So, one can define 
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the endomorphism g induced by f on s
⊥ . Matrix TV , when identified with its column vectors, can be seen as a 

basis of s
⊥ . In this basis, if we denote by L the matrix of g, we will have 

T T T .A V V L=                                      (15) 
Let now TLΛ = . By transposition of formula (15), we get VA V= Λ . Since g is induced by f on 

( )Tkers P A⊥ = , its spectrum is { }1, , mλ λ  which is also the spectrum of Λ. Formula (14) derives from the 
fact that V is of full rank m and shows the uniqueness of the matrix Λ.                                 

Proposition 2 
For any matrix nmF ×∈  such that sF =ker , there is an invertible matrix mmK ×∈  such that 

KVF =  and F  is of full rank m . 
Proof. 
Let m nF ×∈  such that ker sF =  . Since dimension of s  is n − m, rank formula shows that F is of full 

rank m. Let now mU ∈  such that T 0FV U = . Then, T ker sV U F∈ =   and then T 0VV U = . But matrix  
TVV  is invertible, so U = 0 and this shows that matrix TFV  is invertible. Clearly, ( ) 1T TK FV VV

−
=  is in- 

vertible. For nx∈ , we have 

( ) ( )1 1T T T Tx V VV Vx x V VV Vx
− −

= + −  

Since ( )( )1T T 0V x V VV Vx
−

− = , we have ( ) 1T T ker kerx V VV Vx V F
−

− ∈ =  and then  

( ) 1T TFx FV VV Vx
−

= . So 

( ) ( ) ( )1 1 1T T T T T T .KVx FV VV VV VV Vx FV VV Vx Fx
− − −

= = =  

Since this equality holds for all nx∈ , we have KV F= .                                       
Theorem 5 Let { }1, , mS µ µ=   be a set of complex numbers stable under complex conjugation such that 
{ }1, , mS λ λ = ∅   and m mH ×∈  with spectrum S . Then, there is matrix m nF ×∈  of full rank m  such 

that ( )F A BF HF+ =  and ker sF =   if, and only if, Sylvester equation 
X XH VBΛ − = −                                        (16) 

has a unique invertible solution X  such that VXF 1= − . 
Proof. 
The if part: Let m nF ×∈  be of full rank matrix such that ( )F A BF HF+ =  and ker sF =  . From Prop-

osition 2, there is an invertible matrix m mK ×∈  such that F = KV. Since VA = ΛV , we get 
( )

( ) ( )
( ) ( )

1 1 1 1

11 T T 1

11 T T 1

0.

K K H VB K K HK KVBK K

K K V HKV KVBKV V VV K

K KA HF FBF V VV K

− − − −

−− −

−− −

Λ − + = Λ − +

= Λ − +

= − +

=

 

Then 1X K −=  is an invertible solution to Sylvester Equation (16). 
The only if part: Suppose now that Sylvester Equation (16) has an invertible solution X and let 1K X −= . 

Matrix F = KV satisfies ker ker sF V= =   because matrix K is invertible and then is of full rank m. We also 
have 

( ) ( )
( )
( )
( )1 1

0.

F A BF HF KV A BKV HKV

K VA VBKV HKV

K V VBKV HKV

K K VB K H KV− −

+ − = + −

= + −

= Λ + −

= Λ + −

=
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Remark 2 
Because we are focusing on the partial assignment problem, eigenvalues of matrix H should be desirable, that 

is, matrix H should be Hurwitz. The undesirable eigenvalues 1, , mλ λ  of A must all be different from those of 
H. So, assumption { }1, , m Sλ λ = ∅   in Theorem 5 above is necessary. 

Example 1 Consider the linear time-invariant multivariable system described by 
x Ax Bu= +  

with 

0 1 7 1 2
10 1 6 and 3 0 .
3

4 4 4 1 1
A B

− −   
   = − =   
   − −   

 

The control vector is submitted to the constraint Ω∈u  such that, 

2
min max

1.5 2
.

2 2.5
u u U u
 −     Ω = ∈ − = ≤ ≤ =    −     

 /  

Eigenvalues of A are 1 2 2λ λ= =  and 3 1λ = −  and pair ( ),A B  is stabilizable. We get first the matrix 

3 3 3
5 5 4

V  
=  
 

 

Note that the rows of V are orthogonal to the eigenvector of A associated to the stable eigenvalue 3λ  of A. 
We, then, choose the matrix 

1 1 3 1 0.50000000 0.133974602 2 .
1 3 1.8660254 1.50000003 1
2 2

H

 − −  − − 
= ≈   −  + −  

 

This matrix is not diagonalizable and its eigenvalues are ( )1 2 31µ µ λ= = − = . Besides, inequality (13) is  

satisfied. We use the formula ( ) 1T TVAV VV
−

Λ =  to get 

1 3
.

3 5
− 

Λ =  − 
 

Then, we solve the equation (15) and use the inverse of its solution to get the feedback matrix 

1

5 51 6 3 1 6 3 1 3 2 9 3
18 18

11 5 11 53 3 5 3 2 9 3
6 18 6 18

0.64779190 0.64779190 0.71823350
.

2.3144585 2.3144585 2.0515669

F X V−

 + + + 
= =  

 − − − − − −  
 

≈  − − − 

 

Finally, 1−  is the unique eigenvalue of the matrix A BF+ . 
Figure 1 shows that, starting from two different and admissible controls, the corresponding trajectories, in the 

control space, converge to the origin without saturations. 

3. Particular Cases 
3.1. Case of Single Input Linear Systems 
We discuss the particular case of single input linear systems, that is, when 1m = . As described in the general 
case, we start by computing matrix V which is in case of 1m =  a row vector that is orthogonal to s  and is 
easy to get. Matrix Λ  is only the real 1 0λ ≥ ; the unique undesirable eigenvalue of A . If we choose H to be a  
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Figure 1. Trajectories of the system ( ) ( )u t Hu t=  from two dif- 
ferent initial controls in Ω .                                

 
negative real number, Theorem 5 ensures that all matrices F (row vectors) are of the form KV where 1K −  is a 
nonzero real solution to the simple “Sylvester equation” 

( )1 1 .x xH VB x Hλ λ− = − = −  

This equation has a nonzero solution if, and only if, the real number VB  is nonzero. That is, 

1

.VBx
H λ

=
−

                                       (17) 

Formula 1VA Vλ=  shows that V  is a left eigenvector of A  associated to the undesirable eigenvalue 1λ  
and then 1

k kVA B VBλ=  for every k ∈ . But pair ( ),A B  is stabilizable, so  

( ) ( )
1

1
1

ker Im .
n

k
u n

k
A A Bλ

−

=

= − ⊂ ∑   

If we suppose that 0VB = , then we should have  

( ) { }
1

1
1
Im 0

n
k

u
k

V VBλ
−

=

⊂ =∑  

and then { }0uV = . We also have { }0sV =  and n
u s= ⊕   . This shows that 0V =  which is not true. 

As a consequence, we have the following result. 
Proposition 3 For a given left eigenvector V  of A  associated to the unique eigenvalue 1λ  and for a ne- 

gative real number h , we have 0VB ≠  and matrix F  given by 

1 .
hF V
VB
λ−

=                                          (18) 

The spectrum of A BF+  is then { }2, , , nh λ λ .  

3.2. Case Where the Matrix VB Is Nonsingular 
We have seen in the last paragraph that, when 1m = , a necessary and sufficient condition for Sylvester Equ- 
ation (15) to have nonsingular solution (nonzero real number in fact) is that the real VB  is nonzero. We also 
have seen that this last condition; 0VB ≠ , is equivalent to the fact that pair ( ),A B  is stabilizable. In case of 

2m ≥ , it may happen that pair ( ),A B  is stabilizable but matrix VB  is singular as will show the following 
example.  

Example 2 
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Consider System (1) with 

4 0 1 1 1
4 1 5 and 4 1 .
4 0 0 1 1

A B
−   

   = − − = − −   
   − −   

 

Eigenvalues of A are 1 2 2λ λ= =  and 3 1λ = − . The last desirable eigenvalue 3λ  is associated to the ei- 
genvector [ ]T0 1 0  of A  that spans the subspace s . Matrix V is then 

1 0 1
.

1 0 2
V  
=  
 

 

Matrix VB  is singular since it is 
0 0

.
1 1

VB  
=  − − 

 

Controllability matrix is given by 

2

1 1 5 5 16 16
, , 4 1 13 10 13 10

1 1 4 4 20 20
B AB A B

 
   = − − − −   
 − − 

 

and is of full rank 3. This shows that pair ( ),A B  is stabilizable since it is even controllable.  
The case of matrix VB  is nonsingular can be seen as a general case of 0VB ≠  when 1m = . So, it deserves 

a special study that will be the aim in the sequel of this paragraph. In the following theorem, we give a necessary 
and sufficient condition for matrix VB  to be nonsingular. 

Theorem 6 
Matrix VB  is nonsingular if, and only if, )( Im B  and s  are complementary subspaces of n

 ; that is, 
( )Imn

sB= ⊕  . 
Proof. 
The if part: Since VB is nonsingular, matrix B is of full rank m. To complete the proof of the if part, we shall 
show that { } ( )0 Im sB=   since the dimension of the subspace s  is n − m. Recall that VX = 0 for any vec-
tor X in s . If now X is both in s  and Im(B), then there is mU ∈  such that X = BU and then 

0 .VX VBU= =  
This shows that U = 0 since VB is nonsingular and, then, X = 0. 
The only if part: From the fact that VX = 0 for any vector X in s ; that is { }0sV = , V is of full rank m; that 

is n mV =  . Moreover, from the fact that ( )Imn
sB= ⊕  , we get 

( ) ( )Im Imm n
sV V B V VB= = + =    

since V is linear. This shows that the rank of VB is m and that it is nonsingular.                          
The following theorem gives another method to get a partial pole assignment under the assumption that VB  

is nonsingular. 
Theorem 7 
Suppose that matrix VB  is nonsingular and let matrix m mL ×∈  be such that  
( ) { }1, , mLσ µ µ=  , ( ) { }1, , mLσ λ λ = ∅   and L −Λ  is nonsingular. Then, 

( ) { }1 1, , , , ,m m nA BFσ µ µ λ λ++ =    

where ( ) ( )1F VB L V−= −Λ . 
Proof. 
Let ( ) ( )1K VB L−= −Λ  and 1H KLK −= . Then, 

( )
( )( )

1 1 1 1

1

.

K K H K HK K

L L VB
VB

− − − −

−

Λ − = Λ −

= Λ − −Λ

= −
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This shows that ( ) 11K L VB−− = −Λ  is a nonsingular solution to Sylvester Equation (16) and, by Theorem 5, 
that matrix ( ) ( )1F VB L V−= −Λ  satisfies 

( ) { }1 1, , , , , .m m nA BFσ µ µ λ λ++ =                                

Example 3 
Consider System (1) with 

4 9 9 3 2
3 14 15 and 0 2 .
1 6 7 1 1

A B
− − −   
   = = −   
   − − −   

 

Eigenvalues of A are 1 2 2λ λ= =  and 3 1λ = − . The last desirable eigenvalue 3λ  is associated to the 
eigenvector [ ]T0 1 1−  of A  that spans the subspace s . Matrix V  is then 

1 1 1
.

0 1 1
V  
=  
 

 

Matrix 
2 1
1 1

VB  
=  − − 

 is nonsingular and matrix Λ  is given by  

( ) 1T T 0 1
.

4 4
VAV VV

− − 
Λ = =  

 
 

Now choose 1 2 2µ µ= = −  that are the eigenvalues of the matrix 
6 4

4 2
H

− − 
=  
 

. Then, 

( ) ( )1
2

6 11 11
2 .

10 21 21
F VB V− − − − 
= − −Λ =  

 
  

4. A Total Eigenstructure Problem 
Note that, when m and n are equal, matrix V described in the last section is now any invertible matrix of n n× . 
That is why, we suppose nV =  . Then matrix Λ  is simply A  and Sylvester Equation (15) becomes  

AX XH B− = −                                      (19) 
where H is a real n n×  matrix with desirable spectrum. So, if the unique solution X of Equation (20) is 
invertible, then the spectrum of A BF+  and the one of H are equal, where matrix F is 1X − . Suppose now that 
m n< . The technique of augmentation (see [5] and [6]) consists of augmenting the matrix B  by adding zeros 
in order to get a new matrix 1

n nB ×∈ . One should also complete the control vector u  by fictive real numbers 
to get 1

nu ∈ . We also replace the assumption: “the pair ( ),A B  is stabilizable” by “the pair ( ),A B  is con- 
trollable.” System (1) which becomes 

1 1x Ax B u Ax Bu= + = +                                 (20) 

does not change. The matrix H  is now a real nn×  matrix with some desirable spectrum { }1, , nS µ µ=   
which does not contain any eigenvalue of matrix A . If the unique solution X  of Sylvester equation  

1AX XH B− = −                                       (21) 

is invertible, we let 1F X −= . The matrices 1A B F+  and H  have the same spectrum S . If 1F  is the ma- 
trix of the first m  rows of F , then 1 1A B F A BF+ = +  assigns the spectrum of A  to S . 

Example 4 
Consider the problem of stabilization of the following double integrator system 

( ) ( ) ( )x t Ax t Bu t= +                                   (22) 

with 
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0 1 0
and

0 0 1
A B   
= =   
   

 

subject to the constraint ( )2 1.5u t− ≤ ≤ . The matrix B  and the vector ( )u t  are respectively augmented to  

( ) ( )
( )1 1

1 0
and

0 0
u t

B u t
z t
  

= =   
   

 

such that ( )1 2z z t z− ≤ ≤  where 1z  and 2z  are fictive positive real numbers. Let, for example, 1 2z =  and 
2 2.5z =  to get the domain Ω  in the Example 1. We choose the matrix 

3 2 2 2 0.79289320 0.292893201
1.7071068 2.20710682 2 2 3 2

H
 − + − − − 

= ≈   −+ − −    
 

for which the eigenvalues are 1 2 1.5µ µ= = −  and the inequality (13) is satisfied. Then, we solve the Sylvester 
equation (20) and get 

1
3 4

3 .154 12 2 10 8 2
2

F X −
 
 = = −
 + +
 

 

The feedback matrix 1F , which represents the first row of F , is then  

[ ]1
3 3 4 .
4

F = −  

The spectrum of 1A BF+  is then { }1.5, 1.5− − . 
As in Figure 1 but in the state space, Figure 2 plots two trajectories in the state space starting from two dif- 

ferent and admissible initial states and, thanks to the asymptotic stability of the system and the invariance po- 
sitive property, shows the state convergence to the origin without leaving the domain imposed by the con- 
straints. 

5. Conclusion 
A method for partial or total eigenstructure assignment problem was presented and examples to illustrate the 
method were given. The method uses Sylvester equation to find the feedback matrix F when some matrix H  is 
given with a desirable spectrum that will replace all the undesirable eigenvalues of the initial matrix A of System 
(1) in the closed-loop. This method generalizes the one proposed in [10] without additional conditions on Sys- 
 

 
Figure 2. Trajectories of the system ( ) ( ) ( )1x t A BF x t= +  from 

two different initial states ( )0x  such that ( )1 0F x ∈Ω .          
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tem (5) and allows us to deal with the problem of asymmetrical constraints on the control vector. Examples to 
show its importance are presented. 
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