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Abstract 
In this work, we consider different numerical methods for the approximation of definite integrals. 
The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We 
trace the behavior of the error when we refine the mesh and show that Richardson’s extrapolation 
improves the rate of convergence of the basic methods when the integrands are sufficiently diffe-
rentiable many times. However, Richardson’s extrapolation does not work when we approximate 
improper integrals or even proper integrals from functions without smooth derivatives. In order 
to save computational resources, we construct an adaptive recursive procedure. We also show 
that there is a lower limit to the error during computations with floating point arithmetic. 
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1. Introduction 
Suppose ( )f x  is a real function of the real variable x , defined for all [ ],x a b∈ . The definite integral from 
the function ( )f x  from a  to b  is defined as the limit  

 ( ) ( )
max 0 1

d lim ,
k

k

b n

k k
ka

I f x x f x
∆ → =

= = ∆∑∫  (1) 

where 0 1 na x x x b= < < < =  and 1, 1, 2, , .k k kx x k n−∆ = − =   In the case when the anti-derivative ( )F x  
of ( )f x  is known, we can calculate the definite integral using the fundamental theorem of Calculus:  

 ( ) ( ) ( )d .
b

a

f x x F b F a= −∫  (2) 
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The anti-derivatives of many functions cannot be expressed as elementary functions. Examples include  

 
2 2 2 sin cos 1e ,sin ,cos , , , .

ln
x x xx x

x x x
−  (3) 

In some cases, when the function is obtained as a result of numerical calculations or experimental observa- 
tions, the function values are available only for a fixed, finite set of points [ ],ix a b∈  (see for example [1] and 
[2]). In those cases the Fundamental Theorem of Calculus cannot be applied and the values of the integral have 
to be approximated numerically. 

It is clear that when using numerical calculations, due to the round-off error, we usually cannot obtain the 
exact value I  of the integral. So, we say that the numerical value of the integral I  is obtained when we 
obtain I  approximate value of I , such that I I ε− < , where 0ε >  is the acceptable error. Even in some 
cases when the Fundamental Theorem of Calculus is applicable, we still have to work with approximate value of 
the integral. For example  

 
1

0

e e 1 1.7172xI dx= = − =∫   (4) 

 Since e  is a transcendent number we cannot represent it as a finite decimal number. So, we have to use an 
approximation of the integral. 

Usually, the approximate value of the integral is calculated using the so-called formulas for numerical 
integration or quadrature formulas. The general idea is to approximate the integral as a sum  

 ( ) ( )
0

d
b n

k k
ka

I f x x I A f x
=

= ≈ = ∑∫   (5) 

of the values of the function ( )f x , calculated at some nodes kx , multiplied by some coefficient kA , called 
weights or weight coefficients. The nodes and the weight coefficients do not depend on the function ( )f x . 

Usually the nodes and the weight coefficients are calculated so that the formula is exact for the polynomials 
of highest possible degree. We say that the quadrature formula is exact for all polynomials of degree m  if for 
any polynomial ( )mP x  of degree m   

 ( ) ( )
0

d .
b n

m k m k
ka

P x x A P x
=

= ∑∫  (6) 

In this work we consider so called Newton-Cotes formulas defined on a fixed set of nodes [ ],ix a b∈ , 
0,1, 2, ,i n= 

 (see [3] for details). In this case, in order to obtain the coefficients iA , one has to solve the 
system of linear equations  

 
0

d , 0,1, 2, , .
b n

l l
k k

ka

x x A x l m
=

= =∑∫   (7) 

The Error Term 
The error term, ( )R f , is defined as  

 ( ) ( )
0

d .
b n

l
k k

ka

R f f x x A x
=

= −∑∫  (8) 

If the function ( )f x  has a continuous m  derivative, the error term can be represented in the form (see for 
details [3] [4])  

 ( ) ( ) ( ) ( )1 ,m mR f c b a f ξ+= −  (9) 

where c  is a constant and ( ),a bξ ∈ . 
The degree of precision of a quadrature formula is defined as the positive integer m  satisfying ( ) 0kR P =  

for 0,1, ,k m=  , where kP  is a polynomial of degree k , but ( )1 0mR P + ≠  for some polynomial of degree 
( )1m + . 
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2. Midpoint Rule 
The simplest formula, using only one node, is the Midpoint Rule. Suppose the node is the midpoint 

0 2
b ax −

=  of the interval [ ],a b . By solving the Equation (7), we obtain the formula  

 ( )
2

b aI b a f + = −  
 

  (10) 

If the function ( )f x  has a continuous second derivative, the error term of the Midpoint Rule can be 
represented in the form  

 ( ) ( ) ( )
3

,
24

b a
R f f ξ

−
′′=  (11) 

where ( ),a bξ ∈ . 

2.1. Composite Midpoint Rule 
In order to reduce the error term we partition the interval [ ],a b  into N  subintervals [ ]1,i ix x + , 

0,1, 2, ,i N= 
. Assume 0x a= , Nx b= , and 0 1 Nx x x< < <  (see Figure 1). Suppose the length of each  

subinterval is the same, 1i ix x h+ − = . So, b ah
N
−

=  and ix a ih= + . Then,  

 ( ) ( )
1

d 2 .
b N

k
ka

f x x h f x h
=

≈ −∑∫  (12) 

If the function ( )f x  has a continuous second derivative in [ ],a b , the approximation error  

 ( ) ( ) ( )
1

, d 2 ,
b N

k N
ka

R f N f x x h f x h I I
=

= − − = −∑∫  (13) 

is given as  

 ( ) ( ) ( ) ( ) ( )
3

2
2, , , ,

24
b a

R f N f cf h a b
N

ξ ξ ξ
−

′′ ′′= = ∈  (14) 

where 
24

b ac −
= . 

Suppose we have performed two calculations with different numbers of subintervals, N  and 2N . Then  

 ( ) ( ) 2, ,NR f N I I cf hξ′′= − =  (15) 

and  

 ( ) ( )
2

2, 2 .
4N
hR f N I I cf ξ′′ ′= − =  (16) 

If ( ) ( )f fξ ξ′′ ′′ ′≈ , we obtain  

 
( )
( )

,
4.

, 2
R f N

E
R f N

= =  (17) 

 

 
Figure 1. The mesh.                                                                                     
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Therefore, if we double the number of subintervals, the error term is decreased four times. This is a practical 
way of confirming the power of h  in the error term. In practice [5], the ratio is not exactly four, because f ′′  
is usually not constant. 

2.2. Numerical Experiments 
We prepared a SAGE function MPloop for our numerical experiments with the Midpoint Rule. The code is 
given here: 
 

 
 

The variables a and b are the lower and upper limits of the integral, and the variable n is the number of 
subintervals. 

The results obtained with the function MPloop for the integral  

 ( )2 3
1

4 2 d 18I x x x
−

= + =∫  (18) 

are shown in Table 1. The last column shows the ratio of the errors 
( )
( )

,
, 2

R f N
R f N

. Our numerical calculations  

confirm that if we double the number of subintervals, the error term is decreased four times. The error 
distribution for the same calculation is given in Figure 2. The red dots are the numerical error and the blue line  

is the graph of the function 2

13.5y
N
−

= . Again, the numerical experiments confirm that the error is going to zero  

when N  is going to infinity the same way as the function 2

13.5y
N
−

=  is going to zero. One application of the  

Midpoint Rule can be found in [6]. 

3. Trapezoidal Rule 
The formula based on two nodes, 0x a=  and 1x b= , and exact for all second order polynomials, can be 
calculated via the system of two Equations (7). The resulting formula  

 ( ) ( ) ( )d ,
2

b

a

b af x x f a f b−
≈ +  ∫  (19) 

is called Trapezoidal Rule, because it produces exactly the area of the trapezoid with vertexes ( ),0a , ( ),0b , 
( )( ),a f a , and ( )( ),b f b . 

If the function ( )f x  has a continuous second derivative, the error term of the Trapezoidal Rule can be 
represented in the form (see [3])  

 ( ) ( ) ( )
3

,
12

b a
R f f ξ

−
′′= −  (20) 

where ( ),a bξ ∈ . 

3.1. Composite Trapezoidal Rule 
The composite formula for the Trapezoidal Rule is  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1d .
2

b

N
a

f a f b
f x x h f x f x f x −

+ 
≈ + + + + 

 
∫   (21) 
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Figure 2. The error distribution for ( )2 3

1
4 2 dx x x

−
+∫  calculated with Midpoint 

Rule. The red dots are the errors and the blue curve is ( )213.5 1y N= − .       

 
Table 1. Numerical results for ( )2 3

1
4 2 dx x x

−
+∫  calculated with the Midpoint Rule.                                  

N  I  ( ),R f N  ( ) ( ), , 2R f N R f N  

20 17.96625 −0.03375000000000128  
40 17.99156 −0.00843750000000298 3.99999999999874 
80 17.99789 −0.00210937500000341 3.99999999999495 
160 17.99947 −0.00052734375000085 4.00000000000000 
320 17.99986 −0.00013183593750198 3.99999999994610 

 
The nodes kx  are defined in subsection 2.1 as given in Figure 1. 
The error term is (see [5] for details)  

 ( ) ( ) ( ) ( ) [ ]
3

2
2, , , .

12
b a

R f N f cf h a b
N

ξ ξ ξ
−

′′ ′′= − = ∈  (22) 

where 
12

b ac −
= − . 

As with the Midpoint Rule, we obtain  

 
( )
( )

,
4.

, 2
R f N

E
R f N

= ≈  (23) 

3.2. Numerical Experiments 
We construct a SAGE function TPloop(a,b,n) for the composite Trapezoidal Rule: 
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The variables a and b are the lower and upper limits of the integral, and the variable n is the number of 
subintervals. 

The results obtained with function TRloop for the integral (18) are shown in Table 2. The last column shows  

the ratio of the errors ( )
( )

,
,2

R f N
R f N

. Our numerical calculations confirm that if we double the number of  

subintervals, the error term is decreased four times. The error distribution for the same calculation is shown  

graphically in Figure 3. The graph of the function 2

27y
N

=  is given in the same figure. The error points and the  

graph of the quadratic function are undistinguishable. This experiment confirms the second order of ap- 
proximation of the numerical realization of the Trapezoidal Rule. 

4. Simpson’s Rule 

Suppose we want to use three nodes 0x a= , 1 2
a bx +

= , and 2x b= . For this case the quadrature Formula (5) 

has three free (unknown) coefficients  

( ) ( ) ( )0 1 2d ,
2

b

a

a bf x x A f a A f A f b+ ≈ + + 
 ∫  

 

 

Figure 3. The error distribution for ( )2 3

1
4 2 dx x x

−
+∫  calculated with the 

Trapezoidal Rule. The red dots are the errors and the blue curve is          

( )227 1y N= .                                                   

 
Table 2. Numerical results for ( )2 3

1
4 2 dx x x

−
+∫  calculated with the Trapezoidal Rule.                                

N  I  ( ),R f N  ( ) ( ), , 2R f N R f N  

20 18.0675 0.0675  

40 18.016875 0.016875 4.00000000000021 

80 18.00421875 0.00421875 4.00000000000000 

160 18.001054687499998 0.001054687499998 4.00000000000674 

320 18.000263671874997 0.000263671874997 4.00000000004042 



T. Marinov et al. 
 

 
1418 

and we can make the formula exact for second order polynomials. In other words, the formula must be exact for 
all polynomials of zero degree and particularly for ( ) 1P x = . So,  

0 1 2 1d ,
b

a

A A A x b a+ + = = −∫  

The formula must be exact for all first order polynomials and particularly for ( )P x x= . Therefore,  
2 2

0 1 2 d ,
2 2

b

a

a b b aaA A bA x x+ −
+ + = =∫  

The formula must be exact for all second order polynomials and particularly for ( ) 2P x x= . Therefore,  
2 3 3

2 2 2
0 1 2 d .

2 3

b

a

a b b aa A A b A x x+ − + + = = 
  ∫  

The last three equations form the system (7) for this case. The solution to the system is 0 2 6
b aA A −

= = , 

3 4
6

b aA −
= , and the Simpson’s Rule is given by  

 ( ) ( ) ( ) ( )d 4 .
6 2

b

a

b a a bf x x f a f f b R f−  +  = + + +    
∫  (24) 

The error term, under the condition that the fourth derivative ( ) ( )4f x  of the function ( )f x  exists and is 
continuous in the interval [ ],a b , is given by (see [5])  

 ( )
( ) ( ) [ ]
45

, , .
2 90

fb aR f a b
ξ

ξ− = − ∈ 
 

 (25) 

4.1. Composite Simpson’s Formula 
One way to construct the composite Simpson’s formula is to divide the interval [ ],a b  into an even number of 
subintervals, say 2N m= . Then the composite formula is 

 
( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) }
2 4 2 2

1 3 2 1

d 2
3

4 ,

b

m
a

m

hf x x f a f b f x f x f x

f x f x f x

−

−

 ≈ + + + + + 

 + + + + 

∫ 



               (26) 

where 
2

b a b ah
N m
− −

= = . The error term in this case is  

 ( )
( ) ( ) ( ) ( ) ( )
45

4 4
4, , , ,

2 90
fb aR f N cf h a b

m
ξ

ξ ξ− = − = ∈ 
 

 (27) 

where 
180
b ac −

= . 

As with the two previous rules, we obtain  

 
( )
( )

,
16.

, 2
R f N

E
R f N

= =  (28) 

So, if the number of subintervals is multiplied by 2, the numerical error decreases by a factor of 1 16 . 

4.2. Numerical Experiments 
We prepared a SAGE function Simpsons for our numerical experiments with Simpson’s Rule. The code is given 
here: 
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The variables a and b are the lower and upper limits of the integral, and the variable n is the number of 
subintervals. 

The results obtained with function Simpsons for the integral  

 2

1
sin d 0.9564491424152821I x x

−
= =∫  (29) 

are shown in Table 3. The last column shows the ratio of the errors 
( )
( )

,
, 2

R f N
R f N

. Our numerical calculations  

confirm that if we double the number of subintervals, the error term decreases sixteen times. The error  
distribution for the same calculation is given in Figure 4. The red dots are the numerical error and the blue line  

is the graph of the function 4

0.43y
N

= . Because the error approaches zero very rapidly, we use a logarithmic  

scale on the y -axis. The numerical experiments confirm that the numerical error’s rate of approach to zero as  

N  approaches infinity is the same as the rate of approach to zero of the function 4

0.43y
N

= . 

5. Error Estimation from Numerical Results 
How do we determine the number of subintervals such that the computed result meets some prescribed 
accuracy? 
 

 

Figure 4. The error distribution for 
2

1
sin dx x

−∫  calculated with com- 

posite Simpson’s Rule. The red dots are the errors and the blue curve 
is 40.43y h= .                                              
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Table 3. Numerical results for 
2

1
sin dx

−∫  calculated with Simpson’s Rule.                                            

N  I  ( ),R f N  ( ) ( ), , 2R f N R f N  

20 0.9564518396509495 2.6972356673704567e−06  

40 0.9564493106537587 1.6823847659441782e−07 16.03221642260134 

80 0.9564491529249056 1.0509623504795229e−08 16.00804029922248 

160 0.9564491430720508 6.567686394731709e−10 16.00201786922341 

320 0.9564491424563286 4.104649953262651e−11 16.00060046414255 

 
According to the formulas for the error (14), (22), and (27), the error depends on a derivative of the integrand. 

If we know the corresponding derivative of the integrand, we can calculate the upper bound of the error. Usually, 
in practice we do not know the relevant derivative of the integrand and we cannot bound the error this way. 

In practice, we frequently use the rule known as Runge’s principle. The formulas for numerical integration 
(12), (21), and (26) are of the form  

 ( ) ( )d , ,
b

N
a

I f x x I R f N= = +∫  (30) 

where NI  is the approximated value of the integral calculated when the interval [ ],a b  is divided into N  
subintervals, and  

 ( )
( ) ( )

, ,
m

p

cf
R f N

N
ξ

=  (31) 

is the error term for the corresponding formula, c  is a constant, pm,  are integers, and [ ],a bξ ∈ . 
Suppose we perform two calculations with different numbers of subintervals, N  and 2N :  

 
( ) ( ) ( ) ( )

2and .
2

m m

N Np p p

cf cf
I I I I

N N
ξ ξ′ ′′

= + = +  (32) 

Under the assumption ( ) ( ) ( ) ( )m mf fξ ξ′ ′′≈  (see [5] for details), we can eliminate I  from the above two 
equations, to obtain  

 ( ) ( ) 2, 2 2 .
2 1
N N

p

I I
R f N r N

−
≈ =

−
 (33) 

This approximation of the error term is known as Runge’s principle. In addition, instead of 2NI , we can use  

 ( ) 2
2 22 ,

2 1
N N

N N p

I I
I I r N I

−
= + = +

−
  (34) 

as a better approximation of the integral. This technique is known as Richardson’s extrapolation; it is used in 
many types of numerical calculations, especially when we are solving differential equations numerically. 

In practice, usually the exact value of the integral I  is unknown. So, we cannot use the Formulas (17), (23), 
and (28) to confirm the power of h  in the error term. Substituting ( ),R f N  with ( )r N  from the Runge 
principle, we obtain  

 ( )
( )

( )
( )

2

4 2

, 2 2
2 .

, 4 4
p N N

N N

R f N r N I I
R f N r N I I

−
= ≈ =

−
 (35) 

Next we will consider the Runge principle, Richardson’s extrapolation, and the power of h  estimation in 
the error term to the Midpoint, Trapezoidal, and Simpson’s rules. 

5.1. Midpoint Rule 
A simple SAGE implementation of the Runge principle for estimating the error during the numerical calcula- 



T. Marinov et al. 
 

 
1421 

tions is given here: 
 

 

 
 

The variables a and b in the definition of the function MPerror contain the lower and upper limits of the 
integral. The variable eps is the satisfactory error. The function returns: the first variable, Inew, is the 
approximation of the integral with the Midpoint Rule; the second variable, Iextr, is the value of Richardson’s 
extrapolation for the integral using Iold and Inew; the third variable n gives the number of subintervals for the 
final approximation. 

To verify the theoretical results for the Midpoint method, we calculate the integral  

 4

1
sin dx x∫  (36) 

with a different number of subintervals, and approximate the value of the integral with Richardson’s 
extrapolation. The results are given in Table 4. Our numerical experiments confirm the second order of 
approximation ( )24 2=  of the Midpoint Rule, and show that Richardson’s approximation has a fourth order of 
approximation ( )416 2=  of the integral. 

5.2. Trapezoidal Rule 
When the number of subintervals N  increases, the error in the composite Trapezoidal Rule reduces. On the 
other hand, when N  increases, the number of the function values to be calculated also increases. We need to 
find a balance between the accuracy requirements and the cost (in operations or computing time) of the 
algorithm. This balance can be reached with the following algorithm: 

We calculate the approximation of the integral 0I  by applying the Trapezoidal Rule over the whole interval 
[ ],a b . Then we calculate the approximation 1I  by dividing the interval [ ],a b  into two subintervals, and in 
each we apply the Trapezoidal Rule. In this partition the new node is only one in the middle of this interval. The 
other two nodes are involved in the calculation of 0I  and we do not need to calculate the value of the function 
on those nodes again. We calculate 2I  by introducing four subintervals. The new nodes are only two. So, we 
find 3 4, , , ,kI I I  , such that the number of subintervals needed to calculate kI  is 2k , but the number of new 
nodes of the mesh on which we calculate kI  is 12k− . The remaining 12 1k− +  nodes are involved in the 
calculation of 1kI − , and the values of the integrand are already calculated. The process continues until the 
following condition holds:  
 
Table 4. Numerical error for the Midpoint Rule, Richardson’s extrapolation, and the rates of convergence.                    

N Midpoint error rate Richardson’s extrap. rate 

8 0.007024577280901  −0.00011693442490234  

16 0.0017507392430902 4.01234 −7.20676951360e−06 16.22563 

32 0.0004373481675656 4.00307 −4.4885760908108e−07 16.05580 

64 0.00010931601997121 4.00076 −2.80292269394e−08 16.01391 

128 2.7327691408896e-05 4.00019 −1.7514452110845e−09 16.00348 
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1 .
3

k kI I
ε−−

<  

This algorithm is an example of the so-called adaptive algorithms the number of required subintervals 
depends on the integrand, but the step is uniform throughout the interval [ ],a b . Sometimes we need to use a 
mesh with different steps depending on the behavior of the function under the integral. 

A simple SAGE implementation of the Runge principle for estimating the error during the numerical 
calculations with Trapezoidal Rule is given here: 
 

 
 

The variables a and b in the definition of the function TRerror contain the lower and upper limits of the 
integral. The variable eps is the satisfactory error. The function returns: the first variable, Inew, is the approxi- 
mation of the integral with Trapezoidal Rule; the second variable, Iextr, is the value of Richardson’s 
extrapolation for the integral using Iold and Inew; the third variable n gives the number of subintervals for the 
final approximation. 

To verify the theoretical results for the Trapezoidal method, we calculate the integral (36) with a different 
number of subintervals and approximate the value of the integral with Richardson’s extrapolation. The results 
are given in Table 5. Our numerical experiments confirm the second order of approximation ( )24 2=  of the 
Trapezoidal Rule and show that Richardson’s approximation has forth order of approximation ( )416 2=  of the 
integral. 

The fact that Richardson’s extrapolation applied to the Trapezoidal Rule gives fourth order of approximation 
has a simple explanation. Since,  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) }

1 1
1 2 2 1

2 4 2 2

2 4 2 2

1 3 2 1

4 1 4
3 3 3 2

2
2

2
3

4 ,

k

k

k k k k
k

m

m

f a f bI I I I
I h f x f x f x

f a f b
h f x f x f x

h f a f b f x f x f x

f x f x f x

− −
−

−

−

−

 + − − + = = + + + +  
  

+ − + + + +  
 

 = + + + + + 

 + + + + 









 (37) 

 
Table 5. Numerical error for the Trapezoidal Rule, Richardson’s extrapolation, and the rates of convergence.                

N Trapezoidal error Rate Richardson’s extrap. Rate 

8 −0.0140244567175  0.0001333996544001792  

16 −0.0034999397183 4.00705 8.232614749248413e−06 16.20380 

32 −0.00087460023761 4.00175 5.129226172684298e−07 16.05040 

64 −0.000218626035026 4.00043 3.203250420469317e−08 16.01256 

128 −5.4655007526e−05 4.00010 2.0016397428435084e−09 16.00313 



T. Marinov et al. 
 

 
1423 

Richardson’s extrapolation for the Trapezoidal Rule is nothing else but Simpson’s formula. Our numerical 
experiments show that the error term for Richardson’s extrapolation is the same ( )416 2=  as the error term for 
Simpson’s formula. 

5.3. Simpson’s Rule 
To verify the theoretical results for Simpson’s method, we calculate the integral (36) with a different number of 
subintervals, and approximate the value of the integral with Richardson’s extrapolation. The results are given in 
Table 6. Our numerical experiments confirm the fourth order of approximation ( )416 2=  of Simpson’s rule, 
and show that Richardson’s approximation has a sixth order of approximation ( )664 2=  of the integral. The 
SAGE code is given here: 

 

 

 

6. Adaptive Procedures 
According to [5]: “An adaptive quadrature routine is a numerical quadrature algorithm which uses one or two 
basic quadrature rules and which automatically determines the subinterval size so that the computed result meets 
some prescribed accuracy requirement.’’ For our adaptive function we chose the Midpoint Rule, because it 
involves just one node to approximate the integral in the given subinterval. The SAGE function needs to be 
changed slightly if one wishes to use a different quadrature formula. The SAGE code for the function 
MPrecursion(a,b,eps) is given here: 
 

 

 
 
The parameters of the function MPrecursion are a and b-the lower and upper limits of the integral, and eps the 

accuracy. The function divides the interval into two subintervals, and, in each subinterval, approximates the 
integral twice using the Midpoint Rule for the full half interval and using the composite Midpoint Rule, which 
divides the half interval into two subintervals. If the error, according to Runge’s principle, is less than eps, the 
value calculated with the composite rule is accepted as an approximation of the integral for this subinterval. If 
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Table 6. Numerical error for Simpson’s rule, the Richardson’s extrapolation, and the rates of convergence.                 

N Simpson’s error Rate Richardson’s extrap. Rate 

4 0.0001333996544004  −7.579037909266617e−06  

8 8.23261474947e−06 16.2038 −1.1185456050277764e−07 67.7579 

16 5.12922617490e−07 16.0504 −1.7235246563274131e−09 64.8987 

32 3.20325042046e−08 16.0125 −2.6836755040449134e−11 64.2225 

64 2.001638854665e−09 16.0031 −4.1877612488860905e−13 64.0837 

 
the error is greater than the prescribed accuracy, the function calls itself with a half-length interval and halved 
accuracy requirements. Therefore, we have one recursive algorithm which uses different mesh sizes for different 
parts of the interval. If the integrand is smooth and slowly varying, a relatively small number of subintervals is 
used. In the parts of the interval where the integrand is changing rapidly, the mesh is relatively fine. 

An example of the behavior of the function MPrecursion is given in Figure 5. The red dots on the x -axis are 
the nodes used for calculation of  

 
2

0.04

1sin d ,x
x

 
 
 ∫  (38) 

and the blue line is the graph of the integrand. 

7. Can We Always Trust the Runge Principle? 
As we have shown in the previous section, the Runge principle for estimating the error during the numerical 
calculations works well under the condition that the respective derivative of the integrand exists and this 
derivative is a continuous function. If the derivative in the error term does not exist, the Runge principle fails, 
and Richardson’s extrapolation cannot be applied. Consider the following examples. 

7.1. Improper Integrals 
The formal definition of improper integral is: 

If ( )f x →∞  when x a→  (or ( )f x →∞  when x b→ ), then  

 ( ) ( ) ( ) ( )( )d lim d , or d lim d .
b b b c

a c a ac a c b
f x x f x x f x x f x x

→ →
= =∫ ∫ ∫ ∫  (39) 

Examples: 

 
1 1

0 0

d d2, and 2.
1

x x
x x
= =

−∫ ∫  (40) 

Calculating improper integrals numerically is challenging. Usually, we need some a priori information about 
the integrand, because the techniques we apply depend on the properties of this function. Two main problems 
arise: 

1) the integrand is not defined at one (or both) limits of the integral; 
2) the integrand goes to infinity at one (or both) limits of the integral; 
Because of 1) Trapezoidal and Simpson’s rules cannot be used. The Midpoint Rule can be used, since we do 

not need the value of the function at the endpoints a  and b . 
The results from calculations of the first improper integral from (40) with the Midpoint Rule are given in 

Table 7. The ratio of the errors in this case is about 1.414. Compared to the ratio of 4 for the “good’’ functions, 
we see that the convergence is very slow. We will have a similar convergence for a “good’’ integrand when we 
approximate the integral with a formula with error term ( ), 1R f N c h c N= = . 

7.2. Singularity in the Derivative 
The slow convergence of the improper integral is not a surprise, since the integrand goes to infinity at one of the 
endpoints of the interval. Consider the integral  
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                      Figure 5. The mesh used from the adaptive algorithm to approximate. 
 
Table 7. Numerical results for 

1

0
1 dx x∫  calculated with the Midpoint Rule.                                         

N  I  ( ),R f N  ( ) ( ), , 2R f N R f N  

20 1.8647926204877276 −0.13520737951227235  

40 1.9043701466055494 −0.09562985339445063 1.4138616207490537 

80 1.9323735308432972 −0.09562985339445063 1.4140891072230746 

160 1.9521793771296476 −0.04782062287035238 1.4141695590215648 

320 1.966185341295599 −0.033814658704401035 1.4141980047288913 

 
1

0

2d .
3

x x =∫  (41) 

The function y x=  is a continuous and bounded function, but the second derivative of this function goes 
to infinity when 0x → . So, we can expect problems with practical convergence of the numerical calculation of 
the integral. The results from the numerical calculations of (41) with the Midpoint Rule are given in Table 8. 
The ratio of the errors in this case is about 2.8. Comparing this ratio to 4, for the “good’’ functions, we see that 
the convergence is slow. We will have a similar convergence for a “good’’ integrand when we approximate the 
integral with the formula with error term ( ) 3 3, 1R f N c h c N= = . 

8. Behavior of the Error in Practice 
We have to emphasize that in practical calculations the error in the final result depends on the accumulation of 
rounding errors. With the increasing number of subintervals the theoretical error decreases, but the number of 
arithmetic operations, each of which contains an error in the order of machine epsilon, increases. Therefore it is 
reasonable to use as many subintervals as we need to get the theoretical error term to exceed the machine epsilon. 
The total error starts to increase when the number of subintervals increases beyond a certain unknown number 
dependent on the integrand, the programming language, and the computer. 

To illustrate this effect with our SAGE codes we use the class RealField with 32 bits. The effect when the 
Sage 64-bit floating-point system is used is similar but the computing time increases. The numerical results for 
three integrals,  

 ( ) ( ) ( )1 1 12 1 7
0 0 0
sin 5 d , 20 exp 5 d , 0 d ,x x x x x x x x+∫ ∫ ∫  (42) 

are shown in Figure 6. When the number of subintervals is relatively small, the error decreases as the number of 
subintervals increases. When the number of subintervals becomes greater than a certain number, the error starts 
to increase. The number after which the error starts to increase depends on the integrand. 



T. Marinov et al. 
 

 
1426 

 

Figure 6. The error behavior for ( )
1

0
sin 5 dx x∫  the blue solid line, 

( )1 2

0
20 exp 5 dx x x∫  the red dashed line, and ( )1 10 7

0
dx x x+∫  the green dash- 

dot line.                                                          
 
Table 8. Numerical results for 

1

0
dx x∫  calculated with Midpoint Rule.                                            

N  I  ( ),R f N  ( ) ( ), , 2R f N R f N  

20 0.6672953399204201 0.0006286732537534867  

40 0.6668943288044112 0.00022766213774461086 2.761430864093555 

80 0.6667485056870116 8.183902034497592e−05 2.7818287265041413 

160 0.6666959382144143 2.927154774767793e−05 2.795855588178391 

320 0.6666770999933831 1.0433326716463576e−05 2.8055814356400846 
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