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Abstract 

Stabilized explicit-implicit domain decomposition is a group of methods for solving time-depen- 
dent partial difference equations of the parabolic type on parallel computers. They are efficient, 
stable, and highly parallel, but suffer from a restriction that the interface boundaries must not in-
tersect inside the domain. Various techniques have been proposed to handle this restriction. In 
this paper, we present finite difference schemes for discretizing the equation spatially, which is of 
high simplicity, easy to implement, attains second-order spatial accuracy, and allows interface 
boundaries to intersect inside the domain.  
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1. Introduction 

Convection-diffusion processes appear in many science and engineering studies, e.g. heat transfer-based engi-
neering [1] [2] [3], pollution and waste treatment modeling [4] [5] [6], propagation of neuronal membrane po-
tential [7] [8] [9] [10], the signaling mechanism of nitric oxide in and cardiovascular [11] and nervous [12] sys-
tems. The governing equations of convection-diffusion processes have the general form 

( ) ( )( ) ( )( ) ( ), u , Ωu t x a x c x u s x u x
t
∂

= ∇ ⋅ ∇ +∇ ⋅ + ∈
∂

                          (1) 

with boundary condition 

( ), ( , ), Ωbu t x u t x x= ∈∂                                      (2) 

where Ω  is the spatial domain, Ω∂  is the boundary of the spatial domain, ( )a x  is the diffusion coefficient, 
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( )c x  is the advection velocity, and ( )s x  is the source/sink term. Explicit implicit domain decomposition 
(EIDD) methods [13] [14] [15]-[17] [18] [19] [20] [21]-[27] [28] [29] [30]-[35] [36] [37] [38] are a class of glo-
bally non-iterative, non-overlapping domain decomposition methods for solving Equation (1) and (2) on parallel 
computers, which are algorithmically simple, computationally and communicationally efficient. One group of 
EIDD methods achieves good stability with implicit correction of the explicitly predicted interface boundary 
conditions [15] [27] [28] [29] [30]-[35].  

In parallel implementation of corrected EIDD methods, the correction step is communicationally expensive to 
be parallelized when the interior boundaries cross into each other inside the domain, e.g. as in Figure 1(a). 
While for some problems [10], it causes no trouble to partition a domain with no intersecting interior boundaries, 
in many cases corrected EIDD methods suffer from low accuracy when partitioned into a large number of nar-
row strip subdomains when a large number of processors is used [34]. To address the problem of no crossover 
for interior boundaries, Shi and Liao [29] introduced in 2006 zigzag interior (ZI) boundaries so that in the impli-
cit correction, spatial discretization does not result in coupling of all grip points on the interior boundaries into 
one single equation. In 2009, Liao, Shi, and Sun [27] developed composite interior boundaries by replacing the 
ZI boundaries in [29] with straight-line interior boundaries at locations neighboring intersection points of inte-
rior boundaries, leading to improved programming simplicity for the treatment of interior boundaries than the ZI 
boundaries. Zhu, Yuan, and Du [30] [31] used a different technique to handle the crossover of interior bounda-
ries. Jun and Mai [20] [39] used special treatment for the implicit discretization at points neighboring intersec-
tion points while maintaining unconditional stability. The interface boundary treatment introduced by Jun and 
Mai for their modified implicit prediction method [20] [39] can also be used to solve the intersecting interior 
boundary problem for corrected EIDD methods. Zhuang and Sun [35] and Wang, Wu, and Zhuang [37] tackled 
disadvantages of no-crossover interface boundaries by using a data partition different from the domain partition, 
where the domain is partitioned with no crossover interface boundaries as in Figure 1(b) but the data of each 
subdoman is further partitioned into multiple data subsets like in Figure 1(a) for distribution to different pro-
cessors. 

To allow crossover of interface boundaries, in this paper we propose new finite difference schemes for inter-
face boundary conditions at intersecting points of crossover interface boundaries. The technical motivation of 
this finite difference approximation is given in Section 2, which describes a Stabilized Explicit-Implicit Domain 
Decomposition Methods and the problems of the interface boundary condition treatment when standard finite 
different approximation is used. Section 3 describes the new finite different schemes for interface boundary 
conditions. In Section 4 we present numerical tests, and Section 5 gives the concluding remarks. 

2. The Stabilized EIDD Method and Need for Interface Boundary Condition  
Treatment 

Stabilized EIDD (SEIDD) methods [34] [35] and the more general corrected EIDD (CEIDD) methods [15] [27] 
[28] [29] [30]-[35] are operator splitting time discretization methods for time dependent partial differential equ-
ations, where operator splitting is domain decomposition-based. A common feature of the SEIDD and CEIDD 
methods that call for a communication-efficiency-targeting treatment of the interface boundary conditions is the 
stabilization or correction of the interface boundary conditions by an implicit time discretization scheme. To see 
how this technical issue arises, for reading convenience, we give the description of a SEIDD method below. To 
that end, we first list some notations. To numerically solve problem (1 - 2), we choose a discrete spatial grid Ωℎ  
with mesh size h, and discretize Equations (1) and (2) spatially into  

 

   
(a)                         (b)                          (c) 

Figure 1. Different ways of domain partitions. 
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( ) ( )

( ) 0

 ,

0 ,

d u t A u t
dt

u u

 =

 =

                                     (3) 

where A  is the discrete approximation of the spatial operator on the right hand side of Equation (1). Our de-
scription will be based on this spatially discrete form of the equation. For a domain partitioned as in Figure 1(b) 
or Figure 1(c), let B be the set of grid points on interface boundaries. With ku  denoting the numerical solution 
of the k -th time step, the SEIDD method for computing the solution 1ku +  at the (k + 1)-th time step from the 
current k-th time step is given below. 

A SEIDD Method  

1) Compute the interface boundary condition using the explicit forward Euler scheme 1 ( )k ku I tA u+ = + ∆  on 
inter face boundaries points B , where I  is the identity matrix.   

2) Using the interface boundary conditions computed at step 1 together with exterior boundary conditions, 
compute the solution on the subdomains using the implicit backward Euler scheme ( ) 1k kI tA u u+− ∆ = . 

3) Throw away the interface boundary condition computed at step 1. Using solution data 1ku +  on nearby sub-
domain as boundary conditions, re-compute interface boundary condition on interface boundary with the 
backward Euler ( ) 1k kI tA u u+− ∆ = .  

A SEIDD method or a CEIDD method uses an implicit scheme, e.g. the backward Euler, to implicitly re- 
compute solution 1ku +  on the interface boundary 𝐵𝐵. When the domain is partitioned with no intersection of 
interface boundaries, like in Figure 1(b) or Figure 1(c), the implicit re-computation of interface boundary con-
dition on different interface boundaries can be executed by processors independently and hence in parallel when 
different interface boundaries are assigned to different processors. But when a domain is partitioned as in Figure 
1(a), conventional finite difference approximation of Equation (1) on the interface boundaries would generate a 
discrete equation coupling all grid points on the interface boundaries, and since these interface boundary grid 
points are distributed on different processors, to solve a discrete equation involving all grid points of the inter-
face boundaries would require expensive all-to-all communication. Domain partition with no crossover interface 
boundaries like Figure 1(b) or Figure 1(c) will not have this problem but would require the domain be decom-
posed into many long and narrow subdomains as in Figure 1(c) which has nine subdomains, the same number of 
subdomains as in Figurte 1(a).  

3. The New Finite Difference Approximation of the Interface Boundary Conditions 

With the discussion in Section 2, it is desirable that the domain be partitioned as in Figure 1(a). To handle such 
partitioned domains, we propose finite difference schemes for approximating interface boundary conditions at 
intersecting points. Our presentation of the finite difference schemes will be based on two-dimensional problems, 
i.e. Equation (1) has two independent variables, and Equation (1) has the form 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )y, , , ( , ) , , , .x yx x y
u t x y a x y u a x y u c x y u d x y u s x y u

t
∂

= + + + +
∂

            (4) 

For the discrete domain, we assume that uniform mesh size is used with mesh size ℎ. Let ( , )i jx y  be an in-
tersecting point of two interface boundaries as in Figure 2, and let 1 1( , )i jx y− − , 1 1( , )i jx y+ − , 1 1( , )i jx y− + , and 

1 1( , )i jx y+ +  be four neighboring grid points on the subdomains. For any grid point ( , )m nx y , the notation 
, ( )m nu t , or ,m nu  when no confusion arises, is used to denote the solution at grid point ( , )m nx y  
With these notations, the finite difference schemes for approximating the differential operators on the right 

hand side of Equation (4) at ( , )i jx y  are given below. 

( )
( ) ( )

( ) ( )

1 2, 1 2 1, 1 , 1 2 1 2 1, 1 ,
2,

1 2, 1 2 1, 1 , 1 2, 1 2 1, 1 ,
2

( )
2

2

i j i j i j i j i j i j
x y yx i j

i j i j i j i j i j i j

a u u a u u
au au

h
a u u a u u

h

+ + + + + − + −

− + − + − − − −

− + −
 + 

− + −
+

≈
              (5) 
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Figure 2. An intersection point of interface boundaries. 

 

( ) 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

,

1 
2 2 2

i j i j i j i j i j i j i j i j
x i j

c u c u c u c u
c u

h h
+ + + + − + − + + − + − − − − −− − 

  +  
 

=               (6) 

( ) 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1

,

1 
2 2 2

i j i j i j i j i j i j i j i j
y i j

d u d u d u d u
d u

h h
+ + + + + − + − − + − + − − − −− −   +    

≈              (7) 

If ( , )i jx y  is not an intersecting point of interface boundaries, the conventional central finite difference is use 
to approximate the right hand of Equation (4), i.e., 

( )
,x x i j

au    is approximated by 1 2, 1, , 1 2, , 1,
2 2

( ) ( )i j i j i j i j i j i ja u u a u u
h h

+ + − −− −
− ,                 (8) 

y ,
( )y i j
au    is approximated by , 1 2 , 1 , , 1 2 , , 1

2 2

( ) ( )i j i j i j i j i j i ja u u a u u
h h

+ + − −− −
− ,                 (9) 

( )( )
,

,
x i j

c x y u    is approximated by 1, 1, 1, 1,

2
i j i j i j i jc u c u

h
+ + − −−

,                     (10) 

( )( )
,

,
y i j

d x y u 
 

 is approximated by , 1 , 1 , 1 , 1

2
i j i j i j i jd u d u

h
+ + − −−

.                     (11) 

It is known that central finite difference schemes (10) and (11) have second-order accuracy with ( )3O h  er-
rors. It is also easy to verify using Taylor expansion that schemes (6) and (7) have second-order accuracy. Also, 
comparing schemes (6) and (10), one can see that scheme (6) is the average of scheme (10) used at the two grid 
points 1( , )i jx y +  and 1( , )i jx y − , and then the second order accuracy of scheme (6) follows from the fact that  

( ) ( )3
1 11 2j j jf f f O h− += + +  for any smooth function f . Scheme (5) also has second-order accuracy. To see 

that, one can verify that  

( )( ) ( ) ( )( ) ( ), ( , ) , ( , )x y y w v vx v
a x y u a x y u a w v u a w v u+ = +                   (12) 

under the change of variables  

2 2
2 2
2 2

2 2

x w v

y w v


= −


 = +

                                     (13) 

With Equality (12) under the change of variables (13), one can easily prove that scheme (5) has second-order 
accuracy. Actually, Scheme (5) is the application of schemes (8) and (9) along the two new variables w  and 
v , which are actually representing the two diagonal lines y x=  and y x= −  in the original coordinate space 
of variables x  and y . These discussions show that the new finite difference schemes (5-7) have second-order 
accuracy, which is stated in the following Theorem.  

Theorem. Finite difference schemes (5-7) for approximating the differential operators on the right hand side 
of Equation (4) at intersecting point ( , )i jx y  of interface boundaries have second-order accuracy with errors of 
order ( )3O h . 

(xi, yi)
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The theorem above means that finite different Schemes (5 - 7) have good accuracy, as good as the conven-
tional schemes (8 - 11). Now, let us look at another feature of Schemes (5 - 7) in term of its impact on the 
SEIDD methods. From the formulas of schemes (5-7), one can see that the solution 𝑢𝑢 is used at points ( , )i jx y , 

1 1( , )i jx y− − , 1 1( , )i jx y+ − , 1 1( , )i jx y− + , and 1 1( , )i jx y+ +  is to approximate the right hand side of Equation (4). 
Since ( , )i jx y  is an intersecting point of interface boundaries, points 1 1( , )i jx y− − , 1 1( , )i jx y+ − , 1 1( , )i jx y− + , and 

1 1( , )i jx y+ +  are in subdomains. So for the stabilization step of the SEIDD method, i.e. Step 3 of the SEIDD me-
thod, Schemes (5-7) use the solution at points 1 1( , )i jx y− − , 1 1( , )i jx y+ − , 1 1( , )i jx y− + , and 1 1( , )i jx y+ +  are 1, 1i ju − − , 

1, 1i ju + − , 1, 1i ju − + , and 1, 1i ju + + , components of the solution on the subdomains which have been computed in Step 
2. But Schemes (5-7) do not use the solution on any point on the interface boundaries except point ( , )i jx y . 
Thus, the discrete equation of the stabilization step of a SEIDD method that involves solution at point ( , )i jx y  
does not involve any other grid points on the interface boundaries, leading to the decoupling of discrete equation 
on an intersecting point of interface boundaries from all other discrete equations on other interface boundaries.  
Such decoupling enables the efficient parallel processing of the solution process without all-to-all communica-
tions for the stabilization step. 

In addition to decoupling the discrete equations on interface boundaries, another feature of Schemes (5-7) is 
that the scheme is very simple to implement into simulation code and does not require sophisticated program-
ming techniques, which is very helpful for simulation code development and hence lower the chance of code 
bugs due to its code implementation simplicity.  

4. Numerical Experiments 

To experimentally examine the performance of finite difference schemes (5-7), we choose two testing problems 
on the same spatial domain square domain [ ]Ω 0,2π [0, 2π]= × . The two problems are 

1. ( )[(1 1 2cos ) ] [ 1 1 2cos ] (1 1.5cos )t x x y yu x u x u x u= + + + + +  with solution sin sintu e x y−= ; 

2. ( ) yu 1 2 sin 2 (cos ) (3-2cos 2 2sin )t xx yy xu u xu yu x y u+ + + += +  with solution 2 sin 2 costu e x y−= . 
Uniform spatial grid of 2048 2048×  was chosen so that the x-direction and y-direction mesh size is 

2 / 2048h π= . The simulation time interval is [ ]0,1  and the total simulation time steps is 4000 with a time step 
size Δ 1/ 4000t = . To test the proposed finite difference schemes (5-7), the spatial domain is divided into 
p p×  equal-size square sub-subdomains as in Figure 3, with 2p  ranging from 1 to 256, and each square 

sub-subdomain is assigned to a different processor. 
On intersecting points of interface boundaries, Schemes (5-7) was used to discretize the equation. On other 

points, including points in subdomains and on interface boundaries, standard finite difference schemes (8-11) 
were used. With the spatial discretization, the equation on each subdomain is solved by a modified symmetric 
successive over-relaxation (QSSOR) tailored to non-symmetric matrices [40] with 30 QSSOR iterations. The  

 

 
Figure 3. Illustration of the domain partition. 
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equations on the interface boundaries in Step 3 (except equations at the intersecting points) are tridiagonal sys-
tems and are solved by a tridiagonal solver. The computation on Step 1 is a matrix-vector multiplication since it 
uses the forward Euler method. We measured the errors of the computed solution in 𝐿𝐿∞-norm, i.e. the maximum 
errors at time t = 1, and listed the errors in Table 1 for the two problems for the indicated number of subdo-
mains. 

To compare the result of using Schemes (5-7) with the result of using the conventional central finite differ-
ence, we also used schemes (8-11) for discretizing Equation (4). Since using Schemes (8-11) would couple all 
grid points on the interface boundaries together into a discrete equation on all interface boundary points, the 
domain is partitioned as in Figure 1(b) or Figure 1(c) with no intersecting points of interface boundaries. We 
measured the errors of the computed solution in 𝐿𝐿∞-norm at time t = 1, and listed the errors in Table 2 for the 
two problems for the indicated number of subdomains. The test data show that when the number of subdomains 
reaches 64 or larger, the new finite difference scheme produces higher accuracy. 

5. Concluding Remarks 

Stabilized explicit-implicit domain decomposition provides efficient, stable, and highly parallel methods for 
solving time-dependent partial difference equations of the parabolic type on parallel computers, but suffer from 
a restriction that the interface boundaries must not intersect inside the domain. In this paper, we present a finite 
difference scheme for discretizing the equation spatially, which is of high simplicity, easy to implement, attains 
second-order spatial discretization accuracy as does the conventional central finite difference, and allows inter-
face boundaries to intersect inside the domain. 

 
Table 1. Maximum errors with the new finite difference scheme. 

P m×n 
1melborP  2melborP  

Max-err Max-err 

1 2048 × 2048 4.616e−05 7.164e−05 

4 1024 × 1024 4.616e−05 5.629e−05 

16 512 × 512 2.430e−05 5.629e−05 

64 256 × 256 9.942e−06 1.373e−05 

256 128 × 128 3.275e−05 4.437e−05 

The domain is [ ] [ ]0 2 0 2π π×， ，  with h = 2π/2048, and the time interval is [0,1] with t∆ =

1/4000. The domain divided into P P×  equal-size subdomains, where P  is the num-
ber of processors. The second column under m × n indicates the discrete grid size of each 
subdomain. When P = 1, there is Scheme 5 is not used since there is no interface boundary. 

 
Table 2. Maximum errors with the standard finite difference 

P m × n 
1melborP  2melborP  

Max-err Max-err 

1 2048 × 2048 4.616e−05 7.164e−05 

4 512 × 2048 3.483e−05 7.163e−05 

16 128 × 2048 9.676e−06 1.396e−05 

64 32 × 2048 1.103e−04 1.591e−04 

256 8 × 2048 5.780e−04 8.516e−04 

Note that when P = 1, the method and the data are exactly same as those in Table 1 since no 
interface boundaries. 
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