
American Journal of Computational Mathematics, 2014, 4, 197-205
Published Online June 2014 in SciRes. http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.43016

How to cite this paper: Mahapatra, P.R.S. (2014) Variations of Enclosing Problem Using Axis Parallel Square(s): A General
Approach. American Journal of Computational Mathematics, 4, 197-205. http://dx.doi.org/10.4236/ajcm.2014.43016

Variations of Enclosing Problem Using Axis
Parallel Square(s): A General Approach
Priya Ranjan Sinha Mahapatra
Department of Computer Science and Engineering, University of Kalyani, Kalyani, India
Email: priya@klyuniv.ac.in

Received 16 December 2013; revised 6 January 2014; accepted 15 January 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Let P be a set of n points in two dimensional plane. For each point p P∈ , we locate an axis-
parallel unit square having one particular side passing through p and enclosing the maximum
number of points from P . Considering all points p P∈ , such n squares can be reported in

()O n nlog time. We show that this result can be used to (i) locate ()m 2> axis-parallel unit
squares which are pairwise disjoint and they together enclose the maximum number of points
from P (if exists) and (ii) find the smallest axis-parallel square enclosing at least k points of
P , k n2 ≤ ≤ .

Keywords
Axis-Parallel Unit Square, Sweep Line Algorithm, Maximium Enclosing Problem, K-Enclosing
Problem

1. Introduction
Given a set { }1 2, , , nP p p p=  points in a plane, enclosing problem in computational geometry is concerned
with finding the smallest geometrical object of a given type that encloses all the points of P . Some well known
instances of the enclosing problem are finding minimum enclosing circle [1], minimum area triangle [2],
minimum area rectangle [3], minimum bounding box [4], and smallest width annulus [5].

The k -enclosing problem is an important variant of enclosing problem. Here the objective is to compute a
smallest region of given type that encloses at least k points of P . k -enclosing problems using rectangles
and squares are studied [6]-[11] are also studied extensively.

A closely related problem locates one or more copies of a given region to maximize the size of the subset
enclosed. In other words, instead of fixing k and computing an optimal enclosing region, the problem is to

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2014.43016
http://dx.doi.org/10.4236/ajcm.2014.43016
http://www.scirp.org/
mailto:priya@klyuniv.ac.in
http://creativecommons.org/licenses/by/4.0/

P. R. S. Mahapatra

198

maximize the number of points enclosed by the given region(s) of fixed size and shape. This type of problem
has similar applications as the problems mentioned above. These so called problems of maximal enclosing using
single object, each of fixed size and orientation, have also received attention of many researchers. The objects
used are circle [12] and convex polygon [13] [14]. Younies et al. [15] introduced a zero-one mixed integer
formulation for the maximum enclosing problem where points are enclosed by parallelograms in a plane.
Directional antennas is one of the applications where parallelogram shapes would be useful. In the context of
bichromatic planar point set, Díaz-Báñez et al. [16] proposed algorithms for maximal enclosing by two disjoint
axis-parallel unit squares and circles in ()2O n and ()3 logO n n time respectively. Later, they improved the
complexities to ()logO n n and ()8 3 2logO n n time respectively [17].

Problems Studied
An axis-parallel unit square is a square of unit size whose sides are parallel to one of the coordinate axes. An
axis-parallel unit square S encloses a set of points those lie on the boundaries of S or in the interior of S .
For a given set P of n points in two dimensional plane, in this paper we consider the following variation of
the maximal covering problem.

• For each point p P∈ , locate an axis-parallel unit square whose one side is constrained to pass through p
and encloses the maximum number of points from P .

We propose an ()logO n n time and ()O n space algorithm to solve the problem P1. It is shown that this
algorithm can be used to compute a placement of one or more axis-parallel squares enclosing the maximum
number of points from P if such a placement exists. We also use this result to construct an efficient algorithm

for finding the smallest axis-parallel square enclosing at least k points of P for large values of k
2
nk > 

 
.

2 Maximal Enclosing Problem
This section considers the following problem P1: For each point ip P∈ , we locate an axis-parallel unit square
whose one particular side is passing through ip and enclosing the maximum number of points from P . Note
that such axis-parallel unit square may not be unique. In that case, choose one among them and call that
axis-parallel unit square as candidate square. Therefore, at most 4n number of candidate squares can be
obtained by considering alignments of four different sides for all points in P . Below we describe the pass for
computing candidate squares whose bottom sides are passing through a point from P (See Figure 1).

Without loss of generality, assume that no two points have the same x - or y -coordinate. Consider two
arrays x∆ and y∆ containing the points of P in ascending order of x and y -coordinates respectively.
Let us denote the x -coordinate of the i-th entry of x∆ by ix and similarly the y -coordinate of the i-th
entry of y∆ by iy , 1 i n≤ ≤ . Coordinates of a generic point p is denoted by () ()(),x p y p . For a point
p P∈ , let ()left p denote the minimum entry in x∆ , say q P∈ , such that () () 1x p x q− ≤ .

Observation 1 Given the array x∆ , all intervals ()() ()left ,i ix p x p   , 1 i n≤ ≤ can be computed in
linear time.

Figure 1. Candidate square.

P. R. S. Mahapatra

199

In a similar way, for a point p P∈ , let ()bottom p denote the minimum entry in y∆ , say q P′∈ , such
that () () 1y p y q′− ≤ . Likewise, we define ()right . , and ()top . on the arrays x∆ and y∆ respectively.

Algorithm for Reporting Candidate Squares
In this section we present sweep line algorithm combined with balanced search tree as data structure for
computing candidate squares. Using the points in array x∆ , construct a balanced search tree T with search
key as the x -coordinate values of the points in P . The leaves of T correspond to the ordered points of x∆ .
We attach two positive integral variables  and  with each node of T . Before describing the algorithm
in details, we first explain the role of  and  . The span ()I v corresponding to an internal node v is an
interval, generated by the x -coordinates of the left most and right most points at the leaves in the subtree rooted
at v . Moreover, span ()I µ of the leaf node µ stores the x -coordinate of the point at the leaf node µ of
T . Our sweep line algorithm considers two horizontal sweep lines namely bottom sweep line BS and top
sweep line TS . Let the current positions of TS and BS be at heights ()y p and ()y q respectively such
that ()topp q= and H be the unit horizontal slab determined by BS and TS . In case that the vertical
distance between BS and TS is less than unity, shift TS upwards to create a gap between BS and TS
as unity. Note that, no additional points are included for such shifting of TS in upward direction.

At the end of processing all points within H , we get the following information by  and  . The
variable  attached with an internal node v indicates that there exists a subset ()P P′ ⊆ of size  (i.e.,
 stores the count of the set P′) such that each unit square whose bottom, top sides coincide with BS , TS
respectively and left boundary within span ()I v encloses the subset P′ . Observe that these spans ()I v are
all different for all nodes v . The subsets P′ for nodes along the path from root to a leaf node are all disjoint.
Here each node v does not keep P′ explicitly but only its count  . The variable  attached with an
internal node v indicates that there exists a unit square S whose cardinality is the sum of  values of the
ancestor nodes of v plus the  value at node v ; bottom and top sides of S are constrained to coincide
with BS , TS respectively, the left boundary of S lies within the span ()I v . Moreover, the cardinality of
S is maximum among all unit squares within the slab H and the left boundary of each such unit square lies
within the span of v . We now recursively define  value for an internal node as the sum of its  value
and the maximum of  values of its two children-nodes. This recursive definition of  implies that
variable  at the root of tree T stores the cardinality of a candidate square whose bottom side is constrained
to pass through the point q . This type of integral variables attached to the nodes of segment tree are also used
to handle stabbing counting queries [18]. The space requirement for this type of segment tree is linear [18].

In initial step, the variables  and  corresponding to all nodes are initialized with zero and both the
sweep lines TS and BS pass through the bottom most point ()1p . Assume that ip is the point
corresponding to the i-th entry in y∆ , 1 i n≤ ≤ . The algorithm processes all points 1 2, , , np p p in y∆ one
at a time. We also explain the way of capturing information by the variables  and  at the time of
processing a point in y∆ , encountered by sweep lines.

The sweep line TS is moved up one point at a time, considering 1p as the first encountered point. For each
point p encountered by the sweep line TS , if the vertical distance of p from the current position of the
sweep line BS is less than or equal to unity, T is updated by Increment operation which is described below.

For the interval ()() ()left ,x p x p   , find the split node [18] splitv in T , that is the least common ancestor
of ()()leftx p and ()x p in the balanced search tree T . Search for the leaf node containing ()left p on the
left subtree rooted at splitv and, while traversing, if we turn left from node v , increment  of the right child
of v by one. In case the right child of v is a leaf, increment its  instead of  . Similarly, while
traversing the right subtree of the split node for searching the leaf node containing p , if we turn right from
node v , increment  of the left child of v . Again, in case the left child is a leaf, increment its  instead
of  . Finally, increase the  values of the leaf nodes containing ()left p and p by one. We now
recursively update the  value of each internal node in the path from the leaf node containing ()left p to
the left child of the split node splitv , as the sum of its  value and the maximum of  values of its two
children-nodes. Then update the  value of each internal node in the path from the leaf containing p to the
root of T in similar way. In case ()() ()leftx p x p= , we find the leaf node v of T that contains the point
p and increment the  value of leaf node v . The subsequent updation of  values associated with the

internal nodes of T is same as described earlier.
Again if the vertical distance of the encountered point p by TS from the current position of BS becomes

P. R. S. Mahapatra

200

greater than unity, TS stops advancing to p (i.e., T is not updated by Increment operation for the point
p). For the point q on the current position of BS , update T for the point q and report a candidate square

with bottom boundary passing though q by the Decrement and Report operations which are explained below.
The sweep line BS is then moved up one point at a time. For each point q encountered by the sweep line
BS , if the vertical distance between p and q is greater than unity, T is updated by Decrement operation
and a candidate square with bottom boundary passing though q is reported by Report operation.

In case that the vertical distance of q from TS becomes smaller than unity, the sweep line BS stops
advancing and sweep line TS starts sweeping from its current position. The above process is continued till
Report and Decrement operations are done for all the points.

We now describe the Report operation. Let qS be the candidate square with bottom boundary passing
through the point q . Observe that the number of points enclosed by qS is equal to the  value at the root
of the tree T . To find a placement of the left boundary of qS , move from the root of the tree T towards the
leaf, each time picking the child with larger  value. The leaf node thus reached stores the point through
which the left boundary of qS passes. Report qS along with the number of points inside it.

The Decrement operation is same as Increment operation with the following exception. For the interval
()() ()left ,x q x q   associated with point q , locate the split node in T . During searching from the split node

for the nodes containing ()left q and q , instead of incrementing, we decrement  ’s and  ’s by one as
appropriate. The subsequent updation of  values associated with the internal nodes of T is similar to that
in the Increment operation.

Theorem 1 Let P be a set of n points in a two dimensional plane. Then all candidate squares for ip P∈ ,
1 i n≤ ≤ , can be computed in ()logO n n time using ()O n space.

Proof: For a point p , each of Increment, Decrement and Report operation takes ()logO n time. Since for
each point in P , these operations are executed only once, they together take ()logO n n time. 

Corollary 1 A placement of an axis-parallel unit square enclosing the maximum number of points from P
can be computed in ()logO n n time using ()O n space.

Proof: Let *S be an axis-parallel unit square enclosing the maximum number of points from P and
P P′ ⊆ be the set of points enclosed by *S . Note that *S can always be repositioned, without altering the
points enclosed by it, so that the extended lines of two adjacent sides of *S pass through two points of P and
these two points may not belong to P′ . Sometimes the adjacent sides of *S may be passed through same
point of P and, in that case, the point is at one corner of *S . Therefore, the maximum cardinality among the
set of all possible candidate squares is equal to the cardinality of *S . 

Corollary 2 An axis-parallel rectangle of fixed height and width that encloses the maximum number of points
from P , can be placed in ()logO n n time using ()O n space.

Proof: Follows directly from Corollary 1. 
Corollary 3 A placement of two disjoint axis-parallel unit squares together enclosing the maximum number

of points from P , can be computed in ()logO n n time using ()O n space.
Proof: For each point yp∈∆ , we can compute the cardinality of candidate square whose top boundary is

passing through p in ()logO n n time. Now, we sweep from bottom to top to generate a subset of y∆ that
reports the maximum cardinality candidate square whose top boundary lies below any point yp∈∆ . This
sweeping process requires ()O n time. 

It is interesting to generalize the maximal enclosing problem using m disjoint axis-parallel unit squares,
2m > and the problem is known to be NP-hard [19]. A set of m rectangles (squares) on the plane is called

m -sliceable if they can be recursively partitioned by ()1m − horizontal or vertical lines [20]. We now assume
there exists m -sliceable axis-parallel squares and propose an algorithm to locate three axis-parallel unit squares
which are pairwise disjoint and they together enclose the maximum number of points from P .

Let
maxxp and

minyp be the points with maximum x -coordinates and minimum y -coordinates among the
points in P respectively. Similarly,

maxyp and
minxp be the points with maximum y -coordinates and

minimum x -coordinates among the points in P respectively.
Observe that among these three squares, one square is separated from other two squares by a horizontal or a

vertical line. Without loss of generality, assume that the line separating one square from other two squares is
vertical (first pass). The other pass where the line separation is horizontal, can be handled in similar manner.
Now we are describing the first pass of our proposed algorithm.

Let the vertical line passing through the i-th point in array x∆ divides the point set P into two sub-set iQ

P. R. S. Mahapatra

201

and iQ′ respectively; the subset iQ and iQ′ lie on the left and right side of this vertical line. For the position
of the vertical line that passes through the i-point of x∆ , the result in Corollary 3 is used to place a pair of
disjoint squares enclosing the maximum number of points from iQ and the result in Corollary 1 to place a
square that encloses the maximum number of points from iQ′ . This triplate of squares is a potential candidate
for position of the vertical line that passes through the i -th entry of x∆ . Observe that the time required to
place these triplet of squares is)log(nnO . Similarly use the result in Corollary 1 to place a square that encloses
the maximum number of points from iQ and the result in Corollary 3 to place a pair of disjoint squares
enclosing the maximum number of points from iQ′ . This triplate of squares is also a potential candidate for
position of the vertical line that passes through the i-th entry of x∆ . Finally, a triplate of squares that together
enclose greater number of points of P among the two sets of triplet of squares is kept. Now this process is
repeated for each position of the vertical line that passes though a point xp∈∆ . We thus have the following
result.

Corollary 4 Given a set P of n points in the plane, three axis-parallel unit squares which are pairwise
disjoint and they together enclose the maximum number of points from P can be placed in ()2 logO n n time
and ()O n space.

To solve the maximal enclosing problem using m axis-parallel unit squares, if we naively extend this
approach then it is interesting to note that the solution would not have a polynomial time complexity in both n
and m . Now to solve this problem, we propose an ()2 5O m n time and ()4O mn space algorithm that uses (i)
similar dynamic programming approach as proposed by Mukherjee et al. [21], and (ii) the result in Corollary 1
as a subroutine.

Observe that placing horizontal and vertical partitioning lines among the points of P can generate ()4O n
subsets of P . Let ()P P′ ⊆ be the subset of points enclosed by the minimum enclosing rectangle (MER)
defined by the points () ()(),i kx p y p and () ()(),j lx p y p , i j< and lk < as bottom-left and top-right
corners respectively. Given a subset ()P P′ ⊆ , let () () () ()(), , , ,i k j lCount x p y p x p y p m denote the
maximum number of points from P jointly enclosed by m disjoint axis-parallel unit squares placed over the
subset P′ .

In the first step, we compute () () () ()(), , , ,1i k j lCount x p y p x p y p for all possible subsets of P using the
result in Corollary 1. Subsequently, it computes () () () ()(), , , ,i k j lCount x p y p x p y p u for all possible subsets
of P using the results of the previous steps in similar dynamic programming approach as proposed by
Mukherjee et al. [21]. Finally, it reports ()min min max max

, , , ,x y x yCount p p p p m .
In view of the Corollary 1, computation of the first step requires ()5 logO n n . Complexity of subsequent

steps, and hence, the over all time complexity of the algorithm is ()2 5O m n . Corresponding space complexity
can also be shown to be ()4O mn . Further details can be found in [21]. We thus have the following result.

Theorem 2 A placement of m sliceable axis-parallel unit squares which are pairwise disjoint and they
together enclose the maximum number of points from P can be computed in ()2 5O m n time using ()4O mn
space.

3. k-Enclosing Problem
Initially researchers considered the k -enclosing problem for computing a smallest area (perimeter) axis-parallel
square or rectangle. Most of the algorithms proposed for k -enclosing problems are efficient when k is small

and become inefficient for large values of k . Segal and Kedem [9] presented an ()()2O n k n k+ − time

algorithm for finding a smallest area k -enclosing axis-parallel rectangle for large values of k , 2n k n< < .

Matoušek [22] developed ()()3logO n n n k n+ −  , 0> , time algorithm to find a smallest k -enclosing circle

that is especially efficient when k is close to n . Given a set P of n points in the plane and an integer k
()k n≤ , we consider the problem of computing the minimum area axis-parallel square that encloses at least k

points of P for large values of k . A k point enclosing square (rectangle) kS is said to be a k -square (k -
rectangle) if there does not exist another square (rectangle) having area less than that of kS and enclosing k
points from P [10].

We use the idea of prune and search technique to solve the optimization problem for finding kS ()2k n> .
Each pruning step uses the solution of the corresponding decision problem that guides the search process. The
decision version of this problem asks whether there exists a square of side length α that encloses at least k

P. R. S. Mahapatra

202

points where k and α are the input parameters. In Section 4, we present some preliminary observations and
it is shown that the Result in Corollary 1 can be used to solve a decision version of the optimization problem.

4. Preliminaries
Let { }1 2, , , nP p p p=  be the set of n points in the plane. Our objective is to compute k -square kS .
Without loss of generality, assume that no two points of P have the same x or y coordinates. Let ()x p
and ()y p denote the x -coordinate and the y -coordinate of any point p respectively. The size of a square
is represented by the length of it's side. We have the following observation.

Observation 2 At least one pair of opposite sides of kS must contain points from P .
The decision version of this problem can be stated as “given a length α , does there exist a square of size α

that encloses at least k points of P ?”.
Let bP , tP , lP , rP and fP be five subsets of P such that b t l r fP P P P P P=     and all the subsets

are not necessarily mutually disjoint. We define bP and tP as the set of ()n k− bottom most and ()n k−
top most points of P respectively; lP and rP are the set of ()n k− left most points and ()n k− right
most points of P respectively; and fP P P′= − where b t l rP P P P P′ =    .

Note that if 3 4k n> then fP must contain at least one point of P . The following observation follows
from the above definitions.

Observation 3 For 2k n> , kS must enclose all the points of fP .
Proof: Let p be any point of the set fP . At least ()n k− elements are on the right side of p . The

position of p in the left to right ordering of P are at most k . Therefore there are ()n k i− + number of
points of P on the left of p for 0 2 1i k n≤ ≤ − − . Consequently at most ()1k − points are on left of p .
Hence right boundary of kS is on right side of p . Similarly left, top and bottom boundaries of kS are on left,
top and bottom sides of p respectively. Hence the observation follows.

Let fR be the minimum area axis-parallel rectangle enclosing the point set fP . Suppose the length of the
longest side of fR is λ and the left, right, top and bottom boundaries of the rectangle fR contain the points

lp , rp , tp and bp respectively (See Figure 2). We define ()Max-square α , α λ≥ as an axis-parallel
square of size α that includes the point set fP and the total number of points enclosed from P is
maximized. It is easy to see that the bottom, top, left and right boundaries of ()Max-square α must lie within
the ranges () (),t by p y pα −  , () (),t by p y p α +  , () (),r lx p x pα −  and () (),r lx p x p α + 
respectively.

To locate ()Max-square α among the set { }, , ,t b l rP p p p p′
 , we use sweep line paradigm combined with

binary search tree as data structure in similar way as described in Section 2.1. As earlier, our algorithm makes
horizontal and vertical sweeps. Below we briefly describe the algorithm for horizontal sweep to locate

()Max-square α whose bottom side is aligned with a point from P . Look for all squares of size α whose
bottom and left boundaries are within the range () (),t by p y pα −  and () (),r lx p x pα −  respectively.

Figure 2. Proof of Observation 3.

P. R. S. Mahapatra

203

Now consider possible positions of the left boundary of ()Max-square α within the above mentioned range
such that the left boundary or the right boundary passes through a point of P . Notice that all squares with these
restrictions include the point set fP . Therefore the points in the set { }, , ,t b l rP p p p p′

 are the only points
required to be processed to locate ()Max-square α and the number of such points is at most ()4 1n k− + . This
observation leads to the following theorem.

Corollary 5 For given α λ> , the axis-parallel square ()Max-square α containing the maximum number
of points from P and enclosing point set fP can be located in () ()()logO n k n k− − time using ()O n
space.

5. An Efficient Algorithm to Find k-Square for Large Values of k

In this section, we explain an efficient algorithm to find kS for large values of
2
nk  > 

 
. The result in

Corollary 5 to locate ()Max-square α is used as a subroutine to find kS for
2
nk > . From Observation 2, we

can conclude that either top and bottom sides of kS contain points of P or left and right sides of kS contain
points of P . Without loss of generality, assume that top and bottom sides of kS contain points from P . The
other case where left and right sides of kS contain points of P , can be handled in similar manner. Let

1 2, , , mQ p p p=  be an ordering of points of the set { }, , ,l r t bP p p p p′
 in increasing order of their y

-coordinate values. Consider ∆ to be the list of ()()2O n k− vertical distances () ()()j iy p y p− , j i> for
each pair of points ip and jp Q∈ .

Our objective is to find kS for a given value k such that ()Max-square α encloses k points of P and
the value α ∈∆ is minimized. We iteratively reduce the size of ∆ by prune and search technique without
explicitly computing ()()2O n k− elements of ∆ . Let i∆ represent the list of vertical distances at thi
iteration. At thi iteration we reduce the size of i∆ by 1 4 . Initially 0∆ = ∆ . Observe that for any ip Q∈ ,

() ()() () ()()1j i j iy p y p y p y p+− < − for m j i> > . Without loss of generality, let the indices of the points
, ,l r tp p p and bp remain same in Q also. Let us denote the set of vertical distances generating ∆ by the

sequences 1 2, , , bΨ Ψ Ψ defined as follows.

() () () () () (){ }
() () () () () (){ }

() () () () () (){ }

() () () () () (){ }

1 1 1 1 1

2 2 1 2 2

1

1

, , ,

, , ,

, , ,

, , ,

t t m

t t m

i t i t i m i

b t b t b m b

y p y p y p y p y p y p

y p y p y p y p y p y p

y p y p y p y p y p y p

y p y p y p y p y p y p

+

+

+

+

Ψ = − − −

Ψ = − − −

Ψ = − − −

Ψ = − − −













Note that the elements in each sequence iΨ are in nondecreasing order. At thj iterative step of the
algorithm the current search space j∆ is reduced by pruning the iΨ ’s. Here, either upper or lower portion of

iΨ is pruned. Therefore, each iΨ sequence can be represented by lower and upper indices of the original

sequence. For any point ip Q∈ , median element of the corresponding sequence iΨ is ()
1 2

2
i l ly p y p + 

  

 
 −
 
 

where 1l and 2l are the lower and upper indices of the sequence iΨ . We denote the median element of iΨ
as ()imed Ψ . So computing the median of the sequence of vertical distances corresponding to any point

ip Q∈ requires only a constant time arithmetic operation on the array indices.
We represent each iΨ as a vertical strip parallel to the y -axis. All the vertical strips (iΨ ’s) are arranged

along the x -axis such that ()imed Ψ 's fall on the x -axis and the median values are in nonincreasing order
along the x -axis (See Figure 3). Again the elements of each iΨ are arranged in nondecreasing order parallel
to the y -axis. At initial step of iteration, all medians () () ()1 2, , , bmed med medΨ Ψ Ψ are in nonincreasing
order. This ordering may change in subsequent iterations due to pruning of iΨ 's. Therefore at each iteration, we
need to rearrange iΨ ’s such that ()imed Ψ ’s are in nonincreasing order. Let 1 2, , , bΨ Ψ Ψ be an
arrangement of the sequences in j∆ such that () () ()1 2 bmed med medΨ ≥ Ψ ≥ ≥ Ψ . At thj iteration we

P. R. S. Mahapatra

204

Figure 3. Arrangement of iΨ ’s.

find an index c such that 1

c
ii= Ψ∑ is half of the size of j∆ . Observe that the size of j∆ is at most 3 4

of the size of 1j−∆ . Consider ()cmed Ψ as α and compute Max- ()square α . If ()Max-square α encloses
at least k points of P , then size of kS is less than or equal to α and we can ignore the elements in j∆
greater than ()cmed Ψ . Note that all the ()med ⋅ values corresponding to 1 2 1, , , c−Ψ Ψ Ψ are greater than

()cmed Ψ . Therefore for each , 1 <i i c≤ we can delete upper half of iΨ . In case, ()Max-square α encloses
less than k points, we similarly delete lower half of each iΨ for c i b≤ ≤ . Now continue with the
subsequent iterations until we end up at an iteration, say maxit, such that size of maxit∆ is constant.

Lemma 1 At every iterative step the size of the current solution space is reduced by a factor of 1 4 .
Proof: At thj iteration, either we discard upper half of 1 2 1, , , c−Ψ Ψ Ψ or lower half of 1, , ,c c b+Ψ Ψ Ψ .

As the total number of elements in the sequences 1 2 1, , , c−Ψ Ψ Ψ is 1 2 of size of j∆ , we can discard at
least 1 4 elements of j∆ . Similar amount of elements is discarded for pruning of lower half. 

Now we have the following theorem.

Theorem 3 Given a set P of n points in the plane and an integer
2
nk  > 

 
, the smallest area square

enclosing at least k points of P can be computed in () ()()2logO n n k n k+ − − time using linear space.
Proof: Partitioning the set P to generate subsets , , ,b t l rP P P P and fP requires)(nO time. Sorting the

points of the sets bP and tP with respect to their y -coordinates requires () ()()logO n k n k− − time. We
do not store the iΨ 's explicitly. Instead, for all iΨ 's, we maintain an array  whose each element []i
contains the index information 1l and 2l for iΨ at each iteration. So for each iΨ we need only an
additional constant amount of space. Altogether in linear amount of space we can execute our algorithm. Time
complexity can be established from the following algorithmic steps at iteration j .

• Computation of ()imed Ψ for each i requires constant amount of time.
• Sorting the set of all medians () () ()1 2, , , bmed med medΨ Ψ Ψ takes () ()()logO n k n k− − time.
• Determining c such that 1

c
ii= Ψ∑ is half of the size of j∆ , needs ()O n k− time.

• Computation of ()()Max-square cmed Ψ takes () ()()logO n k n k− − time (see Theorem 5).
• We maintain the index structure of the arrays iΨ . This involves updating of 1l and 2l for each iΨ

when half of it's elements are discarded. This step requires constant amount of time for each iΨ .

From Lemma 1, we get that at thj iterative step at least
4
M elements are discarded where M denotes the

size of j∆ . This leads to the following recurrence relation.

() () () ()() () ()()23 4 log logT M T M O n k n k O n k n k= + − − = − − (1)

Hence the theorem. 
The technique used to derive the result in Theorem 3 can also compute kS for all values of k . Hence we

have the following theorem.
Theorem 4 Given a set P of n points in the plane and an integer () k n≤ , the smallest area square

enclosing at least k points of P can be computed in ()2logO n n time using linear amount of space.

P. R. S. Mahapatra

205

Acknowledgments
This research was partially supported by the DST PURSE scheme at University of Kalayni, India.

References
[1] Preparata, F.P. and Shamos, M.I. (1988) Computational Geometry: An Introduction. Springer-Verlag, Berlin.
[2] Chandran, S. and Mount, D. (1992) A Parallel Algorithm for Enclosed and Enclosing Triangles. International Journal

of Computational Geometry and Applications, 2, 191-214. http://dx.doi.org/10.1142/S0218195992000123
[3] Toussaint, G.T. (1983) Solving Geometric Problems with the Rotating Calipers. Proceedings of IEEE MELECON,

Athens, May 1983, 1-8.
[4] O’Rourke, J. (1985) Finding Minimal Enclosing Boxes. International Journal of Computer and Information Sciences,

14, 183-199. http://dx.doi.org/10.1007/BF00991005
[5] Agarwal, P.K., Sharir, M. and Toledo, S. (1994) Applications of Parametric Searching in Geometric Optimization.

Journal of Algorithms, 17, 292-318. http://dx.doi.org/10.1006/jagm.1994.1038
[6] Aggarwal, A., Imai, H., Katoh, N. and Suri, S. (1991) Finding k Points with Minimum Diameter and Related Problems,

Journal of Algorithms, 12, 38-56. http://dx.doi.org/10.1016/0196-6774(91)90022-Q
[7] Eppstein, D. and Erickson, J. (1994) Iterated Nearest Neighbors and Finding Minimal Polytopes. Discrete and Com-

putational Geometry, 11, 321-350. http://dx.doi.org/10.1007/BF02574012
[8] Datta, A., Lenhof, H.P., Schwarz, C. and Smid, M. (1995) Static and Dynamic Algorithms for k-Point Clustering

Problems. Journal of Algorithms, 19, 474-503. http://dx.doi.org/10.1006/jagm.1995.1048
[9] Segal, M. and Kedem, K. (1998) Enclosing k Points in Smallest Axis Parallel Rectangle. Information Processing Let-

ters, 65, 95-99. http://dx.doi.org/10.1016/S0020-0190(97)00212-3
[10] Das, S., Goswami, P.P. and Nandy, S.C. (2005) Smallest k-Point Enclosing Rectangle and Square of Arbitrary Orienta-

tion. Information Processing Letters, 95, 259-266.
[11] Ahn, H., Won, B.S., Demaine, E.D., Demaine, M.L., Kim, S., Korman, M., Reinbacher, I. and Son, W. (2011) Cover-

ing Points by Disjoint Boxes with Outliers. Computational Geometry: Theory and Applications, 44, 178-190.
http://dx.doi.org/10.1016/j.comgeo.2010.10.002

[12] Chazelle, B.M. and Lee, D.T. (1986) On a Circle Placement Problem. Computing, 36, 1-16.
http://dx.doi.org/10.1007/BF02238188

[13] Barequet, G., Dickerson, M. and Pau, P. (1997) Translating a Convex Polygon to Contain a Maximum Number of
Points. Computational Geometry: Theory and Applicaions, 8, 167-179.

[14] Barequet, G., Briggs, A.J., Dickerson, M.T. and Goodrich, M.T. (1998) Offset-Polygon Annulus Placement Problems.
Computational Geometry: Theory and Applications, 11, 125-141.

[15] Younies, H. and Wesolowsky, G.O. (2004) A Mixed Integer Formulation for Maximal Covering by Inclined Paralleo-
grams. European Journal of Operational Research, 159, 83-94.
http://dx.doi.org/10.1016/S0377-2217(03)00389-8

[16] Daz-Báñez, J.M., Seara, C., Antoni, S.J., Urrutia, J. and Ventura, I. (2005) Covering Points Sets with Two Convex
Objects. Proceedings of 21st European Workshop on Computational Geometry, 179-182.

[17] Cabello, S., Miguel, D.B.J., Seara, C., Sellares, J.A., Urrutia, J. and Ventura, I. (2008) Covering Point Sets with Two
Disjoint Disks or Squares. Computational Geometry: Theory and Applicaions, 40, 195-206.
http://dx.doi.org/10.1016/j.comgeo.2007.10.001

[18] De Berg, M., Van Kreveld, M., Overmars, M. and Schwarzkopf, O. (2000) Computational Geometry—Algorithms and
Applications, Springer-Verlag, Berlin.

[19] Megiddo, N. and Supowit, K.J. (1984) On the Complexity of Some Common Geometric Location Problems. SIAM
Journal of Computing, 13, 182-196. http://dx.doi.org/10.1137/0213014

[20] Lengauer, T. (1988) Combinatorial Algorithms for Integrated Circuit Layout, Berlin.
[21] Mukherjee, M. and Chakraborty, K. (2002) A Polynomial-Time Optimization Algorithm for a Rectlinear Partitioning

Problem with Applications in VLSI Design Automation. Information Processing Letters, 83, 41-48.
http://dx.doi.org/10.1016/S0020-0190(01)00305-2

[22] Matousek, J. (1995) On Geometric Optimization with Few Violated Constraints. Discrete and Computational Geome-
try, 14, 365-384. http://dx.doi.org/10.1007/BF02570713

http://dx.doi.org/10.1142/S0218195992000123
http://dx.doi.org/10.1007/BF00991005
http://dx.doi.org/10.1006/jagm.1994.1038
http://dx.doi.org/10.1016/0196-6774(91)90022-Q
http://dx.doi.org/10.1007/BF02574012
http://dx.doi.org/10.1006/jagm.1995.1048
http://dx.doi.org/10.1016/S0020-0190(97)00212-3
http://dx.doi.org/10.1016/j.comgeo.2010.10.002
http://dx.doi.org/10.1007/BF02238188
http://dx.doi.org/10.1016/S0377-2217(03)00389-8
http://dx.doi.org/10.1016/j.comgeo.2007.10.001
http://dx.doi.org/10.1137/0213014
http://dx.doi.org/10.1016/S0020-0190(01)00305-2
http://dx.doi.org/10.1007/BF02570713

	Variations of Enclosing Problem Using Axis Parallel Square(s): A General Approach
	Abstract
	Keywords
	1. Introduction
	Problems Studied

	2 Maximal Enclosing Problem
	Algorithm for Reporting Candidate Squares

	3. k-Enclosing Problem
	4. Preliminaries
	5. An Efficient Algorithm to Find k-Square for Large Values of k
	Acknowledgments
	References

