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Abstract 
In this paper, the problem of non-response with significant travel costs in multivariate stratified 
sample surveys has been formulated of as a Multi-Objective Geometric Programming Problem 
(MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP. 
The formulated MOGPP has been solved with the help of LINGO Software and the dual solution is 
obtained. The optimum allocations of sample sizes of respondents and non respondents are ob-
tained with the help of dual solutions and primal-dual relationship theorem. A numerical example 
is given to illustrate the procedure. 
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1. Introduction 
In sampling the precision of an estimator of the population parameters depends on the size of the sample and va-
riability among the units of the population. If the population is heterogeneous and size of the sample depends on 
the cost of the survey, then it is likely to be impossible to get a sufficiently precise estimate with the help of 
simple random sampling from the entire population. In order to estimate the population mean or total with 
greater precision, the heterogeneous population is divided into mutually-exclusive, exhaustive and non-overlap- 
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ping strata which will be more homogeneous than the entire population. The entire population is called Stratified 
Random Sampling. The problem of optimum allocation in stratified random sampling for univariate population 
is well known in sampling literature; see for example Cochran [1] and Sukhatme et al. [2]. In multivariate strati-
fied sample surveys problems the non-response can appear when the required data are not obtained. The prob-
lem of non-response may occur due to the refusal by respondents or their not being at home, making the infor-
mation of sample inaccessible. The problem of non-response occurs in almost all surveys. The extent of non- 
response depends on various factors such as type of the target population, type of the survey and the time of 
survey. For the problem of non-response in stratified sampling it may be assumed that every stratum is divided 
into two mutually exclusive and exhaustive groups of respondents and non respondents. 

Hansen and Hurwitz [3] presented a classical non-response theory which was first developed for surveys in 
which the first attempt was made by mailing the questionnaires and a second attempt was made by personal in-
terviews to a sub sample of the non respondents. They constructed the estimator for the population mean and de-
rived the expression for its variance and also worked out the optimum sampling fraction among the non respon-
dents. El-Badry [4] further extended the Hansen and Hurwitz’s technique by sending waves of questionnaires to 
the non respondent units to increase the response rate. The generalized El-Badry’s approach for different sam-
pling design was given by Foradori [5]. Srinath [6] suggested the selection of sub samples by making several at-
tempts. Khare [7] investigated the problem of optimum allocation in stratified sampling in presence of non- 
response for fixed cost as well as for fixed precision of the estimate. Khan et al. [8] suggested a technique for 
the problem of determining the optimum allocation and the optimum sizes of subsamples to various strata in 
multivariate stratified sampling in presence of non-response which is formulated as a Nonlinear Programming 
Problem (NLPP). Varshney et al. [9] formulated the multivariate stratified random sampling in the presence of 
non-response as a Multi-objective Integer Nonlinear Programming problem and a solution procedure is devel-
oped using lexicographic goal programming technique to determine the compromise allocation. Fatima and Ah-
san [10] addressed the problem of optimum allocation in stratified sampling in the presence of non-response and 
formulated as an All Integer Nonlinear Programming Problem (AINLPP). Varshney et al. [11] have considered 
the multivariate stratified population with unknown strata weights and an optimum sampling design is proposed 
in the presence of non-response to estimate the unknown population means using DSS strategy and developed a 
solution procedure using Goal Programming technique and obtained an integer solution directly by the optimi-
zation software LINGO. Raghav et al. [12] has discussed the various multi-objective optimization techniques in 
the multivariate stratified sample surveys in case of non-response. 

Geometric Programming (GP) is a smooth, systematic and an effective non-linear programming method used 
for solving the problems of sample surveys, management, transportation, engineering design etc. that takes the 
form of convex programming. The convex programming problems occurring in GP are generally represented by 
an exponential or power function. GP has certain advantages over the other optimization methods because it is 
usually much simpler to work with the dual than the primal one. The degree of difficulty (DD) plays a signifi-
cant role for solving a non-linear programming problem by GP method.  

Geometric Programming (GP) has been known as an optimization tool for solving the problems in various 
fields from 1960’s. Duffin, Peterson and Zener [13] and also Zener [14] have discussed the basic concepts and 
theories of GP with application in engineering in their books. Beightler, C.S., and Phililps, D.T. [15], have also 
published a famous book on GP and its application. Davis and Rudolph [16] applied GP to optimal allocation of 
integrated samples in quality control. Ahmed and Charles [17] applied geometric programming to obtain the op-
timum allocation problems in multivariate double sampling. Ojha, A.K. and Das, A.K. [18] have taken the Multi- 
Objective Geometric Programming Problem being cost coefficient as continuous function with weighted mean 
and used the geometric programming technique for the solutions. Maqbool et al. [19] and Shafiullah et al. [20] 
have discussed the geometric programming approach to find the optimum allocations in multivariate two-stage 
sampling and three-stage sample surveys respectively. 

In many real-world decision-making problems of sample surveys, environmental, social, economical and 
technical areas are of multiple-objectives. It is significant to realize that multiple objectives are often non-com- 
mensurable and in conflict with each other in optimization problems. The multi-objective models with fuzzy 
objectives are more realistic than deterministic of it. The concept of fuzzy set theory was firstly given by Zadeh 
[21]. Later on, Bellman and Zadeh [22] used the fuzzy set theory for the decision-making problem. Tanaka et al. 
[23] introduces the objective as fuzzy goal over the α-cut of a fuzzy constraint set and Zimmermann [24] gave 
the concept to solve multi-objective linear-programming problem. Biswal [25] and Verma [26] developed fuzzy 
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geometric programming technique to solve Multi-Objective Geometric Programming (MOGP) problem. Islam 
[27] [28] has discussed modified geometric programming problem and its applications and also another fuzzy 
geometric programming technique to solve MOGPP and its applications. Fuzzy mathematical programming has 
been applied to several fields. 

In this paper, we have formulated the problem of non-response with significant travel cost where the cost is  
quadratic in hn  in multivariate stratified sample surveys as a Multi-Objective Geometric Programming  
problem (MOGPP). The fuzzy programming approach has been described for solving the formulated MOGPP 
and the optimum allocations of sample sizes of respondents and non respondents are obtained. A numerical ex-
ample is given to illustrate the procedure. 

2. Formulation of the Problem 
In stratified sampling the population of N units is first divided into L non-overlapping subpopulation called stra-
ta, of sizes 1 2, , , , ,h LN N N N   with 1

L
hh N N

=
=∑  and the respective sample sizes within strata are drawn 

with independent simple random sampling denoted by 1 2, , , , ,h Ln n n n   with 1 .L
hh n n

=
=∑  

Let for the thh  stratum: 
hN : Stratum size.  

hY : Stratum mean. 
2
hS : Stratum variance.  

1 1
ˆ ˆ

h hW N N= : the estimated stratum weight among respondents.  

2 2
ˆ ˆ

h hW N N= : the estimated stratum weight among non-respondents. 

1hN : the sizes of the respondents.  
2 1h h hN N N= − : the sizes of non respondents groups.  

hn : Units are drawn from the thh  stratum. Further let out of hn , 1hn  units belong to the respondents group. 
2 1h h hn n n= − : Units belong to the non respondents group.  

1
L

hhn n
=

= ∑ : The total sample size. 
A more careful second attempt is made to obtain information on a random subsample of size hr  out of 2hn  

non respondents for the representation from the non respondents group of the sample. 
2 ; 1, 2, ,h h hr n k h L= =  : Subsamples of sizes at the second attempt to be drawn from 2hn  non-respondent 

group of the thh  stratum. Where 1hk ≥  and 1 hk  denote the sampling fraction among non respondents. 
Since 1hN  and 2hN  are random variables hence their unbiased estimates are given as: 

1 1
ˆ

h h h hN n N n= : The unbiased estimates of the respondents group. 

2 2
ˆ

h h h hN n N n= : The unbiased estimate of the non respondents group. 

1; 1, ,jhy j p= 
: denotes the sample means of thj  characteristic measured on the 1hn  respondents at the 

first attempt. 
( )2 ; 1, ,

hjh ry j p=  : denotes the hr  sub sampled units from non respondents at the second attempt.  
Using the estimator of Hansen and Hurwitz [3], the stratum mean jhY  for thj  characteristic in the thh  

stratum may be estimated by 

( )
( )1 1 2 2 hh jh h jh r

jh w
h

n y n y
y

n

+
=                                  (1) 

It can be seen that ( )jh wy  is an unbiased estimate of the stratum mean jhY  of the thh  stratum for the thj  
characteristic with a variance. 

( )( )
2 2 2 2
2 2 2 221 1 h jh h jh

jhjh w
h h h h

W S W S
v y S

n N r n
 

= − + − 
 

                         (2) 

where 2
jhS  is the stratum variance of thj  characteristic in the thh  stratum; 1,2, ,j p=   and 1,2, ,h L=   

given as: 

( )22

1

1
1

hN

jh jhi jh
ih

S y Y
N =

= −
− ∑  



Shafiullah et al. 
 

 
176 

where jhiy  denote the value of the thi  unit of the thh  stratum for thj  characteristic. 

11 hN
jh h jhiiY N y

=
= ∑ : is the stratum mean of jhiy . 

2
2jhS  is the stratum variance of the thj  characteristic in the thh  stratum among non respondents, given by: 

( )
2ˆ

22
2 2

12

1ˆ
ˆ 1

hN

jh jhi jh
ih

S y Y
N =

= −
−
∑  

2ˆ

2 2 1
ˆ1 hN

jh h jhiiY N y
=

= ∑  is the stratum mean of jhiy  among non respondents. 

2 2
ˆ ˆ

h h hW N N=  is stratum weight of non respondents in thh  stratum. 
If the true values of 2

jhS  and 2
2jhS  are not known they can be estimated through a preliminary sample or the 

value of some previous occasion, if available, may be used. 

Furthermore, the variance of ( ) ( )
1

,
L

hj w jh w
h

y W y
=

= ∑  (ignoring fpc) is given as: 

( )( ) ( )( ) ( )
( )

2 2 2 2 2
2 2 2 22

0
1 1 1

ˆˆ ˆˆ
,

L L Lh jh h jh h h jh
h jj w jh w

h h hh h

W S W S W W S
V y W v y f n r

n r= = =

−
= = + =∑ ∑ ∑             (3) 

where ( )j wy  is an unbiased estimate of the overall population mean jY  of the thj  characteristic and 

( )( )jh wV y  is as given in Equation (2). 

Assuming a linear cost function the total cost C of the sample survey may be given as: 

0 1 1 2 2
1 1 1

L L L

h h h h h h
h h h

C c n c n c n
= = =

= + +∑ ∑ ∑  

where 0hc  = the per unit cost of making the first attempt, 1 11
L

h jhhc c
=

= ∑  is the per unit cost for processing the  
results of all the p characteristics on the 1hn  selected units from respondents group in the thh  stratum in the first 

attempt and 2 2
1

:
p

h jh
j

c c
=

= ∑  the per unit cost for measuring and processing the results of all the p characteristics 

on the hr  units selected from the non respondents group in the thh  stratum in the second attempt. Also, 1jhc  
and 2jhc  are per unit costs of measuring the thj  characteristic in first and second attempts respectively. As 

1hn  is not known until the first attempt has been made, the quantity 1 1h hW n  may be used as its expected value. 
The total expected cost Ĉ  of the survey may be given as: 

( )0 1 1 2 0 2
1 1 1 1

ˆ
L L L L

h h h h h h h h h h
h h h h

C c c W n c r t n t r
= = = =

= + + + +∑ ∑ ∑ ∑                      (4) 

The problem therefore reduces to find the optimal values of sample sizes of respondents *
hn  and non- 

respondents *
hr  which are expressed as: 

( ) ( )

( )

2 2 2 2 2
2 2 2 2

0
1 1

0 1 1 2 0 2 0
1 1 1 1

Min

Subject to , 1, 2, ,

, 0 and 1,2, ,

L Lh jh h jh h h jh
j

h hh h

L L L L

h h h h h h h h h h
h h h h

h h

W S W S W W S
f

n r

j p

c c W n c r t n t r C

n r h L

= =

= = = =

−
= +

 =
+ + + + ≤ 


≥ = 

∑ ∑

∑ ∑ ∑ ∑




             (5) 

3. Geometric Programming Formulation 
The following Multi-objective Nonlinear Programming Problem (MNLPP) with the cost function quadratic in 

hn  and significant travel cost is defined in Equations (6) as follows: 
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( )

( )

1

0 1 1 2 0 2 0
1 1 1 1

ˆMin

Subject to 1,2, ,

0 and 1,2, ,

L
hj

sj
h h

L L L L

h h h h h h h h h h
h h h h

h h

a
V

n

j P
c c W n c r t n t r C

n ,r h L

π
=

= = = =


= 


 =
+ + + + ≤

≥ = 

∑

∑ ∑ ∑ ∑




            (6) 

Similarly, the expression (6) can be expressed in the standard Primal GPP with cost function quadratic in 
hn  where the travel cost is significant is given as follows: 

( )
( )

0Max ,

Subject , 1 1,2 ,

, 0, 1, 2, ,

j

q

h h

f n r

f n r j p

n r h L




≤ =
≥ = 





                          (7) 

( )
[ ]

( ) ( ){ }

( )
[ ]

1 2 1 2
1 2 1 2

1 1

where , , 0,1, 2, ,

or , , 0, 0, 0,1, 2, , ,

i i iL i i iL

ih ih

p p p p p p
q i L L

i j q

L L
p p

q i h h i h
i j q h h

f n r d n n n r r r q k

f n r d n r d n q k

∈

∈ = =

= + =

    = + > > =        

∑

∑ ∏ ∏

  



 ihp : arbitrary real numbers, id : positive and ( )qf n : posinomials 
Let for simplicity 0 j hjf a=  and ( )0 1 1 0 2 0 0 0 2 0i hj h h h h h hd a c c W C c C t C t C= = + = = =  

( ) ( )0 1 1 2 0 2

1 1 1 10 0 0 0

where ,
L L L L

h h h h h h
q h h h h

h h h h

c c W c t t
f n r n r n r

C C C C= = = =

+
= + + +∑ ∑ ∑ ∑  

The dual form of the Primal GPP which is stated in (7) can be given as:  

( )
[ ] [ ]

[ ]
( )

[ ]
( )

( )

( )

0
0 1

0

0 [ ]

Max

Subject to 1
1, , .

0

0, 0,1, , and 1,2, ,

ii
i j q

wwk k
i

j i
i j qq i j q qi

i
i

k

ih i
q i j q

i k

d
v w w i

w

w ii
j p

p w iii

w q k i m iv

∈

∈= ∈ =

∈

= ∈

∑       =             
=  =


=

≥ = = 

∑∏ ∏ ∏

∑

∑ ∑



 

               (8) 

The above formulated dual GPP (8) can be solved in the following two steps: 
Step 1: For the Optimum value of the objective function, the objective function always takes the form:  

( )

( )

( )

01 02

0
01 02

’s in the first constraint

’s in the last constra

Coeffi. of first term Coeffi. of Second term

Coeffi. of last term ’s in the first constraint

’s in the last constraint

k

w w

w
w s

k
w

C x
w w

w s
w

w s

∗

∑

∑

   
= ×   
   

 
× × 

 
∑

∑



int s

 

The Multi-Objective objective function for our problem is: 

[ ] [ ]

[ ]

0 1

ii
i j q

wwk k
i

i
i j qq i j q qi

d
w

w
∈

∈= ∈ =

∑     
          
∑∏ ∏ ∏  

Step 2: The equations that can be used for GPP for the weights are given below: 

[ ]
i

i j o
w

∈
∑  in the objective function = 1 (Normality condition ) and for each primal variable &h hn n  and 

&h hr r  having m terms. 
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( ) ( )
1

for each term exponent on & and & in that term 0
km

i h h h h
i

w n n r r
=

× =∑  (Orthogonality condition) and 

0iw ≥  (Positivity condition). 
The above problem (8) has been solved with the help of steps (1-2) discussed in Section (3) and the corres-

ponding solutions 0
*

iw  is the unique solution to the dual constraints; it will also maximize the objective function 
for the dual problem. Next, the solution of the primal problem will be obtained using primal-dual relationship 
theorem which is given below. 

4. Primal-Dual Relationship Theorem 
If 0

*
iw  is a maximizing point for dual problem (8), each minimizing points ( )1 2 3 4 1 2 3 4, , , and , , ,n n n n r r r r  for 

primal problem (7) satisfies the system of equations: 

( )
( ) [ ]

( ) [ ]

* *
0

0
*
0

, 0 ,

, ,

i

ijj

L i

w v w i J
wf n

i J L
v w

 ∈
=  ∈


                              (9) 

where L ranges over all positive integers for which ( )*
0 0L iv w > . 

The optimal values of sample sizes of the respondents ( )*
hn  and non-respondents ( )*

hr  can be calculated 
with the help of the primal-dual relationship theorem (9). 

5. Fuzzy Geometric Programming Approach 
The solution procedure to solve the problem (15) consists of the following steps: 

Step-1: Solve the MOGPP as a single objective problem using only one objective at a time and ignoring the 
others. These solutions are known as ideal solution. 

Step-2: From the results of step-1, determine the corresponding values for every objective at each solution  
derived. Let ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2, , , , , , , , ,j j p pn r n r n r n r   are the ideal solutions of the objective functions  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2
01 02 0 0, , , , , , , , ,j j p p

j pf n r f n r f n r f n r  . 

So ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 1 2 2
01 02 0Max , , , , , ,p p

j pU f n r f n r f n r= 
 and ( ) ( )( )0

* , , 1, 2, ,
j

j j
jL f n r j p= =  . 

( )0and be the upper and lower bonds of the objective function , , 1, 2, , .th
j j jU L j f n r j p =   

Step 3: The membership function for the given problem can be define as: 

( )( )
( )

( ) ( )
( ) ( ) ( )

( )

0

0
0 0

0

0, if ,
, ,

, , if , , 1, 2, ,
, ,

1, if ,

j j

j j
j j j j j

j j

j j

f n r U
U n r f n r

f n r L f n r U j p
U n r L n r

f n r L

µ

 ≥
 −= ≤ ≥ =

−
 ≤


          (10) 

Here ( ),jU n r  is a strictly monotonic decreasing function with respect to ( )0 ,jf n r . 
The membership functions in Equation (11) 
i.e., ( )( )0 , , 1, 2, ,j jf n r j    pµ =   

Therefore the general aggregation function can be defined as  

( ) ( )( ) ( )( ) ( )( ){ }1 201 02 0, , , , , , ,
pD D pn r f n r f n r f n rµ µ µ µ µ=

 


 

The fuzzy multi-objective formulation of the problem can be defined as: 

( )

( )0 1 1 2 0 2

1 1 1 10 0 0 0

Max ,
Subject to

1;

, 0 and 1,2, , .

D

L L L L
h h h h h h

h h h h
h h h h

h h

n r

c c W c t t
n r n r

C C C C
n r j p

µ

= = = =



+ + + + ≤ 


≥ = 

∑ ∑ ∑ ∑





                 (11) 
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The problem to find the optimal values of ( )* *,n r  for this convex-fuzzy decision based on addition operator 
(like Tiwari et. al. [29]). Therefore the problem (11) is reduced according to max-addition operator as: 

( ) ( )( ) ( )( )

( )
( )( )

0* *
0

1 1

0

,
Max , ,

Subject to , 1;

0 , 1
, 0 and 1,2, , .

p p
j j

D j j
j j j j

q

j j

h h

U f n r
n r f n r

U L
f n r

f n r
n r j p

µ µ

µ

= =

−
= =

− 


≤ 


≤ ≤ 
≥ = 

∑ ∑



                 (12) 

The above problem (12) reduces to  

( ) ( )( )

( )

0* *

1

,
Max ,

Subject to
, 1;

, 0 and 1,2, , .

p
jj

D
j j j j j

q

h h

f n rU
n r

U L U L

f n r
n r j p

µ
=

  = − 
− −   




≤ 
≥ = 

∑



                      (13) 

The problem (13) maximizes if the function ( )
( )( )0 ,j

oj
j j

f n r
F n

U L

  =  
−  

 attain the minimum values. Therefore the 

problem (13) reduces into the primal problem (14) define as: 

( )

( )

0
Min ,

Subject to
, 1;

, 0 and 1,2, ,

p

oj
j

q

h h

F n r

f n r
n r h L

=





≤


≥ = 

∑



                             (14) 

The dual form of the Primal GPP which is stated in (16) can be given as:  

( )
[ ] [ ]

[ ]
( )

[ ]
( )

[ ]
( )

( )

0 1

0

0

Max

Subject 1

0

0, 0,1, , and 1,2, ,

ii
i j q

wwk k
i

i
i j qq i j q qi

i
i
k

ih i
q i j q

i k

d
v w w i

w

w ii

p w iii

w q k i m iv

∈
∑

∈= ∈ =

∈

= ∈

      =             
= 



=

≥ = = 

∑∏ ∏ ∏

∑

∑ ∑
 

                    (15) 

The optimal values of sample sizes of the respondents ( )*
hn  and non-respondents ( )*

hr  can be calculated 
with the help of the primal-dual relationship theorem (9). 

6. Numerical 
In Table 1, the stratum sizes, stratum weights, stratum standard deviations, measurement costs and the travel 
costs within the stratum are given for two characteristics under study in a population stratified in four strata. The 
data are mainly from Khan et al. [8]. The travelling costs 0ht  and 2ht  are assumed. 

The total budget available for the survey is taken as 0 5000.C =  The relative values of the variances of the 
non-respondents and respondents, that is 2 2

2jh jhS S  is assumed to be constant and equal to 0.25 for j = 1,2 and h 
= 1,2,3,4. However, these ratios may vary from stratum to stratum and from characteristic to characteristic and 
can be handled accordingly. 

For solving MOGPP by using fuzzy programming, we shall first solve the two sub-problems: 
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Table 1. Data for four Strata and two characteristics.                                                            

h hN  2
1hS  2

2hS  1hw  2hw  0hc  1hc  2hc  0ht  2ht  
1 1214 4817.72 8121.15 0.7 0.30 1 2 3 0.5 2 
2 822 6251.26 7613.52 0.80 0.20 1 3 4 0.5 2.5 
3 1028 3066.16 1456.4 0.75 0.25 1 4 5 0.5 3 
4 786 6207.25 6977.72 0.72 0.28 1 5 6 0.5 4.5 

 
Sub problem 1: On substituting the table values in sub-problem 1, we have obtained the expressions given 

below:  

01
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1

456 3344 261 8965 209 5529 230 9097Min

11 10002688 2 75680566 3 492547875 4 866484

Subject to
0.00048 0.00068 0.0008 0.00092

0.0006 0.0008 0.001 0.0012
0.0001 0.0001

. . . .f
n n n n

. . . .
r r r r

n n n n
r r r r

n

= + + +

+ + + +

+ + +
+ + + +

+ + 2 3 4

1 2 3 4

0.0001 0.0001
0.0004 0.0005 0.0006 0.0009 1

0, 0, , are integers; 1, 2, ,h h h h

n n n
r r r r

n r n r h L











+ +

+ + + + ≤
≥ ≥ = 

               (16) 

The dual of the above problem (16) is obtained as: 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

02 03 0401

05 06 07 08

11 12

*
0 01 02 03 04

05 06 07 08

11 12 13

Max 456.3344 261.8965 209.5529 230.9097

11.100027 2.756806 3.492548 4.866484

0.00048 0.00068 0.0008

w w w w
i

w w w w

w w

v w w w w w

w w w w

w w w

= × × ×

× × × ×

        
   × × ×               

13 1514

16 17 18 19 20

14 15

16 17 18 19 20

0.00092 0.0006

0.0008 0.001 0.0012 0.0001 0.0001

w ww

w w w w w

w w

w w w w w

           × ×              
                  
         × × × × ×                                   

21

23 25 2622 24

21

22 23 24 25 26

11 12 13 14 15 16 17 18 19

0.0001

0.0001 0.0004 0.0005 0.0006 0.0009

w

w w ww w

w

w w w w w

w w w w w w w w w

   ×      
                        × × × × ×                                

× + + + + + + + + +( )(
( )) ( )

( ) ( )
( )
( )
( )

20 21 22 23 24 25 26

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

01 02 03 04 05 06 07 08

01 11 19

02 12 20

03 13

^

;
Subject to 1; normalitycondition

1 2 0
1 2 0
1 2

w w w w w w w

w w w w w w w w w w w w w w w w i
w w w w w w w w ii

w w w
w w w  
w w

+ + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + =

− + + =
− + + =
− + +

( )
( )
( )
( )
( )

( ) ( )

21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

01 02 03 04 05 06 07 08

11 12 13 14 15 16 17 18

0
1 2 0

orthogonality condition
1 2 0
1 2 0
1 2 0
1 2 0

0
, , , , , , , ,

w
w w  w  

iii
w w  w  
w w  w  
w w  w  
w w  w  

w ,w ,w ,w ,w ,w ,w ,w ;
w w w w w w w w w




=


− + + = 
− + + = 
− + + =


− + + = 
− + + = 

> ( ) ( )
19 20 21 22 23 24 25 26

positivity condition
, , , , , , , 0

iv
w w w w w w w





































 ≥  

 (17) 



Shafiullah et al. 
 

 
181 

For orthogonality condition defined in expression 17(iii) are evaluated with the help of the payoff matrix 
which is defined below 

( )
( )

( )
( )

( )
( )

( )

01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 2
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 00
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 00
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 00
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 00
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 00
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 20
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 00

−
−

−
−

−
−

−
− ( )

( )

01

02

03

04

05

06

07

08

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

01 11 19

0
0
0
0
0
0

1 2

1 2 0

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

w w w

 
 
 
 
 
 
 
 
 
 
 
 
 

  
    
            
       

 
 
 
 
 
 
 
 
 
 
 
 
 

⇒
− + + =
− ( )

( )
( )
( )
( )
( )
( )

02 12 20

03 13 21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

1 2 0
1 2 0
1 2 0
1 2 0
1 2 0
1 2 0
1 2 0

w w w  
w w w
w w  w  
w w  w  
w w  w  
w w  w  
w w  w

+ + =
− + + =
− + + =
− + + =
− + + =
− + + =
− + + =

 

Solving the above formulated dual problem (17) with the help of Lingo software, we have the corresponding 
dual solutions as follows: 

( )
01 02 03 04 05

*
06 07 08

0.2306558, 0.2079228, 0.2017047, 0.2270049, 0.04094539,
0.02376402, 0.02986826, 0.03813407, and 4.175039.

w w w w w
w w w v w

= = = = =
= = = =

 

Using the primal dual-relationship theorem (9), we have the optimal solution of primal problem: i.e., the op-
timal sample sizes of respondents and non respondents are computed as follows: 

( ) ( )* *
0 0 0,j i if n r w v w=  

In expression (16), we first keep the r constant and calculate the values of n as:  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* * * *
01 1 01 0 1 02 2 02 0 2

* * * *
03 3 03 0 3 04 4 04 0 4

, 474 , 302

, 249 , 244
i i

i i

f n r w v w n f n r w v w n

f n r w v w n f n r w v w n

= ⇒ ≅ = ⇒ ≅

= ⇒ ≅ = ⇒ ≅
 

Now, from the expression (16), we keep the n constant and calculate the values of r as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* * * *
01 1 01 0 1 02 2 02 0 2

* * * *
03 3 03 0 3 04 4 04 0 4

, 65 , 28

, 28 , 31
i i

i i

f n r w v w r f n r w v w r

f n r w v w r f n r w v w r

= ⇒ ≅ = ⇒ ≅

= ⇒ ≅ = ⇒ ≅
 

The optimal values and the objective function value are given below: 
* * * *
1 2 3 4
* * * *

1 2 3 4

474, 302, 249 and 244;
65, 28, 28 and 31 and theobjective valueof the primal problemis 4.175039.

n n n n
r r r r

= = = =
= = = =

 

Sub problem 2: On substituting the table values in sub-problem 2, we have obtained the expressions given below:  

02
1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1

769 2353 318 9684 99 53584 259 5712Min

18.7111296 3.35756232 1.658930625 5.47053248 ;

Subject to
0.00048 0.00068 0.0008 0.00092 0.0006 0.0008 0.001 0.0012

0.0001 0.00

. . . .f
n n n n

r r r r

n n n n r r r r
n

= + + +

+ + + +

+ + + + + + +
+ + 2 3 4 1 2 3

4

01 0.0001 0.0001 0.0004 0.0005 0.0006
    0.0009 1            0, 0, , are integers; 1, 2, ,h h h h

n n n r r r
r n r n r h L









+ + + + +


+ ≤ ≥ ≥ = 

    (18) 

The dual of the above problem (18) is obtained as follows: 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

03 0401 02

05 06 07 08

11 12

*
0 01 02 03 04

05 06 07 08

11 12

Max 769.2353 318.9684 99.53584 259.5712

18.7111296 3.35756232 1.658930625 5.47053248

0.00048 0.00068 0.

ww w w
i

w w w w

w w

v w w w w w

/ w / w / w / w

w w

= × × ×

× × × ×

      
   × × ×            

13 15 1614

17 18 19

13 14 15 16

17 18 19 20

0008 0.00092 0.0006 0.0008

0.001 0.0012 0.0001 0.0001

w w ww

w w w

w w w w

w w w w

                  × × ×                        
                 × × × ×                      

20 21 22

23 25 2624

21 22

23 24 25 26

11 12 13 14 15 16

0.0001 0.0001

0.0004 0.0005 0.0006 0.0009

w w w

w w ww

w w

w w w w

w w w w w w

             × ×                 
                  × × × ×                        

× + + + + + +( )(
( )) ( )

( ) ( )
( )
( )

17 18 19 20 21 22 23 24 25 26

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

01 02 03 04 05 06 07 08

01 11 19

02 12 20

^
;

Subject to 1; normalitycondition

1 2 0
1 2

w w w w w w w w w w
w w w w w w w w w w w w w w w w i

w w w w w w w w ii

w w w
w w w  

+ + + + + + + + +

+ + + + + + + + + + + + + + +
+ + + + + + + =

− + + =
− + + =

( )
( )
( )
( )
( )
( )

( ) ( )

03 13 21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

01 02 03 04 05 06 07 08

11 12 13 14 15

0
1 2 0
1 2 0

orthogonality condition
1 2 0
1 2 0
1 2 0
1 2 0

0
, , , , ,

w w w
w w  w  

iii
w w  w  
w w  w  
w w  w  
w w  w  

w ,w ,w ,w ,w ,w ,w ,w ;
w w w w w w




− + + =


− + + = 
− + + = 
− + + =


− + + = 
− + + = 

> ( ) ( )
16 17 18 19 20 21 22 23 24 25 26

positivity condition
, , , , , , , , , , 0

iv
w w w w w w w w w w





































 ≥  

 (19) 
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For orthogonality condition defined in expression 19(iii) are evaluated with the help of the payoff matrix 
which is defined below: 

( )
( )

( )
( )

( )
( )

( )

01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 2
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 00
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 00
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 00
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 00
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 00
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 20
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 00

−
−

−
−

−
−

−
− ( )

( )

01

02

03

04

05

06

07

08

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

01 11 19

0
0
0
0
0
0

1 2

1 2 0

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

w w w

 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
     

 
 
 
 
 
 
 
 
 
 
 
 
 

⇒

− + + =

− ( )
( )
( )
( )
( )
( )
( )

02 12 20

03 13 21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

w w w  

w w w

w w  w  

w w  w  

w w  w  

w w  w  

w w  w  

+ + =

− + + =

− + + =

− + + =

− + + =

− + + =

− + + =  

Solving the above formulated dual problems, we have the corresponding solution as: 

( )
01 02 03 04 05

*
06 07 08

0.2854095, 0.2187303, 0.1325806, 0.2294348, 0.04989059,

0.05057448, 0.02498275, 0.01974803, and 4 593918.

w w w w w

w w w v w .

= = = = =

= = = =
 

The optimal values of sample sizes of respondents and non-respondents ( )* *,h hn r  can be calculated with the 
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help of the primal-dual relationship theorem (9) as we have calculated in the sub-problem 1 are given as fol-
lows:  

* * * *
1 2 3 4

* * * *
1 2 3 4

587, 317, 163 and 246;

81, 29, 18 and 31 and theobjective valueof the primal problemis 4.593918.

n n n n

r r r r

= = = =

= = = =
 

Now the pay-off matrix of the above problems is given below: 
 

 ( ) ( )01 02, ,f n r f n r  

( ) ( )( )
( ) ( )( )

1 1

2 2

,

,

n r

n r
 4.175039 4.793168

4.403294 4.593918
 
 
 

 

 
The lower and upper bond of ( ) ( )01 02, and ,f n r f n r  can be obtained from the pay-off matrix  

( ) ( )01 024.175039 , 4.403294 and 4.593918 , 4.793168.f n r f n r≤ ≤ ≤ ≤  

Let ( ) ( )1 2, and ,n r n rµ µ  be the fuzzy membership function of the objective function ( )01 ,f n r  and

( )02 ,f n r  respectively and they are defined as: 

( )

( )
( ) ( )

( )

01

01
1 01

01

1, if , 4.175039

4.403294 ,
, , if 4.175039 , 4.403294

0.228255
0, if , 4.403294

f n r

f n r
n r f n r

f n r

µ

≤


−
= ≤ ≤

 ≥


 

( )

( )
( ) ( )

( )

2

2
2 2

2

1, if , 4.593918

4.793168 ,
, , if 4.593918 , 4.793168

0.19925
0, if , 4.793168

Z n r

Z n r
n r Z n r

Z n r

µ

≤


−
= ≤ ≤

 ≥


 

On applying the max-addition operator, the MOGPP, the standard primal problem reduces to the problem as: 

( ) ( )01 02

1 2 3 4

1 2 3 4

1 2 3 4

1 2

Maximize 43 3472
0 228255 0 19925

Subject to
0.00048 0.00068 0.0008 0.00092

0.0006 0.0008 0.001 0.0012

0.0001 0.0001 0.0001 0.0001

0.0004 0.0005 0.0

f n,r f n,r
.

. .

n n n n
r r r r

n n n n

r r

   − +  
   

+ + +

+ + + +

+ + + +

+ + + 3 4006 0.0009 1

0, 0, , are integers; 1, 2, ,h h h h

r r

n r n r h L













+ ≤ 
≥ ≥ = 




                  (20) 

In order to maximize the above problem, we have to minimize 
( ) ( )01 02, ,

0.228255 0.19925
f n r f n r 

+ 
 

, subject to the con-

straints as described below:  
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1

5859.8847 2748.2334 1417 6227 2314.3744

Min
142.5377 28.9287 23.627 48.7761

Subject to 0.00048 0.00068 0.0008 0.00092
0.0006 0.0008 0.001 0.0012

0.0001 0.00

.
n n n n

r r r r

n n n n
r r r r

n

 + + + 
 
 
 + + + +
  

+ + +

+ + + +

+ + 2 3 4

1 2 3 4

01 0.0001 0.0001

0.0004 0.0005 0.0006 0.0009 1

0, 0, , are integers;  1, 2, ,h h h h

n n n

r r r r

n r n r h L











+ +

+ + + + ≤


≥ ≥ = 

                 (21) 

Degree of Difficulty of the problem (21) is = (24 ‒ (8 + 1) =15. 
Hence the dual problem of the above final formulated problem (21) is given as: 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

02 03 0401

05 06 07 08

11 12

*
0 01 02 03 04

05 06 07 08

11 12 13

Max 5859.8847 2748.2334 1417.6227 2314.3744

142.5377 28.9287 23.627 48.7761

0.00048 0.00068 0.0008

w w w w
i

w w w w

w w

v w w w w w

w w w w

w w w

= × × ×

× × × ×

        
   × × ×                

13 15 1614

17 18 19 20

14 15 16

17 18 19 20

0.00092 0.0006 0.0008

0.001 0.0012 0.0001 0.0001

w w ww

w w w w

w w w

w w w w

                 × × ×                     

                     × × × ×                            

21 22

23 25 2624

21 22

23 24 25 26

11 12 13 14 15 16 17 18 19

0.0001 0.0001

0.0004 0.0005 0.0006 0.0009

w w

w w ww

w w

w w w w

w w w w w w w w w w

      
   × ×            

                  × × × ×                        

× + + + + + + + + +( )(
( )) ( )

( ) ( )
( )
( )
( )

20 21 22 23 24 25 26

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

01 02 03 04 05 06 07 08

01 11 19

02 12 20

03 13

^

;

Subject to 1; normalitycondition

1 2 0

1 2 0

1 2

w w w w w w

w w w w w w w w w w w w w w w w i

w w w w w w w w ii

w w w

w w w  

w w w

+ + + + + +

+ + + + + + + + + + + + + + +

+ + + + + + + =

− + + =

− + + =

− + +

( )
( )
( )
( )
( )

( ) ( )

21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

01 02 03 04 05 06 07 08

11 12 13 14 15 16 17 18

0

1 2 0
orthogonality condition

1 2 0

1 2 0

1 2 0

1 2 0

, , , , , , , 0;
, , , , , , , ,

w w  w  
iii

w w  w  

w w  w  

w w  w  

w w  w

w w w w w w w w
w w w w w w w w w






= 
− + + = 


− + + = 
− + + = 
− + + = 
− + + = 

>
( ) ( )

19 20 21 22 23 24 25 26

positivity condition
, , , , , , , 0

iv
w w w w w w w







































 

≥  

  

(22) 

For orthogonality condition defined in expression 22(iii) are evaluated with the help of the payoff matrix 
which is defined below: 
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( )
( )

( )
( )

( )
( )

( )

01 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 2
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 0 00
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 00
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 00
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 00
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 00
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 20
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 00

−
−

−
−

−
−

−
− ( )

( )

01

02

03

04

05

06

07

08

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

01 11 19

0
0
0
0
0
0

1 2

1 2 0

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w

w w w

 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
     

 
 
 
 
 
 
 
 
 
 
 
 
 

⇒

− + + =

− ( )
( )
( )
( )
( )
( )
( )

02 12 20

03 13 21

04 14 22

05 15 23

06 16 24

07 17 25

08 18 26

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

1 2 0

w w w  

w w w

w w  w  

w w  w  

w w  w  

w w  w  

w w  w  

+ + =

− + + =

− + + =

− + + =

− + + =

− + + =

− + + =  
After solving the formulated dual problem (22) using lingo software we obtain the following values of the 

dual variables which are given as: 

( )
01 02 03 04 05

*
06 07 08

0.2610739, 0.2127708, 0.1657664 , 0.2270332, 0.04629584,

0.02431073, 0.02461037, 0.03813880, and 41.83433.

w w w w w

w w w v w

= = = = =

= = = =
 

The optimal values of sample sizes of respondents and non-respondents ( )* *,h hn r  can be calculated with the 
help of the primal-dual relationship theorem (9) as we have calculated in the sub-problem 1 are given as fol-
lows:  
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* * * * * * * *
1 2 3 4 1 2 3 4537, 309, 204 and 244; 74, 28, 23 and 31

and theobjective valueof the primal problemis 41.83433.
n n n n r r r r= = = = = = = =  

7. Conclusion 
This paper provides an insightful study of fuzzy programming for solving the multi-objective geometric pro-
gramming problem (MOGPP). The problem of non-response with significant travel costs where the cost is qua-  
dratic in hn  in multivariate stratified sample surveys has been formulated of as a Multi-Objective Geometric  
Programming Problem (MOGPP). The fuzzy programming approach has described for solving the formulated 
MOGPP. The formulated MOGPP has been solved with the help of LINGO Software [30] and the dual solution 
is obtained. The optimum allocations of sample sizes of respondents and non respondents are obtained with the 
help of dual solutions and primal-dual relationship theorem. To ascertain the practical utility of the proposed 
method in sample surveys problem in presence of non-response with significant travel cost where the cost is  
quadratic in hn , a numerical example is also given to illustrate the procedure. 
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