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ABSTRACT 

The main properties (attenuation along the surface, attenuation in depth, additional radiation in depth, dispersion in 
propagation space) of Bleustein-Gulyaev surface acoustic waves (SAWs) in electroelasticity are determined in terms of 
a perturbation due to viscosity. This paves the way for a study of the perturbed motion of associated quasi-particles in 
the presence of low losses. 
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1. Introduction 

In two previous papers [1,2] we have shown how quasi- 
particles in inertial motion could be associated canoni-
cally with surface acoustic waves (SAWs) of the Ray- 
leigh and Bleustein-Gulyaev types, in the absence of 
dissipation. A natural extension of this kind of approach 
is the consideration of the possible non-inertial motion 
of quasi-particles that would be associated with these 
surface waves in presence of dissipation. The latter can 
be of purely mechanical origin (viscosity, plasticity, 
damage) in the Rayleigh case and of mixed mechanical 
and electrical origins—the last property being related to 
phenomena such as polarization relaxation, hysteresis, 
etc.— for Bleustein-Gulyaev waves. The Rayleigh case 
inevitably involves two elastic displacements and this 
greatly complicates any analytic treatment. Accordingly, 
we consider here the case of Bleustein-Gulyaev waves 
which, although coupling small strains with an electric 
potential, remains with a single elastic (SH = shear- 
horizontal) displacement [3,4]. Furthermore, while elec-
tric dissipation would change the nature of the dynami-
cal problem, after a general introduction we envisage 
only the influence of mechanical dissipation in the form 
of viscosity. Very few works have considered the dissi-
pative propagation of Bleustein-Gulyaev waves. The 
work of Romeo [5] is an exception. The dissipative 
Rayleigh case was more often considered (cf. Caloi [6], 
Scholte [7], Tsai and Kolsky [8], Curie et al. [9], Curie 
and O’Leary [10], Romeo [11], Lai and Rix [12], 
Acharya and Mondal [13], Addy and Chakraborty [14], 

Carcione [15]). But none of these could envisage the 
association of quasi-particles with SAWs so that the 
present work appears to be the first of its kind. This as-
sociation will be dealt with in an extension of this work, 
once we have established a consistent direct “ana-
lytic-approximate” solution in this first part, the 
quasi-particle approach having most of the time a dif-
ferent purpose, that of treating the main elements of 
perturbations of the known exact linear solution by 
various factors (dissipation, nonlinearity, interactions 
with “obstacles”). But we do need this solution and ex-
hibiting it is the main purpose of this paper. 

2. Reminder of General Piezoelectricity in 
the Presence of Dissipative Effects 

2.1. Balance Laws and Constitutive Equations 

We use indifferently the intrinsic (with no indices) no-
tation or the indexed Cartesian tensor notation. Here the 
symbol t   or a superimposed dot denotes the partial 
time derivative. The symbol stands for the gradient 
(e.g., in components, 



i ix   ); div means the di-
vergence of second order tensors (e.g., 
 div ji ji

x    ).  ; 1,2,3;ix i  t  provides a sys-
tem of rectangular coordinates and the time parametri-
zation by the Newtonian time t. Symbol u will denote 
the elastic displacement. Accordingly, in any regular 
material point of the considered piezoelectric body the 
local balance of linear momentum and Gauss equation 
read: 



Bleustein-Gulyaev SAWS with Low Losses: Approximate Direct Solution 123 

div 0,  0
t


   


p

D  .          (2.1) 

Here 0 p u  is the linear momentum, σ is Cauchy’s 
(symmetric) stress tensor, D is the electric displacement, 

0  is the constant matter density, and u is the elastic 
displacement. Any body force is discarded. Only small 
strains and weak electromagnetic fields are considered. 
The theory is linear so that both electromagnetic pon-
deromotive force and couple that are basically quadratic 
in the fields are discarded (for these see Maugin, 1988 
[16]). The electric framework is that of quasi-electro- 
statics (no electromagnetic inertia, Maxwell’s equations 
reduced to (2.1 2) and curl    0E E , so that the 
electric field vector E derives from the potential   i.e., 

 E , but all fields still depend on time). The elec-
tric displacement vector D is such that 

0 , D E P               (2.2) 

where 0  is the vacuum electric permeability, and P is 
the electric polarization vector per unit volume. Lorentz- 
Heaviside units are used (no factor 4π). Natural boundary 
conditions associated with Equation (2.1) read 

   , 0,     0n n D 0.          (2.3a) 

These hold for a mechanically free surface, and a con-
nection to an external electric field in the vacuum outside 
the body, the symbolism  ..  indicating the finite jump 
of the enclosed quantity at the bounding surface, i.e., 
 A A A   , where A  denotes the uniform limit of 
the function A in approaching the limit surface from the 
positive and negative sides of the surface, respectively, 
and n is the unit normal to the boundary oriented from 
the minus to the plus side. Whenever this surface is elec-
troded fixing the electric potential on it, say 0 0   
(zero potential), then (2.3a) are replaced by 

0, ,w 0      0n n D ,       (2.3b) 

where w is an imposed surface density of electric charges. 
This is the case mostly considered in the present work. 
Type (2.3a) is briefly considered in Section 4 below. 

In the presence of dissipation of the viscous and elec-
tric-relaxation type the constitutive equations for σ and D 
are given in Cartesian tensor components by 

,visco relax
ji ji j j

ij j

W W
D P

e E
  

   
 

,      (2.4) 

The nondissipative contributions here derivable from the 
volume energy W  are the standard ones given by the 
theory of linear piezoelectricity (cf.Maugin, 1988 [16]; 
Chapter 4): 

   2
0 ( , )

1
, , ,

2 ij i jW W e u      e E E e E  , (2.5) 

,ijkl kl qij q ijkl k l qij q
ij

W
C e e E C u e

e ,


   


,    (2.6.1) 

,

0

,ij j ipq pq ij j ipq p q
i

ij ij ij ji

W
E e e e u

E
  

    


     


  

,
,   (2.6.2) 

where (quadratic energy) 

1

2 2ijkl ij kl qij q ij ij i jW C e e e E e E E  
1

,     (2.7) 

with the following symmetries: 

   , ,ijkl klij qij qji ij jiij klC C C e e      ,    (2.8) 

for the tensorial coefficients of elasticity, piezoelectricity 
and dielectricity, respectively. The field e of components 

ij  stands for the small strain tensor, and parentheses 
around a set of indices indicate the operation of sym-
metrization. 

e

Simple examples of dissipative contributions in the 
context of Bleustein-Gulyaev waves are given by (cf. 
Maugin et al, 1992 [17]); a superimposed dot is the same 
as the partial time derivative) 

,2 ,visco relax R R
ji ij j je P E j         ,      (2.9) 

with positive viscosity   and relaxation constant R . 
A symmetry class (no center of symmetry) allowing for 
the existence of piezoelectricity must be selected for 
(2.8). Simple isotropy has been considered for the dissi-
pative effects, bearing no restriction for the application in 
this paper. 

For the case of Bleustein-Gulyaev surface acoustic 
waves (SAWs) with elastic displacement 3  polarized 
orthogonally to the sagittal plane S  spanned by the 
propagation direction 1

u

x  and the in-depth coordinate 

2x , the only surviving components of (2.3) are given by 
(compare the nondissipatif case in Maugin and Rousseau, 
2010 [2]) 

23 44 3,2 15 ,2

13 44 3,1 15 ,1

1 ,

1

v

v

c u
t

c u e
t

e  

  

     
     

,       (2.10) 

1 15 3,1 11 ,1

2 15 3,2 11 ,

1 ,

1

E

E

D e u
t

D e u
t 2

  

  

     
     

.        (2.11) 

with 

44 11, R
v Ec       .          (2.12) 

Here ,  and 44c 15e 11  are the only intervening elas-
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ticity, piezoelectric and dielectric constants (in the so- 
called Voigt’s notation commonly used in piezoelectric-
ity). 

Of course, the corresponding wave problem becomes 
dispersive since the polynomials of differentiation are no 
longer homogeneous. 

2.2. Energy Equation 

If we multiply (2.1.1) by  and sum over indices, we 
obtain 

u

 2
0 ,

1
0

2 ji i ji i j
j

u u
t x

         
  u  ,     (2.13) 

or, on account of (2.4), 

 2
0

1
0

2
visco

ji i ji i j
j ji

W
u u

t x e
  

                
  u ,  . (2.14) 

But (2.1.2) yields 

   0 relax
j j

j

W
P E

E
 

 
       

  D D   .   (2.15) 

Subtracting the (vanishing) right-hand side of (2.15) 
from (2.14) yields the (non)-conservation of energy in 
the form 

 

 

2
0

, ,

1

2 ji i j
j

visco relax
ji i j j j

W u
t x

u P

D  

 

       

  

 



u
.      (2.16) 

Remark: Equation (2.16) has a remarkable symmetric 
structure for mechanical and electric effects. Quite often, 
however, the Poynting vector for quasi-electrostatic 
fields is written as 

  S D ,                (2.17) 

[cf. Maugin, 1988, Equation (4.6.14), p.238 [16]; or Er-
ingen and Maugin, 1990, Equation (7.3.15) [18], p. 246]. 
This can be accommodated by Equation (2.16) by a 
re-definition of the energy W. For instance, we can re-
write (2.16) as 

 

 

2
0

, ,

1 ˆ
2 ji i j

j

visco relax
ji i j j j

W u
t x

u P

D  

 

       

  

 



u
     (2.18) 

With 

ˆ ˆ ,W W W    D E e E .        (2.19) 

Obviously, (2.18) is less convenient than (2.16) for our 
purpose. While the SAW problem is based on an exploi-
tation of Equation (2.1) and accompanying boundary 
conditions, that of the formulation of the mechanics of 

associated quasi-particles (subsequent work) is based on 
an exploitation of Equation (2.16) and of an analogous 
spatial co-vectorial equation known as the conservation 
(or non-conservation) of wave momentum. (general con-
cept in Maugin, 2011 [19]; Chapter 12), once the SAW 
solution is known, just like in a post-processing proce-
dure. This completes the thermo-electromechanical mod-
eling per se. 

3. Surface BG Wave Solution in the Presence 
of Low Viscous Losses Only 

The dissipative case will be treated along the same line 
as the known BG solution but with account of a perturba-
tion by low viscous processes only. 

3.1. Reminder of the Pure BG SAW Solution 

In this case, after introduction of an effective scalar elec-
tric potential  , the surviving Equation (2.1) for the 
fields     3 1 1 2, , ,u x t x x t2, ,x  are 

2
2 2 23

3 2
, 0T

u
c u

t


 


  .  15 11 3e    u   (3.1) 

with 

 2 2 2
44 0 44 44 15 11 44, 1 ,Tc c c c K K e c     2 , (3.2) 

where K is the so-called electromechanical coupling fac-
tor. The boundary conditions (2.3b1,3) at the mechani-
cally free, but electrically grounded surface, 2 0x   yield 

15
44 3,2 15 ,2 3 2

11

0, 0 at 0
e

c u e u x 


         (3.4) 

For the half-space , the SAW solution generally 
reads 

2 0x 

  3 1 1 2 2Re exp i uu U k x k x t          (3.5) 

  1 1 2 2Re exp i k x k x t       .     (3.6) 

From (3.1.1) and (3.1.2) there follows that 
2

2 2 2 2
1 2 2

,u T T
T

k k k k
c


            (3.7) 

and (3.1.2) is not a propagation equation 
2 2

1 2 0k k   .               (3.8) 

That is, 

2 2 2
2 1 2,u Tk k k k k 1    .        (3.9) 

The boundary conditions (3.4) yield a nontrivial solu-
tion for 

2 2
2 2 15

2 2 2
11 44

; :
1u

e K
k K k K

c K 
   


.    (3.10) 
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The first of these has to be substituted in (3.7.1) on 
account of (3.10)2. This yields  

2 4 2 4
2 2uk K k K k   2

1 , 

from which there follows the “dispersion relation” of 
Bleustein-Gulyaev surface waves for the present electric 
boundary condition: 

  2 2 2 2 2 4
1 1, : 0; 1GB BG BG TD k c k c c K      

k

.  (3.11) 

Noting that 2 1 , the real BG SAW for  
can be written as the solution 

k i   2 0x 

   
   

2
3 1 2 1 1

1 2 1 1

exp cos ,

exp cos

u U K k x k x t

k x k x t



 

  

   
,     (3.12) 

with 

15
2

11

0 at 0
e

U x


    .         (3.13) 

For a vanishing electromechanical coupling coefficient, 
the surface wave degenerates into a face shear wave (cf. 
Equation (3.12.1) for 0K  ). Consistently with (3.11), 
we note , ,BG BG BGc k c   and 2πBG BGk 

d

 the 
wave parameters (velocity, wave number and wavelength) 
of this solution. Those corresponding to a dissipatively 
perturbed solution will be denoted with an additional 
subscript d, e.g., , etc.  1d BGk k

3.2. BG SAW Solution Including Low Viscous 
Losses 

For the sake of simplicity we discard dielectric relaxation. 
Constitutive Equations (2.10) and (2.11) reduce to 

23 44 3,2 15 ,2

13 44 3,1 15 ,1

1 ,

1

v

v

c u
t

c u e
t

e  

  

     
     

,      (3.14) 

1 15 3,1 11 ,1 2 15 3,2 11 ,2,D e u D e u       ,    (3.15) 

with 44 vc   . 
We follow the same strategy as for the nondissipative 

case recalled in the preceding paragraph. The ansatz 
SAW solution is like in Equations (3.5)-(3.6) but with all 
k’s now possibly complex. The dimensionless parameter 
  defined by 

2
15

44 4444
11

, ,
e

c c c   


    ,       (3.16) 

that compares the viscous relaxation time to the time 
scale of the wave motion, is considered as an infinitesi-
mally small quantity of the first order, so that 1   in 
the sequel. Relation (3.1.3) is still valid, so that together 
with (3.1) and (3.2) Equations (2.1) reduce to the fol-

lowing system: 

 
2

2 2 23
3 2

1 i , 0T

u
c u

t
   


   ,     (3.17) 

for , with conditions (2.3.b1,3) at , i.e., 2 0x  2 0x 

  15
44 3,2 15 ,2 3

11

1 i 0, 0
e

c u e u  


     .   (3.18) 

Equations (3.7) are replaced by the following ones: 

 
2

2 2 2 2
1 2 2

ˆ ˆ,
1 iu T T

T

k k k k
c




  


        (3.19) 

and 

 
22 2

2 15
2 2 2

11 44

; :
1 i 1u

eK K
k k K

c K 
   

 
.    (3.20) 

Whence, 

   2 22 4 2 4
2 21 i 1uk K k K i k       2

1 .   (3.21) 

Finally, (3.11.1) is replaced by the following—still 
exact—complex (true) dispersion relation  

 
 
  

1

4 2

2 2 2
14

, complex

1 2i
0

1 i 1
BG

D k

K
c k

K



 




   
 


  

   

,    (3.22) 

with 2
BGc  defined in (3.11.2). Let 1d  the complex 

wave-number solution of (3.22). We have thus 
k

   
2 2

1 14 2

1 i

1 1 2i
d BGk k

K



 


  
    

      (3.23) 

where 2 2 2
BG BG

Now we look for approximations of 1d  in terms of 
k c . 

k
 . We write for the left-hand side of (3.23) 

 22
1 1id BG BG BGk k k k    2

2 ,        (3.24) 

or at order 2 , 

 
  

2 2
1

2 2
2 1

i 2

      2 2

d BG BG BG

BG BG BG

k k k k

k k k





 

 

1
.       (3.25) 

At the same order of approximation the right-hand side 
of (3.23) yields 

 
2 2 2

1 4 4 4

2 3 2
1 i 1

1 1 1
d BGk k

K K K
 

  
                 

2 . 

(3.26) 

Identifying the like powers of   from (3.25) and 
(3.26), we can draw the following conclusions. 
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• At order zero in   we obviously have the solution 
provided by (3.11); 

• At order one in  , we have (K being small by it-
self) : 

     
4

1 4

1
, :

22 1
BG BG D D

K
k k f K f K

K


 


1

 ;   (3.27) 

• At order two in  , we obtain: 

 2BG BG dk k g K ,          (3.28) 

with 

   

   

2

24 4

: ,
2 2

3 2
:

1 1

d
d

f K g K
g

g
K K

 

 
 

5
.        (3.29) 

This solution is completed by applying the same ap-
proximation to the relation given by (3.9).  

That is, we can write 

  12
2 1i 1 iud dk K k     .         (3.30) 

This manipulation yields 

   2 2
2 iu BG BG BGk K k K k k 2

1 0     .    (3.31) 

We also show that  

 2
2 1 1i i 0d d BG BGk k k k      .      (3.32) 

The SAW solution finally reads 

    
 

3 1 2 1 2 2

1 1 2 2

, , exp

cos

I I
d I ud

R R
d ud

u x x t U k x k x

k x k x t

  

 
,    (3.33) 

    
 
1 2 1 2 2

1 1 2 2

, , exp

cos

I I
d I d

R R
d d

x x t k x k x

k x k x t









   

 
,    (3.34) 

where superscripts I and R denote imaginary and real 
parts, respectively. Summing up, we have up to order  : 

1 1,R I
d BG d BG d BGk k k k f k    1 ,      (3.35) 

   2 2
2 1

2
2

1

,

R
ud BG d BG BG

I
ud BG

k K k f K k k

k K k

      



,

2 BGk

  (3.36) 

2 1,
R I

d BG d BG dk k f k k       .    (3.37) 

Globally, we see that at order  : 
• 1 0BGk   yields attenuation in the propagation di-

rection. This is of order of . 
• 2  yields the expected exponential at-

tenuation in depth for a surface wave. 
Im 0udk 

• 2  yields a superimposed oscillation in 

depth (due to the viscous behavior). 

Re 0udk 

We also remark that at order 2 , 2 21 8 0BGk    
describes dispersion in the propagation direction. This 
dispersion that varies like  , results from the viscous 
behavior. 

4. Other Case of Electric Boundary 
Condition 

For the sake of completeness we also briefly consider the 
other standard case (2.3a) of boundary conditions at 

2 0x  . Thus,  

   0, 0, 0    n n D ,       (4.1) 

i.e., the matching with a vacuum half-space above the 
limiting plane 2 0x  . Since there is no matter in the 
region 2 0x   and 0  is the vacuum dielectric constant, 
we shall complement the solution (3.5)-(3.6) by consid-
ering 

  1 1 2 2Re exp i k x k x t  


          (4.2) 

with 
2

20 for 0x    .         (4.3) 

On account of pure viscous dissipative processes and 
applying the conditions (4.1.1,3) we find that  

   
 

44 3,2 11 ,2

15 0 11

1 i 0,

0

c u

e U

  

 





  

   
.       (4.4) 

We obtain thus (3.19) and 

     
22

2 15
2 2

0 11 44

; :
1u

eK
k k K

i c   
 

 


0

,    (4.5) 

2 2
2 1 2 2, 0 ork k x x   

2

 .       (4.6) 

Thus, the coupling coefficient K  replaces 2K  in 
the solution given in Section 3, while the complex dis-
persion relation is obtained in a form similar to (3.22) or 
(3.23). But remember that all k’s are a priori complex 
and in addition to expression of the form (3.33) and (3.34) 
for  and 3u  1 2, 0,x x  t  with amplitude  , we 
shall have for 2 0x   a real electric potential solution 

 


 

1 2

1 1 2

1 1 2 2

, 0,

exp

cos

I R
d I d

R R
d d

x x t

k x k x

k x k x t






  

 

 

,        (4.7) 

with an oscillation behavior combined with an exponen-
tial decrease in the negative 2x  direction. We do not 
pursue the detail of this solution, noting simply that the 
introduction of associated quasi-particles would require 
the consideration of an integration over the whole 2x  
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axis (compare the nondissipative case in Section 6 of 
Maugin and Rousseau, 2010 [2]). 

5. Conclusive Remarks 

The above given results—we believe reported for the 
first time in a clear cut manner, show how complex can 
become the behavior of the relevant surface waves in the 
presence of dissipation. The somewhat annoying prop-
erty is the one exhibited by the relation 2 , 
indicating that propagation is no longer purely along 1

Re 0udk 
x , 

hence a radiation along the 2x  axis, and a propagation 
direction at an—although small—angle to the 1x  direc-
tion in the sagittal plane. Dispersion is a less dramatic 
effect as being of order 2 . These are interesting and 
they would themselves lend to experimental investiga-
tions. But our own purpose was to obtain an analytical 
solution which, although approximate, is needed to ex-
ploit the conservation laws of energy and wave momen-
tum (of which the general features are studied in Ref. 
[19]) in order to define without ambiguity the notion of 
associated quasi-particle (compare References 1 and 2 in 
the absence of losses). This will be achieved in a further 
work. Note that this notion of quasi-particle—in the ex-
pected duality between wave and particle that is very 
original for surface waves—will be useful in studying 
problems involving encounter with an obstacle placed on 
the path of the wave, e.g., experimentally, in nondestruc-
tive evaluation techniques. 
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