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Abstract 
Let P  be a set of n  points in two dimensional plane. For each point p P∈ , we locate an axis- 
parallel unit square having one particular side passing through p  and enclosing the maximum 
number of points from P . Considering all points p P∈ , such n  squares can be reported in 

( )O n nlog  time. We show that this result can be used to (i) locate ( )m 2>  axis-parallel unit 
squares which are pairwise disjoint and they together enclose the maximum number of points 
from P  (if exists) and (ii) find the smallest axis-parallel square enclosing at least k  points of 
P , k n2 ≤ ≤ . 
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1. Introduction 
Given a set { }1 2, , , nP p p p=   points in a plane, enclosing problem in computational geometry is concerned 
with finding the smallest geometrical object of a given type that encloses all the points of P . Some well known 
instances of the enclosing problem are finding minimum enclosing circle [1], minimum area triangle [2], 
minimum area rectangle [3], minimum bounding box [4], and smallest width annulus [5]. 

The k -enclosing problem is an important variant of enclosing problem. Here the objective is to compute a 
smallest region of given type that encloses at least k  points of P . k -enclosing problems using rectangles 
and squares are studied [6]-[11] are also studied extensively. 

A closely related problem locates one or more copies of a given region to maximize the size of the subset 
enclosed. In other words, instead of fixing k  and computing an optimal enclosing region, the problem is to 
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maximize the number of points enclosed by the given region(s) of fixed size and shape. This type of problem 
has similar applications as the problems mentioned above. These so called problems of maximal enclosing using 
single object, each of fixed size and orientation, have also received attention of many researchers. The objects 
used are circle [12] and convex polygon [13] [14]. Younies et al. [15] introduced a zero-one mixed integer 
formulation for the maximum enclosing problem where points are enclosed by parallelograms in a plane. 
Directional antennas is one of the applications where parallelogram shapes would be useful. In the context of 
bichromatic planar point set, Díaz-Báñez et al. [16] proposed algorithms for maximal enclosing by two disjoint 
axis-parallel unit squares and circles in ( )2O n  and ( )3 logO n n  time respectively. Later, they improved the 
complexities to ( )logO n n  and ( )8 3 2logO n n  time respectively [17]. 

Problems Studied 
An axis-parallel unit square is a square of unit size whose sides are parallel to one of the coordinate axes. An 
axis-parallel unit square S  encloses a set of points those lie on the boundaries of S  or in the interior of S . 
For a given set P  of n  points in two dimensional plane, in this paper we consider the following variation of 
the maximal covering problem.  

• For each point p P∈ , locate an axis-parallel unit square whose one side is constrained to pass through p  
and encloses the maximum number of points from P .  

We propose an ( )logO n n  time and ( )O n  space algorithm to solve the problem P1. It is shown that this 
algorithm can be used to compute a placement of one or more axis-parallel squares enclosing the maximum 
number of points from P  if such a placement exists. We also use this result to construct an efficient algorithm  

for finding the smallest axis-parallel square enclosing at least k  points of P  for large values of k  
2
nk > 

 
. 

2 Maximal Enclosing Problem  
This section considers the following problem P1: For each point ip P∈ , we locate an axis-parallel unit square 
whose one particular side is passing through ip  and enclosing the maximum number of points from P . Note 
that such axis-parallel unit square may not be unique. In that case, choose one among them and call that 
axis-parallel unit square as candidate square. Therefore, at most 4n  number of candidate squares can be 
obtained by considering alignments of four different sides for all points in P . Below we describe the pass for 
computing candidate squares whose bottom sides are passing through a point from P  (See Figure 1).  

Without loss of generality, assume that no two points have the same x - or y -coordinate. Consider two 
arrays x∆  and y∆  containing the points of P  in ascending order of x  and y -coordinates respectively. 
Let us denote the x -coordinate of the i-th entry of x∆  by ix  and similarly the y -coordinate of the i-th 
entry of y∆  by iy , 1 i n≤ ≤ . Coordinates of a generic point p  is denoted by ( ) ( )( ),x p y p . For a point 
p P∈ , let ( )left p  denote the minimum entry in x∆ , say q P∈ , such that ( ) ( ) 1x p x q− ≤ .  

Observation 1 Given the array x∆ , all intervals ( )( ) ( )left ,i ix p x p   , 1 i n≤ ≤  can be computed in 
linear time.  
 

 
Figure 1. Candidate square.                           
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In a similar way, for a point p P∈ , let ( )bottom p  denote the minimum entry in y∆ , say q P′∈ , such 
that ( ) ( ) 1y p y q′− ≤ . Likewise, we define ( )right . , and ( )top .  on the arrays x∆  and y∆  respectively. 

Algorithm for Reporting Candidate Squares 
In this section we present sweep line algorithm combined with balanced search tree as data structure for 
computing candidate squares. Using the points in array x∆ , construct a balanced search tree T  with search 
key as the x -coordinate values of the points in P . The leaves of T  correspond to the ordered points of x∆ . 
We attach two positive integral variables   and   with each node of T . Before describing the algorithm 
in details, we first explain the role of   and  . The span ( )I v  corresponding to an internal node v  is an 
interval, generated by the x -coordinates of the left most and right most points at the leaves in the subtree rooted 
at v . Moreover, span ( )I µ  of the leaf node µ  stores the x -coordinate of the point at the leaf node µ  of 
T . Our sweep line algorithm considers two horizontal sweep lines namely bottom sweep line BS  and top 
sweep line TS . Let the current positions of TS  and BS  be at heights ( )y p  and ( )y q  respectively such 
that ( )topp q=  and H  be the unit horizontal slab determined by BS  and TS . In case that the vertical 
distance between BS  and TS  is less than unity, shift TS  upwards to create a gap between BS  and TS  
as unity. Note that, no additional points are included for such shifting of TS  in upward direction. 

At the end of processing all points within H , we get the following information by   and  . The 
variable   attached with an internal node v  indicates that there exists a subset ( )P P′ ⊆  of size   (i.e., 
  stores the count of the set P′ ) such that each unit square whose bottom, top sides coincide with BS , TS  
respectively and left boundary within span ( )I v  encloses the subset P′ . Observe that these spans ( )I v  are 
all different for all nodes v . The subsets P′  for nodes along the path from root to a leaf node are all disjoint. 
Here each node v  does not keep P′  explicitly but only its count  . The variable   attached with an 
internal node v  indicates that there exists a unit square S  whose cardinality is the sum of   values of the 
ancestor nodes of v  plus the   value at node v ; bottom and top sides of S  are constrained to coincide 
with BS , TS  respectively, the left boundary of S  lies within the span ( )I v . Moreover, the cardinality of 
S  is maximum among all unit squares within the slab H  and the left boundary of each such unit square lies 
within the span of v . We now recursively define   value for an internal node as the sum of its   value 
and the maximum of   values of its two children-nodes. This recursive definition of   implies that 
variable   at the root of tree T  stores the cardinality of a candidate square whose bottom side is constrained 
to pass through the point q . This type of integral variables attached to the nodes of segment tree are also used 
to handle stabbing counting queries [18]. The space requirement for this type of segment tree is linear [18]. 

In initial step, the variables   and   corresponding to all nodes are initialized with zero and both the 
sweep lines TS  and BS  pass through the bottom most point ( )1p . Assume that ip  is the point 
corresponding to the i-th entry in y∆ , 1 i n≤ ≤ . The algorithm processes all points 1 2, , , np p p  in y∆  one 
at a time. We also explain the way of capturing information by the variables   and   at the time of 
processing a point in y∆ , encountered by sweep lines. 

The sweep line TS  is moved up one point at a time, considering 1p  as the first encountered point. For each 
point p  encountered by the sweep line TS , if the vertical distance of p  from the current position of the 
sweep line BS  is less than or equal to unity, T  is updated by Increment operation which is described below. 

For the interval ( )( ) ( )left ,x p x p   , find the split node [18] splitv  in T , that is the least common ancestor 
of ( )( )leftx p  and ( )x p  in the balanced search tree T . Search for the leaf node containing ( )left p  on the 
left subtree rooted at splitv  and, while traversing, if we turn left from node v , increment   of the right child 
of v  by one. In case the right child of v  is a leaf, increment its   instead of  . Similarly, while 
traversing the right subtree of the split node for searching the leaf node containing p , if we turn right from 
node v , increment   of the left child of v . Again, in case the left child is a leaf, increment its   instead 
of  . Finally, increase the   values of the leaf nodes containing ( )left p  and p  by one. We now 
recursively update the   value of each internal node in the path from the leaf node containing ( )left p  to 
the left child of the split node splitv , as the sum of its   value and the maximum of   values of its two 
children-nodes. Then update the   value of each internal node in the path from the leaf containing p  to the 
root of T  in similar way. In case ( )( ) ( )leftx p x p= , we find the leaf node v  of T  that contains the point 
p  and increment the   value of leaf node v . The subsequent updation of   values associated with the 

internal nodes of T  is same as described earlier. 
Again if the vertical distance of the encountered point p  by TS  from the current position of BS  becomes 
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greater than unity, TS  stops advancing to p  (i.e., T  is not updated by Increment operation for the point 
p ). For the point q  on the current position of BS , update T  for the point q  and report a candidate square 

with bottom boundary passing though q  by the Decrement and Report operations which are explained below. 
The sweep line BS  is then moved up one point at a time. For each point q  encountered by the sweep line 
BS , if the vertical distance between p  and q  is greater than unity, T  is updated by Decrement operation 
and a candidate square with bottom boundary passing though q  is reported by Report operation. 

In case that the vertical distance of q  from TS  becomes smaller than unity, the sweep line BS  stops 
advancing and sweep line TS  starts sweeping from its current position. The above process is continued till 
Report and Decrement operations are done for all the points. 

We now describe the Report operation. Let qS  be the candidate square with bottom boundary passing 
through the point q . Observe that the number of points enclosed by qS  is equal to the   value at the root 
of the tree T . To find a placement of the left boundary of qS , move from the root of the tree T  towards the 
leaf, each time picking the child with larger   value. The leaf node thus reached stores the point through 
which the left boundary of qS  passes. Report qS  along with the number of points inside it. 

The Decrement operation is same as Increment operation with the following exception. For the interval 
( )( ) ( )left ,x q x q    associated with point q , locate the split node in T . During searching from the split node 

for the nodes containing ( )left q  and q , instead of incrementing, we decrement  ’s and  ’s by one as 
appropriate. The subsequent updation of   values associated with the internal nodes of T  is similar to that 
in the Increment operation.  

Theorem 1 Let P  be a set of n  points in a two dimensional plane. Then all candidate squares for ip P∈ , 
1 i n≤ ≤ , can be computed in ( )logO n n  time using ( )O n  space.  

Proof: For a point p , each of Increment, Decrement and Report operation takes ( )logO n  time. Since for 
each point in P , these operations are executed only once, they together take ( )logO n n  time.    

Corollary 1 A placement of an axis-parallel unit square enclosing the maximum number of points from P  
can be computed in ( )logO n n  time using ( )O n  space.  

Proof: Let *S  be an axis-parallel unit square enclosing the maximum number of points from P  and 
P P′ ⊆  be the set of points enclosed by *S . Note that *S  can always be repositioned, without altering the 
points enclosed by it, so that the extended lines of two adjacent sides of *S  pass through two points of P  and 
these two points may not belong to P′ . Sometimes the adjacent sides of *S  may be passed through same 
point of P  and, in that case, the point is at one corner of *S . Therefore, the maximum cardinality among the 
set of all possible candidate squares is equal to the cardinality of *S .    

Corollary 2 An axis-parallel rectangle of fixed height and width that encloses the maximum number of points 
from P , can be placed in ( )logO n n  time using ( )O n  space.  

Proof: Follows directly from Corollary 1.    
Corollary 3 A placement of two disjoint axis-parallel unit squares together enclosing the maximum number 

of points from P , can be computed in ( )logO n n  time using ( )O n  space.  
Proof: For each point yp∈∆ , we can compute the cardinality of candidate square whose top boundary is 

passing through p  in ( )logO n n  time. Now, we sweep from bottom to top to generate a subset of y∆  that 
reports the maximum cardinality candidate square whose top boundary lies below any point yp∈∆ . This 
sweeping process requires ( )O n  time.    

It is interesting to generalize the maximal enclosing problem using m  disjoint axis-parallel unit squares, 
2m >  and the problem is known to be NP-hard [19]. A set of m  rectangles (squares) on the plane is called 

m -sliceable if they can be recursively partitioned by ( )1m −  horizontal or vertical lines [20]. We now assume 
there exists m -sliceable axis-parallel squares and propose an algorithm to locate three axis-parallel unit squares 
which are pairwise disjoint and they together enclose the maximum number of points from P . 

Let 
maxxp  and 

minyp  be the points with maximum x -coordinates and minimum y -coordinates among the 
points in P  respectively. Similarly, 

maxyp  and 
minxp  be the points with maximum y -coordinates and 

minimum x -coordinates among the points in P  respectively. 
Observe that among these three squares, one square is separated from other two squares by a horizontal or a 

vertical line. Without loss of generality, assume that the line separating one square from other two squares is 
vertical (first pass). The other pass where the line separation is horizontal, can be handled in similar manner. 
Now we are describing the first pass of our proposed algorithm. 

Let the vertical line passing through the i-th point in array x∆  divides the point set P  into two sub-set iQ  
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and iQ′  respectively; the subset iQ  and iQ′  lie on the left and right side of this vertical line. For the position 
of the vertical line that passes through the i-point of x∆ , the result in Corollary 3 is used to place a pair of 
disjoint squares enclosing the maximum number of points from iQ  and the result in Corollary 1 to place a 
square that encloses the maximum number of points from iQ′ . This triplate of squares is a potential candidate 
for position of the vertical line that passes through the i -th entry of x∆ . Observe that the time required to 
place these triplet of squares is )log( nnO . Similarly use the result in Corollary 1 to place a square that encloses 
the maximum number of points from iQ  and the result in Corollary 3 to place a pair of disjoint squares 
enclosing the maximum number of points from iQ′ . This triplate of squares is also a potential candidate for 
position of the vertical line that passes through the i-th entry of x∆ . Finally, a triplate of squares that together 
enclose greater number of points of P  among the two sets of triplet of squares is kept. Now this process is 
repeated for each position of the vertical line that passes though a point xp∈∆ . We thus have the following 
result.  

Corollary 4 Given a set P  of n  points in the plane, three axis-parallel unit squares which are pairwise 
disjoint and they together enclose the maximum number of points from P  can be placed in ( )2 logO n n  time 
and ( )O n  space.  

To solve the maximal enclosing problem using m  axis-parallel unit squares, if we naively extend this 
approach then it is interesting to note that the solution would not have a polynomial time complexity in both n  
and m . Now to solve this problem, we propose an ( )2 5O m n  time and ( )4O mn  space algorithm that uses (i) 
similar dynamic programming approach as proposed by Mukherjee et al. [21], and (ii) the result in Corollary 1 
as a subroutine. 

Observe that placing horizontal and vertical partitioning lines among the points of P  can generate ( )4O n  
subsets of P . Let ( )P P′ ⊆  be the subset of points enclosed by the minimum enclosing rectangle (MER) 
defined by the points ( ) ( )( ),i kx p y p  and ( ) ( )( ),j lx p y p , i j<  and lk <  as bottom-left and top-right 
corners respectively. Given a subset ( )P P′ ⊆ , let ( ) ( ) ( ) ( )( ), , , ,i k j lCount x p y p x p y p m  denote the 
maximum number of points from P  jointly enclosed by m  disjoint axis-parallel unit squares placed over the 
subset P′ . 

In the first step, we compute ( ) ( ) ( ) ( )( ), , , ,1i k j lCount x p y p x p y p  for all possible subsets of P  using the 
result in Corollary 1. Subsequently, it computes ( ) ( ) ( ) ( )( ), , , ,i k j lCount x p y p x p y p u  for all possible subsets 
of P  using the results of the previous steps in similar dynamic programming approach as proposed by 
Mukherjee et al. [21]. Finally, it reports ( )min min max max

, , , ,x y x yCount p p p p m . 
In view of the Corollary 1, computation of the first step requires ( )5 logO n n . Complexity of subsequent 

steps, and hence, the over all time complexity of the algorithm is ( )2 5O m n . Corresponding space complexity 
can also be shown to be ( )4O mn . Further details can be found in [21]. We thus have the following result.  

Theorem 2 A placement of m  sliceable axis-parallel unit squares which are pairwise disjoint and they 
together enclose the maximum number of points from P  can be computed in ( )2 5O m n  time using ( )4O mn  
space.  

3. k-Enclosing Problem 
Initially researchers considered the k -enclosing problem for computing a smallest area (perimeter) axis-parallel 
square or rectangle. Most of the algorithms proposed for k -enclosing problems are efficient when k  is small 

and become inefficient for large values of k . Segal and Kedem [9] presented an ( )( )2O n k n k+ −  time 

algorithm for finding a smallest area k -enclosing axis-parallel rectangle for large values of k , 2n k n< < . 

Matoušek [22] developed ( )( )3logO n n n k n+ −  , 0> , time algorithm to find a smallest k -enclosing circle 

that is especially efficient when k  is close to n . Given a set P  of n  points in the plane and an integer k  
( )k n≤ , we consider the problem of computing the minimum area axis-parallel square that encloses at least k  

points of P  for large values of k . A k  point enclosing square (rectangle) kS  is said to be a k -square ( k - 
rectangle) if there does not exist another square (rectangle) having area less than that of kS  and enclosing k  
points from P  [10]. 

We use the idea of prune and search technique to solve the optimization problem for finding kS  ( )2k n> .  
Each pruning step uses the solution of the corresponding decision problem that guides the search process. The 
decision version of this problem asks whether there exists a square of side length α  that encloses at least k  
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points where k  and α  are the input parameters. In Section 4, we present some preliminary observations and 
it is shown that the Result in Corollary 1 can be used to solve a decision version of the optimization problem. 

4. Preliminaries 
Let { }1 2, , , nP p p p=   be the set of n  points in the plane. Our objective is to compute k -square kS . 
Without loss of generality, assume that no two points of P  have the same x  or y  coordinates. Let ( )x p  
and ( )y p  denote the x -coordinate and the y -coordinate of any point p  respectively. The size of a square 
is represented by the length of it's side. We have the following observation. 

Observation 2 At least one pair of opposite sides of kS  must contain points from P .  
The decision version of this problem can be stated as “given a length α , does there exist a square of size α  

that encloses at least k  points of P ?”. 
Let bP , tP , lP , rP  and fP  be five subsets of P  such that b t l r fP P P P P P=      and all the subsets 

are not necessarily mutually disjoint. We define bP  and tP  as the set of ( )n k−  bottom most and ( )n k−  
top most points of P  respectively; lP  and rP  are the set of ( )n k−  left most points and ( )n k−  right 
most points of P  respectively; and fP P P′= −  where b t l rP P P P P′ =    . 

Note that if 3 4k n>  then fP  must contain at least one point of P . The following observation follows 
from the above definitions.  

Observation 3 For 2k n> , kS  must enclose all the points of fP .  
Proof: Let p  be any point of the set fP . At least ( )n k−  elements are on the right side of p . The 

position of p  in the left to right ordering of P  are at most k . Therefore there are ( )n k i− +  number of 
points of P  on the left of p  for 0 2 1i k n≤ ≤ − − . Consequently at most ( )1k −  points are on left of p . 
Hence right boundary of kS  is on right side of p . Similarly left, top and bottom boundaries of kS  are on left, 
top and bottom sides of p  respectively. Hence the observation follows.  

Let fR  be the minimum area axis-parallel rectangle enclosing the point set fP . Suppose the length of the 
longest side of fR  is λ  and the left, right, top and bottom boundaries of the rectangle fR  contain the points 

lp , rp , tp  and bp  respectively (See Figure 2). We define ( )Max-square α , α λ≥  as an axis-parallel 
square of size α  that includes the point set fP  and the total number of points enclosed from P  is 
maximized. It is easy to see that the bottom, top, left and right boundaries of ( )Max-square α  must lie within  
the ranges ( ) ( ),t by p y pα −  , ( ) ( ),t by p y p α +  , ( ) ( ),r lx p x pα −   and ( ) ( ),r lx p x p α +   
respectively. 

To locate ( )Max-square α  among the set { }, , ,t b l rP p p p p′
 , we use sweep line paradigm combined with 

binary search tree as data structure in similar way as described in Section 2.1. As earlier, our algorithm makes 
horizontal and vertical sweeps. Below we briefly describe the algorithm for horizontal sweep to locate

( )Max-square α  whose bottom side is aligned with a point from P . Look for all squares of size α  whose 
bottom and left boundaries are within the range ( ) ( ),t by p y pα −   and ( ) ( ),r lx p x pα −   respectively. 

 

 
Figure 2. Proof of Observation 3.                       
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Now consider possible positions of the left boundary of ( )Max-square α  within the above mentioned range 
such that the left boundary or the right boundary passes through a point of P . Notice that all squares with these 
restrictions include the point set fP . Therefore the points in the set { }, , ,t b l rP p p p p′

  are the only points 
required to be processed to locate ( )Max-square α  and the number of such points is at most ( )4 1n k− + . This 
observation leads to the following theorem. 

Corollary 5 For given α λ> , the axis-parallel square ( )Max-square α  containing the maximum number 
of points from P  and enclosing point set fP  can be located in ( ) ( )( )logO n k n k− −  time using ( )O n  
space.  

5. An Efficient Algorithm to Find k-Square for Large Values of k 

In this section, we explain an efficient algorithm to find kS  for large values of 
2
nk  > 

 
. The result in 

Corollary 5 to locate ( )Max-square α  is used as a subroutine to find kS  for 
2
nk > . From Observation 2, we 

can conclude that either top and bottom sides of kS  contain points of P  or left and right sides of kS  contain 
points of P . Without loss of generality, assume that top and bottom sides of kS  contain points from P . The 
other case where left and right sides of kS  contain points of P , can be handled in similar manner. Let 

1 2, , , mQ p p p=   be an ordering of points of the set { }, , ,l r t bP p p p p′
  in increasing order of their y

-coordinate values. Consider ∆  to be the list of ( )( )2O n k−  vertical distances ( ) ( )( )j iy p y p− , j i>  for 
each pair of points ip  and jp Q∈ . 

Our objective is to find kS  for a given value k  such that ( )Max-square α  encloses k  points of P  and 
the value α ∈∆  is minimized. We iteratively reduce the size of ∆  by prune and search technique without 
explicitly computing ( )( )2O n k−  elements of ∆ . Let i∆  represent the list of vertical distances at thi  
iteration. At thi  iteration we reduce the size of i∆  by 1 4 . Initially 0∆ = ∆ . Observe that for any ip Q∈ , 

( ) ( )( ) ( ) ( )( )1j i j iy p y p y p y p+− < −  for m j i> > . Without loss of generality, let the indices of the points 
, ,l r tp p p  and bp  remain same in Q  also. Let us denote the set of vertical distances generating ∆  by the 

sequences 1 2, , , bΨ Ψ Ψ  defined as follows.  

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }

1 1 1 1 1

2 2 1 2 2

1

1

, , ,

, , ,

, , ,

, , ,

t t m

t t m

i t i t i m i

b t b t b m b

y p y p y p y p y p y p

y p y p y p y p y p y p

y p y p y p y p y p y p
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

 

Note that the elements in each sequence iΨ  are in nondecreasing order. At thj  iterative step of the 
algorithm the current search space j∆  is reduced by pruning the iΨ ’s. Here, either upper or lower portion of 

iΨ  is pruned. Therefore, each iΨ  sequence can be represented by lower and upper indices of the original  

sequence. For any point ip Q∈ , median element of the corresponding sequence iΨ  is ( )
1 2

2
i l ly p y p + 

  

 
 −
 
 

  

where 1l  and 2l  are the lower and upper indices of the sequence iΨ . We denote the median element of iΨ  
as ( )imed Ψ . So computing the median of the sequence of vertical distances corresponding to any point 

ip Q∈  requires only a constant time arithmetic operation on the array indices. 
We represent each iΨ  as a vertical strip parallel to the y -axis. All the vertical strips ( iΨ ’s) are arranged 

along the x -axis such that ( )imed Ψ 's fall on the x -axis and the median values are in nonincreasing order 
along the x -axis (See Figure 3). Again the elements of each iΨ  are arranged in nondecreasing order parallel 
to the y -axis. At initial step of iteration, all medians ( ) ( ) ( )1 2, , , bmed med medΨ Ψ Ψ  are in nonincreasing 
order. This ordering may change in subsequent iterations due to pruning of iΨ 's. Therefore at each iteration, we 
need to rearrange iΨ ’s such that ( )imed Ψ ’s are in nonincreasing order. Let 1 2, , , bΨ Ψ Ψ  be an 
arrangement of the sequences in j∆  such that ( ) ( ) ( )1 2 bmed med medΨ ≥ Ψ ≥ ≥ Ψ . At thj  iteration we  
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Figure 3. Arrangement of iΨ ’s.                             

 
find an index c  such that 1

c
ii= Ψ∑  is half of the size of j∆ . Observe that the size of j∆  is at most 3 4  

of the size of 1j−∆ . Consider ( )cmed Ψ  as α  and compute Max- ( )square α . If ( )Max-square α  encloses 
at least k  points of P , then size of kS  is less than or equal to α  and we can ignore the elements in j∆  
greater than ( )cmed Ψ . Note that all the ( )med ⋅  values corresponding to 1 2 1, , , c−Ψ Ψ Ψ  are greater than 

( )cmed Ψ . Therefore for each , 1 <i i c≤  we can delete upper half of iΨ . In case, ( )Max-square α  encloses 
less than k  points, we similarly delete lower half of each iΨ  for c i b≤ ≤ . Now continue with the 
subsequent iterations until we end up at an iteration, say maxit, such that size of maxit∆  is constant. 

Lemma 1 At every iterative step the size of the current solution space is reduced by a factor of 1 4 .  
Proof: At thj  iteration, either we discard upper half of 1 2 1, , , c−Ψ Ψ Ψ  or lower half of 1, , ,c c b+Ψ Ψ Ψ . 

As the total number of elements in the sequences 1 2 1, , , c−Ψ Ψ Ψ  is 1 2  of size of j∆ , we can discard at 
least 1 4  elements of j∆ . Similar amount of elements is discarded for pruning of lower half.    

Now we have the following theorem.  

Theorem 3 Given a set P  of n  points in the plane and an integer 
2
nk  > 

 
, the smallest area square  

enclosing at least k  points of P  can be computed in ( ) ( )( )2logO n n k n k+ − −  time using linear space.  
Proof: Partitioning the set P  to generate subsets , , ,b t l rP P P P  and fP  requires )(nO  time. Sorting the 

points of the sets bP  and tP  with respect to their y -coordinates requires ( ) ( )( )logO n k n k− −  time. We 
do not store the iΨ 's explicitly. Instead, for all iΨ 's, we maintain an array   whose each element [ ]i  
contains the index information 1l  and 2l  for iΨ  at each iteration. So for each iΨ  we need only an 
additional constant amount of space. Altogether in linear amount of space we can execute our algorithm. Time 
complexity can be established from the following algorithmic steps at iteration j .  

• Computation of ( )imed Ψ  for each i  requires constant amount of time.  
• Sorting the set of all medians ( ) ( ) ( )1 2, , , bmed med medΨ Ψ Ψ  takes ( ) ( )( )logO n k n k− −  time.  
• Determining c  such that 1

c
ii= Ψ∑  is half of the size of j∆ , needs ( )O n k−  time.  

• Computation of ( )( )Max-square cmed Ψ  takes ( ) ( )( )logO n k n k− −  time (see Theorem 5).  
• We maintain the index structure of the arrays iΨ . This involves updating of 1l  and 2l  for each iΨ  

when half of it's elements are discarded. This step requires constant amount of time for each iΨ .  

From Lemma 1, we get that at thj  iterative step at least 
4
M  elements are discarded where M  denotes the  

size of j∆ . This leads to the following recurrence relation.  

( ) ( ) ( ) ( )( ) ( ) ( )( )23 4 log logT M T M O n k n k O n k n k= + − − = − −           (1) 

Hence the theorem.    
The technique used to derive the result in Theorem 3 can also compute kS  for all values of k . Hence we 

have the following theorem.  
Theorem 4 Given a set P  of n  points in the plane and an integer ( ) k n≤ , the smallest area square 

enclosing at least k  points of P  can be computed in ( )2logO n n  time using linear amount of space.  
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